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A B S T R A C T

Deep learning has been used to improve photoacoustic (PA) image reconstruction. One major challenge is that 
errors cannot be quantified to validate predictions when ground truth is unknown. Validation is key to quan
titative applications, especially using limited-bandwidth ultrasonic linear detector arrays. Here, we propose a 
hybrid Bayesian convolutional neural network (Hybrid-BCNN) to jointly predict PA image and segmentation 
with error (uncertainty) predictions. Each output pixel represents a probability distribution where error can be 
quantified. The Hybrid-BCNN was trained with simulated PA data and applied to both simulations and experi
ments. Due to the sparsity of PA images, segmentation focuses Hybrid-BCNN on minimizing the loss function in 
regions with PA signals for better predictions. The results show that accurate PA segmentations and images are 
obtained, and error predictions are highly statistically correlated to actual errors. To leverage error predictions, 
confidence processing created PA images above a specific confidence level.

1. Introduction

A key step in quantitative photoacoustics (PA) is accurately recon
structing the initial pressure distribution (IPD) throughout the imaging 
volume from data collected on an ultrasound array transducer [1,2]. 
With this IPD and the estimated fluence at each pixel, the optical ab
sorption coefficient can be imaged [3–5]. Optical absorption images at 
different wavelengths can then be combined for spectroscopic imaging, 
bringing molecular profiling to deep structures within the body [6–8]. 
By combining quantitative spectroscopic PA imaging with real-time ul
trasound (US) in a handheld probe, true molecular sensitivity can be 
added to clinical US (i.e., real-time PAUS imaging) [9]. Therefore, 
improving IPD reconstruction is key to quantitative PA. Unfortunately, 
conventional reconstruction methods produce poor IPD estimates, 
especially when conventional limited-bandwidth, limited-view hand
held US probes are used for PA data collection [10,11]. Here we focus on 
reconstruction methods to improve PA image quality for this geometry 
as a key step in delivering quantitative PA methods to the clinic.

Deep learning (DL) can significantly enhance the state-of-the-art in 
image reconstruction compared with conventional algorithms [12–20]. 
In particular, deep neural networks trained on large image datasets can 
learn to reconstruct images by optimizing weights in each layer from 

gradient descent [13]. Many recent studies have demonstrated that DL 
methods can greatly improve PA image quality [10,21–32]. Generally, 
the accuracy of DL-reconstructed PA images can be quantified by 
comparing predicted with ground-truth images (e.g., calculating the 
peak signal-to-noise ratio (PSNR) [33,34]). However, a major limitation 
to date has been the absence of validation tools in practical applications 
where ground-truth images are unknown. In particular, errors in DL 
reconstructions from conventional convolutional neural networks 
(CNNs) cannot be quantitatively estimated.

Researchers have developed deep-learning-based error (uncertainty) 
prediction methods for PA imaging. A CNN with a loss function based on 
the mean squared error was developed to predict different outputs for 
the same input using Monte Carlo dropout to estimate the uncertainty of 
the DL process [35]. However, it only estimated model uncertainty [17, 
36], and data uncertainty [17,36] was not considered. A different DL 
approach was developed to estimate errors in computed optical ab
sorption coefficients for quantitative PA imaging [37]. An 
error-estimation neural network was trained with computed initial 
pressure images as network inputs and relative errors of the estimated 
optical absorption coefficients as outputs. In testing, this network pre
dicts errors in the testing dataset or real experiments. However, error 
estimation is not based on a more accurate statistical approach; that is, 
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the error-estimation neural network only predicts the specific error 
instead of the statistical variance. In addition, to estimate errors in 
computed initial pressure images (network inputs), model uncertainty 
should be calculated and included in the overall estimated error. Finally, 
the accuracy of the estimated error was not evaluated quantitatively.

A potentially more accurate way to validate PA images reconstructed 
from DL networks is to use a Bayesian convolutional neural network 
(BCNN) [38–42] with a probability-distributed likelihood function as 
the loss function. Compared to conventional CNNs, a BCNN is an 
effective approach to approximate the uncertainty (pixel-wise confi
dence level of the image reconstruction) without knowing the ground 
truth. It assumes that each image pixel represents the parameter 
defining a probability distribution (e.g., Laplacian or Bernoulli distri
bution), rather than a deterministic intensity value [39]. Then, model 
error (model uncertainty) can be quantified by Monte Carlo dropout 
[43] or Deep Ensembles [44], and data error (data uncertainty) can be 
quantified by the variance in the predictions for given data. Since the 
parameters of the probability distribution for each image pixel are 
completely predicted by the BCNN, both data and model uncertainties 
are estimated, and the overall uncertainty (error) is the combination of 
the two. It has been applied to different imaging tasks including image 
segmentation [42], phase imaging [17], single-pixel imaging [36], op
tical metrology [45], and image classification [46].

Here, we propose a hybrid BCNN (Hybrid-BCNN) providing joint PA 
segmentation (Bernoulli distribution) and image (Laplacian distribu
tion) reconstructions with error prediction (i.e., overall uncertainty 
combining data and model uncertainties). Segmentation here denotes 
structural segmentation excluding artifacts and background noise. In 
addition to identifying PA signals, segmentation focuses the Hybrid- 
BCNN on minimizing the loss function only in regions of PA signals 
since images from a typical PAUS architecture are usually sparse, and a 
single probability distribution is not efficient to describe both back
ground and PA (non-background) pixels. The proposed Hybrid-BCNN 
was trained on simulated PA data and makes predictions on both 
simulated and experimental data. In addition to predicting PA seg
mentation and image, both data and model uncertainty can be computed 
statistically with Monte Carlo dropout to completely estimate the error 
(i.e., overall uncertainty) in predicted outputs. The proposed Hybrid- 
BCNN was compared to another BCNN without segmentation to verify 
its importance and the inefficiency of a single probability distribution. 
As demonstrated below, the proposed Hybrid-BCNN reconstructs the PA 
segmentation and image with high accuracy; the segmentation helps 
BCNN train efficiently; and predicted PA segmentation and image errors 
(uncertainties) are highly statistically correlated to actual reconstruc
tion errors from the two proposed statistical methods, indicating that it 
is a promising tool to make and validate DL reconstructions.

To demonstrate one potential way to leverage uncertainty pre
dictions, confidence processing is proposed by computing the relative 
uncertainty to improve PA image quality (e.g., artifact removal) for both 
simulations and measurements. Although the proposed Hybrid-BCNN is 
only applied here to predictions of the IPD and its error, it can also be 
used in other areas of quantitative PA imaging (e.g. spectroscopic 
imaging).

2. Materials and methods

2.1. BCNN theory

Rather than simple weights, BCNNs use distributions over network 
parameters and the training dataset [39]. That is, BCNNs assume sto
chastic rather than deterministic network processes (e.g., dropout [47], 
weight initialization [48] etc.). Denote the training dataset as (X,Y) =

{xn, yn}
N
n=1 with X and Y representing network inputs and ground-truth 

images, respectively. N is the total number of training images. To 
approximate prediction variability in y given a specific input 

xtest,t within (Xtest ,Ytest) = {xtest, t , ytest, t}
T
t=1 (T is the total number of 

images in the testing dataset), the predictive distribution p(y|xtest, t , X,
Y) over all possible learned weights (with marginalization) [43] is used: 

p
(
y, |,xtest,t , X,Y

)
=

∫

p(y|xtest,t,W) p(W|X,Y)dW (1) 

where p(y|xtest,t ,W) denotes the predictive distribution including all 
possible output predictions given the learned weights W and the input 
xtest,t . It represents data uncertainty [17]. p(W|X,Y) denotes all possible 
learned weights given the training dataset, representing model uncer
tainty [17].

To jointly reconstruct the PA segmentation and image with uncer
tainty quantification, we choose the joint multivariate Bernoulli- 
distributed (for PA segmentation) and Laplacian-distributed (for PA 
image) likelihood functions to model data uncertainty, creating a 
Hybrid-BCNN. The specific choice of a Laplacian distribution for the 
image is discussed in the Supplementary Document. In this joint distri
bution, the Laplacian distribution is only assigned to the segmentation 
region, where the segmentation value is 1 under the Bernoulli distri
bution (detailed in Eqs. S6-S8 in the Supplementary Document).

The loss function LHybrid(W|x, y) (W combines network weights W1 

for PA segmentation and network weights W2 for PA image) for the joint 
distributed likelihood function given the training data pair (xn, yn), 
where yn = (yseg,n, yimage,n), is, 

LHybrid(W|xn, yn) =
∑M

m=1

[(
ym

seg,n − 1
)

log
(
1 − μm

1
)
− ym

seg,nlog
(
μm

1
)

+ ym
seg,n

(
⃒
⃒
⃒ym

image,n − μm
2

⃒
⃒
⃒

σm + log (2σm)

)]

(2) 

where yseg,n and yimage,n are the nth ground-truth PA segmentation and 
image in the training dataset, respectively. ym

seg,n and ym
image,n are the mth 

pixel of yseg,n and yimage,n, respectively. μm
1 is the probability of 

(
ym

seg,n = 1
⃒
⃒
⃒xn,W

)
, which is also the mean of the Bernoulli-function for 

ym
seg,n. μm

2 and σm are the mean and standard deviation of the Laplacian- 
distributed likelihood function for ym

image,n. M is the total pixel number 
in yseg,n or yimage,n. Complete derivations of Eq. (2) are presented in 
Supplementary Section 1.

The loss function in Eq. (2) is minimized during training. This 
Hybrid-BCNN has three output channels, where one (μ1) is for the 
Bernoulli-distributed likelihood function and two (μ2 and σ) are for the 
Laplacian-distributed likelihood function.

Model uncertainty is measured with a dropout network [43]. A dis
tribution q(W) (defined in ref. [43]) is learned to approximate p(W|X,Y)

(minimizing the Kullback-Leibler divergence between q(W) and p(W|X,
Y)) by applying a dropout layer before every layer with learnable 
weights. During the prediction process, model uncertainty is approxi
mated by Monte Carlo dropout [43]. With Monte Carlo integration, the 
predictive distribution p(y|xtest, t , X,Y) in Eq. (1) can be approximated 
as: 

p
(
y, |,xtest, t , X,Y

)
≈

1
K
∑K

k=1

p(y|xtest,t , Wk) (3) 

where K is the total number of dropout activations during prediction. In 
this study K=16, the same as that used in previous publications [17,36].

Finally, the reconstructed PA segmentation and image are repre
sented by the predicted mean μ̂m

test,t(the mth pixel) given test input xtest,t 

under Bernoulli-distributed and Laplacian-distributed likelihood func
tions, respectively: 

μ̂m
test,t =

1
K
∑K

k=1
μ̂m,k

test,t (4) 
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where μm denotes μm
1 or μm

2 , and μ̂m,k
test,tdenotes the mth pixel of the pre

dicted μ1 (for PA segmentation) or μ2 (for PA images) from the kth 
dropout activation given test input xtest,t (i.e., μ̂m,k

1test,t or μ̂m,k
2test,t).

The corresponding predicted uncertainties (the mth pixel) σ̂m
test,t(Ber)

(for PA segmentation under Bernoulli function) and σ̂m
test,t(Lap) (for PA 

image under Laplacian function) given the test input data xtest,t are, 

σ̂m
test,t(Ber) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
K
∑K

k=1
[μ̂m,k

1test,t(1 − μ̂m,k
1test,t)] +

1
K
∑K

k=1

(
μ̂m,k

1test,t − μ̂m
1test,t

)2
√

(5) 

σ̂m
test,t(Lap) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
K
∑K

k=1
2
(

σ̂m,k
test,t

)2
+

1
K
∑K

k=1

(
μ̂m,k

2test,t − μ̂m
2test,t

)2

√
√
√
√ (6) 

where σ̂m,k
test,t denotes the predicted standard deviation of ym

image from the 
kth dropout activation for test data xtest,t . Complete derivations of Eqs. 
(4–6) are presented in Supplementary Section 2.

The reconstructed PA image and its corresponding uncertainty are 
multiplied with the reconstructed PA segmentation since the Hybrid- 
BCNN only minimizes the loss function within non-background pixels 
(given by PA segmentation) and, therefore, the background and its un
certainty are not optimized. In this case, the accuracy (error) of PA 
segmentation and image predictions can be validated by the predicted 
uncertainties.

To show the power of the hybrid approach and to prove that a single 
distribution likelihood function (i.e., Laplacian) is not efficient to 
describe both background pixels and PA (non-background) pixels, we 
compared the Hybrid-BCNN to another BCNN with only the Laplacian- 
distributed likelihood function where there is no PA segmentation 
(Lap-BCNN). By taking logarithm and negative operations on Eq. (S4) in 
the Supplementary Document, the loss function LLap

(
WLap|x, y

)
for Lap- 

BCNN given the training data pair (xn, yn) where yn = yimage,n is, 

LLap
(
WLap|xn, yn

)
=

∑M

m=1

[
⃒
⃒
⃒ym

image,n − μm
2

⃒
⃒
⃒

σm + log(2σm)

]

(7) 

where WLap denotes the network weights of Lap-BCNN and the other 
variables have the same meanings as those in Eq. (2), and Eqs. (S4) and 
(S5) in the Supplementary Document.

The predicted PA image and uncertainty from the Lap-BCNN are the 
same as in Eqs. (4) and (6).

An uncertainty assessment metric [17,49–51] is used to quantify the 

accuracy of uncertainty predictions in the testing dataset by computing 
the reliability diagram (credibility (Cred) vs empirical accuracy (ACC)). 
Details of computing this diagram are in Supplementary Section 3. The 
linear correlation coefficient (CC) between Cred and ACC, and the slope 
of the corresponding linear fit, are calculated to quantify the diagonality 
of the reliability diagram. In this paper, the bound of the credible in
terval ϵ equals 0.2μ̂m

test,t to provide sufficient sample points from the 
discrete probability bins to appropriately plot the reliability diagram 
and evaluate its diagonality. To further test whether predicted un
certainties are related to true reconstruction errors, absolute recon
struction error is plotted versus 2× predicted uncertainty (i.e., 2×
standard deviation). Theoretically, the absolute errors of ~95 % of the 
plotted points should be less than or equal to their corresponding 2×
predicted uncertainties.

2.2. BCNN structure, parameters, and PA dataset simulation and 
preprocessing

The Hybrid-BCNN structure implementing the computational 
approach presented in the last section is shown in Fig. 1, where a U-Net 
architecture [52] with an encoder-decoder structure with skip connec
tions between contracting paths and expanding paths is used. The con
tracting path captures context and the expanding path enables precise 
localization [52]. Similar to the BCNN in a previous publication [36], 
dropout layers with a dropout rate of 0.1 appear before each convolution 
layer to prevent overfitting during training, and L2 kernel regularizers 
and bias regularizers with a regularization factor of 1 × 10− 6 were 
included in each convolution layer. Batch normalization (Batchnorm) 
[53] layers appear after each convolution layer to stabilize the network 
and make it converge better during training, and LeakyRelu [54] is used 
as the activation function. For Lap-BCNN, the same architecture is used 
except that there are two output channels (the predicted PA image and 
its uncertainty) for only the Laplacian-distributed likelihood function.

In a previous publication on DL-based real-time integrated PAUS 
imaging [32], two preprocessing approaches were applied to data 
directly acquired from the transducer. One is delay-and-sum (DAS) 
beamforming and the other is the multiple-channel transformed array 
(MC), in which propagation delays were applied between all observation 
points in the image and each transducer element without summation 
across array elements [32]. The MC approach has multiple channels, 
where the channel number equals the transducer element number, 
preserving more information embedded in the original data [32]. Pre
vious results have shown that DL predictions with MC as network inputs 
outperform those with DAS inputs [32]. Therefore, only 

Fig. 1. The Hybrid-BCNN structure with multi-channel data (preprocessed from transducer array data) as network inputs and network predictions.
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MC-preprocessed data were used as network inputs in this work.
We trained the network by generating simulated data mimicking 

typical microvessel images with the method described in a previous 
publication [32]. The microvessel images were obtained from the fundus 
oculi drive [55], which are representative of typical microvascular 
networks expected in many clinical applications. Only the binary images 
(manually extracted images) [32] were used, where white pixels denote 
the blood vessel segmentation and black pixels denote background. 
These images were randomly re-sized, re-located, rotated, partitioned 
and combined for data augmentation, which makes their signal com
ponents widely distributed in both space and frequency domains. These 
binary images were also used as ground-truth segmentation images.

PA images were generated by modifying binary images to gray-scale 
images with a dynamic range of 20 dB and amplifying the gray-scale 
images with different values to obtain measurements for a signal-to- 
noise ratio (SNR) of 10–35 dB. The simulation parameters are shown 
in Table S1 in Supplementary Section 4. Note that these parameters 
closely mimic those for our experimental PAUS imaging system 
described below. A total of 6.85 % of the overall pixels in the dataset are 
non-background pixels (with PA signals). After shuffling the overall 
16,000 images, 12,800 (80 %) were used for training, 1600 (10 %) were 
used for validation and the remaining 1600 (10 %) were used for testing 
(no replicated images among the three datasets).

A PA imaging forward model was created with these parameters to 
convert PA images to transducer array data. In this model, the forward 
solution from the Green’s function is [56], 

p(t, rʹ) =
β

4πCp

∂
∂t

∫
s(r)

|r − rʹ|
δ(t −

|r − rʹ|
vs

)dr (8) 

where β is the thermal coefficient of volume expansion, Cp is the specific 
heat capacity at constant pressure, vs is the speed of sound, ŕ  is the 
detection position, and s(r) is the spatial absorption function. Trans
ducer array data recorded by the ith element (at the position of ŕi) is, 

y
(
t, rʹ

i
)
= h(t) ∗ [pdirect

(
t, rʹ

i
)
+ n(t, rʹ

i)] (9) 

where h(t) is the system impulse response, n(t, ŕi) is system noise, ‘∗’ is 
the temporal convolution operator, and pdirect

(
t, ŕi

)
is the pressure 

function p(t, ŕ ) with the directivity pattern. 

pdirect
(
t, rʹ

i
)
= p(t, rʹ) ×

sin(πl
λ sinθi)

πl
λ sinθi

, θi = tan− 1(
x − xʹ

i
z

) (10) 

where l is the transducer element pitch, λ is the ultrasound wavelength, 
and θi is the incident angle of a wave propagating from position r = (z, x)
to the ith element of the transducer (at the position of ŕi = xí). Then, a 
PA imaging backward model was created with the same simulation 
parameters to convert transducer array data to MC data as network 
inputs.

Table S1 in Supplementary Section 4 presents some training hyper
parameters of both BCNNs. They were trained on a NVIDIA GeForce GTX 
1080 Ti GPU with 11 GB of memory. In training, the Adam optimizer 
was used with a constant learning rate of 0.0005 with reference to BCNN 
training in a previous publication [36], batch size was chosen to be 8 
given limitations on the GPU memory, and the maximum epoch number 
was chosen to be 1000 to guarantee complete training. An early stopping 
criterion was applied, where training would finish when the validation 
loss value did not decrease in 50 consecutive epochs (50 epochs were 
chosen to prevent training from stopping at incorrect places such as a 
plateau at the beginning of training, a sudden jump of the loss value 
during training, etc.), and optimal weights with the lowest validation 
loss would be retrieved retrospectively. The maximum training time was 
approximately 35 h.

2.3. Confidence processing

The strong statistical correlation between absolute errors and pre
dicted uncertainties suggests that the predicted uncertainty can help 
determine the confidence in the reconstructed PA image. For example, 
consider a pixel with a high signal (segmentation or PA value) and low 
uncertainty such that the relative uncertainty (standard deviation 
normalized to the mean) is small. There is high confidence in the 
reconstructed value for this pixel. In contrast, for a pixel with a low 
mean and a high uncertainty (high relative uncertainty), there is low 
confidence in the reconstructed value. This information can help iden
tify artifacts and improve image quality. In general, confidence may 
provide a tool to judge the accuracy of quantitative PA images.

Here we explore a straightforward processing method to enhance PA 
images using confidence in the reconstruction, where the confidence is 
simply related to the ratio of the standard deviation to the mean (SD/M) 
at each pixel output by the Hybrid-BCNN. High confidence corresponds 
to a low value of this ratio. As a simple example of how to use this in
formation, we set a threshold on the SD/M to eliminate pixels with low 
confidence. This operation acts like the segmentation threshold but uses 
relative uncertainties of both the segmentation and PA image, not just 
the mean value of the segmentation. The threshold can be varied to 
present images at different confidence levels.

2.4. Experimental PAUS imaging system and phantom preparations

To initially test the performance of the proposed BCNN for practical 
applications, two simple phantom objects constructed from optically 
absorbing metal wires with known geometries were imaged using an 
integrated, experimental PAUS system [9,32] (as shown in Fig. 7 in 
[32]). The wires were twisted into the shape of the letters ‘S’ and ‘W’ and 
suspended in the x-z imaging plane in a cubical container. These simple 
shapes were used because ground-truth absorption profiles are reason
ably well known. Note that data from the ‘W’ shaped wire was used in 
our previous publication of DL-based real-time integrated PAUS imaging 
[32]. It was reused here to test whether uncertainty predictions from the 
proposed Hybrid-BCNN can help with additional image interpretation.

The ‘S’ shaped wire is new; it is used here because conventional DAS 
images of this object exhibit some clear artifacts and the overall SNR was 
reduced from that of the original W-phantom (lower laser energy was 
used) and is more typical of the SNR for in vivo PA images. Consequently, 
it can test whether the proposed Hybrid-BCNN can find, mark and, ul
timately, correct these artifacts at typical SNR levels. The container was 
filled with a 2 % intralipid solution (Fresenius Kabi, Deerfield, USA) 
acting as a scattering medium with effective attenuation coefficient of 
~0.1 mm− 1. Finally, a human finger was scanned and imaged to eval
uate the performance of Hybrid-BCNN for in vivo vascular imaging. This 
study was approved by the Institutional Review Board of the University 
of Washington (Study# 00009196) with safe optical and acoustic en
ergies following ANSI (optical) and FDA (US) guidelines.

The experimental PAUS system employs a unique fiber optic delivery 
system where each laser pulse is sequentially delivered to one of 20 
different fibers. At the probe front side, the fibers are equally distributed 
along the azimuthal axis of the US array transducer (LA 15/128–1633, 
Vermon S.A. France) with 10 fibers on each side. A mechanical rotation 
system sequentially directs the beam from a kHz-rate, wavelength- 
tunable (700–900 nm) diode-pumped laser (Laser Export, Russia) to a 
different one of the 20 fibers on each pulse, delivering laser energy to the 
sample at a PA frame rate of about 50 Hz. Interleaved with PA pulses 
were US pulses enabling simultaneous acquisition of PA and US image 
data at the 50 Hz frame rate (detailed in [9]). All data acquisition was 
controlled by a commercial US scanner (Vantage, Verasonics, WA, USA) 
using trigger signals created by the motor controller and encoder to 
ensure accurate synchronization between US and PA scan sequences.

For this study, PA data were acquired using a single wavelength at 
795 nm. One PA raw data frame contains 2048 temporal samples × 128 
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elements × 20 fibers. Each data frame was averaged over 20 fibers to 
improve SNR. The size of each reconstructed PA image is 512 × 128 with 
an axial pixel size of 0.05 mm and lateral pixel size of 0.1 mm. Finally, 
PA segmentation, images and uncertainties were reconstructed from 
acquired experimental data using BCNNs trained with simulated data.

3. Results

3.1. Simulation results and quantitative evaluation

Hybrid-BCNN and Lap-BCNN results on two representative samples 

of simulated PA data are shown in Fig. 2. Ground-truth PA segmenta
tions, images and conventional DAS results are shown in Fig. 2(a) and 
(e). The reconstructed PA segmentations and images together with their 
corresponding predicted uncertainties from Hybrid-BCNN are shown in 
Fig. 2(b) and (f), respectively. The PA images and their corresponding 
predicted uncertainties from Lap-BCNN are shown in Fig. 2(c) and (g), 
respectively. Separate predicted data and model uncertainties of the PA 
segmentation and image from both Hybrid-BCNN and Lap-BCNN are 
shown in Fig. S1 in Supplementary Section 5. Data uncertainty clearly 
dominates over model uncertainty in both Hybrid-BCNN and Lap-BCNN, 
indicating that the major error comes from input data imperfection.

Fig. 2. Hybrid-BCNN and Lap-BCNN results for simulated PA data. (a) A representative ground-truth PA segmentation and image, and the corresponding DAS- 
reconstructed PA image. (b) Reconstructions and prediction errors from Hybrid-BCNN. (c) Reconstructions and prediction errors from Lap-BCNN. (d) Re
constructions from conventional CNN-based upgUNET (with the U-Net architecture) without error predictions. (e-h) are the same as (a-d) except for a different image 
sample. The scale bars denote 5 mm.
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To compare the PA image prediction of Hybrid-BCNN with a con
ventional CNN tuned for PA imaging that does not provide uncertainty 
predictions, the results of upgUNET [32] based on the U-Net architec
ture are also shown in Fig. 2(d) and (h). The segmentation/PA absolute 
error in Fig. 2(b-d), (f-h) is the absolute difference between the recon
structed segmentation/PA and the ground-truth. PA reconstructions and 
uncertainties are presented on a log scale over a 50 dB scale relative to 
the peak signal of the images in the testing dataset. PA segmentations 
and predicted segmentation uncertainties are presented on a linear 
scale.

Fig. 2(b), (d), (f) and (h) show that Hybrid-BCNN has comparable PA 
image reconstruction as conventional CNN-based upgUNET with the U- 
Net architecture. The averaged PSNR was calculated within the testing 
dataset (28.9855 dB for Hybrid-BCNN, 28.4959 for upgUNET and 
21.6148 dB for DAS) to quantitatively demonstrate that Hybrid-BCNN 
has comparable PA image reconstruction as upgUNET, and both 
outperform DAS. However, Hybrid-BCNN can also provide uncertainty 
predictions while upgUNET cannot. Fig. 2(c) and (g) clearly show that 
the Lap-BCNN makes less accurate PA image reconstructions and un
certainty predictions.

The averaged PSNR was calculated within the testing dataset for Lap- 
BCNN (18.5948 dB, compared to 28.9855 dB for Hybrid-BCNN) to 
quantitatively demonstrate that Lap-BCNN provides a less accurate PA 
image reconstruction. The reason is that PA images acquired with linear- 
array, limited-bandwidth ultrasound transducers are usually sparse (e. 
g., in this study, only 6.85 % of the overall pixels in the dataset have PA 
signals). Therefore, the Lap-BCNN learns from pixels where most of their 
values are 0 when minimizing the loss function for the Laplacian- 
distributed likelihood function in Eq. (7). In this case, the Lap-BCNN 
focuses on the majority 0-value pixels and tends to converge to a 
wrong solution no matter what the network input is. Clearly, the 
Laplacian-distributed likelihood function alone is not sufficient to 
describe both background pixels and pixels with PA signals.

Therefore, we propose that a combination of Bernoulli-distributed 
and Laplacian-distributed likelihood functions to jointly reconstruct 
the PA segmentation and image (i.e., Hybrid-BCNN) is more appro
priate. Segmentation using a Bernoulli-distributed likelihood function 
can identify background pixels and pixels with PA signals, focusing the 
network on pixels with PA signals to minimize the value of the loss 
function for a Laplacian-distributed likelihood function driving PA 
image reconstructions. Within pixel regions with PA signals there is a 
range of signal amplitudes, making the network learn the correct Lap
lacian distribution. Although pixel values (background pixels vs PA 
pixels) are still unevenly distributed for segmentation, the Laplacian 

term ym
seg,n(

⃒
⃒
⃒ym

image,n − μm
2

⃒
⃒
⃒/σm + log(2σm)) will balance the Bernoulli term 

(
ym

seg,n − 1
)

log
(
1 − μm

1
)
− ym

seg,nlog
(
μm

1
)

in Eq. (2) to learn the correct 

segmentation.
As shown in Fig. 2(b) and (f), both the PA segmentation and image, 

along with corresponding uncertainties, are reconstructed with Hybrid- 
BCNN. The final segmentation was computed by thresholding the 

predicted segmentation at the mid-range value of 0.5 (i.e., pixel values 
larger than 0.5 are rounded up to 1 and remaining pixel values are 
rounded down to 0). The low segmentation/PA absolute errors show 
that these predictions are very accurate. Uncertainty predictions by the 
Hybrid-BCNN of PA segmentation and image are highly statistically 
correlated to the segmentation/PA absolute errors, as quantitatively 
shown below.

The credibility map (Cred Map) and reliability diagram (ACC vs 
Cred) were computed for the results in Fig. 2 and presented in Fig. 3. 
They are highly statistically correlated to the PA absolute errors in Fig. 2
(b) and (f), where pixels with low PA absolute errors are marked with 
high credibility. By computing the CC and slopes of the linear fits, the 
reliability diagrams from the Hybrid-BCNN in Fig. 3 show high levels of 
diagonality. These results indicate that the predicted uncertainties from 
the Hybrid-BCNN match well with the absolute errors and can be a 
reliable tool to quantify reconstruction errors.

To further demonstrate the strong relationship between predicted 
uncertainties and reconstruction errors, absolute errors vs 2× predicted 
uncertainties (i.e., 2× standard deviation) results were computed for 
Fig. 2 and presented in Fig. 4. Fig. 4(a) and (b) correspond to the results 
in Fig. 2(b), and Fig. 4(c) and (d) correspond to the results in Fig. 2(f). 
Fig. 4(a) shows that 98.14 % of the overall pixels (within the predicted 
segmentation regions) have absolute errors less than or equal to 2×
predicted uncertainties (i.e., 2× standard deviation) for this case. As 
shown in Fig. 4(b), within a specific range of 2× predicted uncertainties 
[95 % × ½ max(2×uncertainty), 105 % × ½ max(2×uncertainty)], 
96.58 % of the pixels have absolute errors less than or equal to 2×
predicted uncertainties. This indicates that the predicted PA image un
certainty in Fig. 2(b) can accurately quantify the errors in the recon
structed PA image. The same conclusion can be made from Fig. 4(c) and 
(d) for the results in Fig. 2(f).

Quantitative metrics (segmentation accuracy, segmentation struc
tural similarity index (SSIM), PA image PSNR, segmentation CC, CC and 
slopes of the ACC vs Cred reliability diagrams) were computed for all 
samples in the testing dataset to evaluate the Hybrid-BCNN with Lap
lacian distribution, as shown in Table S2 in Supplementary Section 6 
(average value and standard deviation (in the parentheses) for each 
metric). The results show that, quantitatively, the Hybrid-BCNN with 
Laplacian distribution can accurately reconstruct PA segmentations, 
images and corresponding uncertainties.

The selection of probability distribution functions was also studied, 
and the results are presented in Supplementary Section 6. For segmen
tation, the Bernoulli-distributed likelihood function is the only practical 
option. However, for PA image reconstruction within vessel regions, 
there are multiple options. Here, we compare Hybrid-BCNNs with 
Laplacian-distributed and Gaussian-distributed likelihood functions. 
The loss function for Hybrid-BCNN with the Gaussian-distributed like
lihood function is derived in detail in Supplementary Section 6.

Fig. S2 in Supplementary Section 6 shows results for a representative 
sample in the testing dataset from Hybrid-BCNNs with Laplacian- 
distributed and Gaussian-distributed likelihood functions. They show 

Fig. 3. Evaluation of Hybrid-BCNN PA image uncertainty predictions with the Cred Map (credibility) and ACC vs Cred (reliability diagram) calculation. (a) The Cred 
Map and ACC vs Cred (with CC and the slope of the linear fitting line) calculation in Hybrid-BCNN for the image sample in Fig. 2. (a-d). (b) is the same as (a) except 
that the results are for the image sample in Fig. 2(e-h). The scale bars denote 5 mm.
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that the two Hybrid-BCNNs both accurately produce the PA segmenta
tion and image, and the corresponding uncertainties, with similar per
formance. The uncertainty predictions of PA segmentation and image 
for the two Hybrid-BCNNs are both highly statistically correlated to the 
segmentation/PA absolute errors. The corresponding credibility maps 
(Cred Maps) and reliability diagrams (ACC vs Cred) are shown in Fig. S2
(c) and (f), and the corresponding absolute error vs 2× predicted 

uncertainty is shown in Fig. S2 (d) and (g), where the two Hybrid-BCNNs 
still exhibit similar performance.

Quantitative metrics (segmentation accuracy, segmentation SSIM, 
PA image PSNR, segmentation CC, CC and slopes of the ACC vs Cred 
reliability diagrams) were computed for all samples in the testing 
dataset to evaluate the two Hybrid-BCNNs, as shown in Table S2 in 
Supplementary Section 6 (average value and standard deviation (in the 
parentheses) for each metric). For segmentation uncertainties, since the 
ground-truth only has two values (0 and 1), CC is sufficient to evaluate 
the uncertainty accuracy. For PA segmentation, the high segmentation 
accuracy and CC in Table S2 show that the two Hybrid-BCNNs both 
make accurate and similar reconstructions of the PA segmentation and 
its uncertainty. For PA image reconstruction and its uncertainty, the two 
Hybrid-BCNNs still show accurate and similar performance.

These comparisons show that the Hybrid-BCNN is robust to the 
specific probability distribution function for PA image reconstruction 
and its uncertainty if the selected function is reasonable. The choice of 
the Laplacian-distributed likelihood function in this paper is because of 
its slightly better performance in simulations.

3.2. Confidence processing results

Fig. 5 shows confidence processing results (described in Section 2.3 ) 
using the image and results from Fig. 2(a) and (b). The segmentation and 
segmentation uncertainty results are copied from Fig. 2(b) and shown in 
Fig. 5(a) and (b). The relative segmentation uncertainty in Fig. 5(c) is 
generated by calculating the pixel-wise SD/M ratio using the results in 
Fig. 5(b) and (a). Note that the predicted segmentation is not exactly 
zero at all pixels with no PA signal due to the stochastic nature of the 
network, and in those pixels the SD/M ratio is quite variable. To elim
inate all pixels from further consideration that clearly do not have a PA 
signal, a soft threshold (0.05 used here – results are not significantly 
different for any value less than 0.1) is first applied. Pixels with a pre
dicted segmentation larger than the threshold are retained in the final 
relative segmentation uncertainty image (Fig. 5(c)).

The final confident segmentation presented in Fig. 5(d) was then 
generated by thresholding the segmentation based on the SD/M ratio 
(all pixels with an SD/M < 1 are retained for the example shown here) 
and setting the final value to one if the segmentation value is > 0.5 and 
to zero if the value is ≤ 0.5. This approach follows the procedure 
described in the last section but adds a level of confidence to the final 

Fig. 4. Absolute Error vs 2× predicted uncertainty (i.e., 2× standard deviation 
(std)). (a) Absolute Error vs 2× predicted uncertainty for all pixels (within 
reconstructed segmentation regions) corresponding to the results in Fig. 2(b). 
(b) Absolute Error vs 2× predicted uncertainty for pixels within a specific range 
of 2× predicted uncertainties [95 % × ½ max(2×uncertainty), 105 % × ½ max 
(2×uncertainty)] from (a). (c) Absolute Error vs 2× predicted uncertainty for 
all pixels (within reconstructed segmentation regions) corresponding to the 
results in Fig. 2(f). (d) Absolute Error vs 2× predicted uncertainty for pixels 
within a specific range of 2× predicted uncertainties [95 % × ½ max 
(2×uncertainty), 105 % × ½ max(2×uncertainty)] from (c). Red lines indicate 
absolute error = 2×predicted uncertainty (std).

Fig. 5. Illustration of confidence processing. (a) Predicted segmentation. (b) Predicted segmentation uncertainty. (c) Relative segmentation uncertainty (SD/M) 
generated from (a, b). (d) Confident segmentation generated from (a, c) with a specific confidence level (i.e., relative segmentation uncertainty < 1). (e) Predicted PA 
image (multiplied with (d)). (f) Predicted PA uncertainty (multiplied with (d)). (g) Relative PA uncertainty (SD/M) generated from (e, f). (h) Confident PA image 
generated from (e, g) with a specific confidence level (i.e., relative PA uncertainty ≤ 0.9). (i) Ground-Truth PA image for reference. The scale bars denote 5 mm.
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segmentation.
Similarly, the relative PA uncertainty in Fig. 5(g) is the pixel-wise 

SD/M ratio using Fig. 5(f) and (e) within the non-zero pixel regions in 
Fig. 5(d). Finally, the confident PA image in Fig. 5(h) is generated by 
eliminating (i.e., set to 0) pixels in Fig. 5(e) with corresponding SD/M 
above the threshold (a value of 0.9 is used here). The ground-truth PA 
image in Fig. 5(i) (copied from Fig. 2(a)) is compared with the confident 
PA image. This processing can eliminate obvious image artifacts but the 

final reconstructed image is a function of the selected threshold. Clearly, 
a user can vary the threshold in real-time to see images at different 
confidence levels to aid image interpretation. This approach is explored 
further using the experiments presented below.

3.3. Experimental results

Experimental results for the two wire phantom objects and the in vivo 

Fig. 6. Hybrid-BCNN results for experimental PA data (‘S’ and ‘W’ shaped objects, and the in vivo human finger). (a) Photo of the ‘W’ shaped object. (b) DAS and 
upgUNET reconstructions of the ‘W’ shaped object. (c) Results from Hybrid-BCNN for the ‘W’ shaped object. (d) Confident PA images with different confidence levels 
(i.e., relative uncertainty thresholds) for the ‘W’ shaped objects. (e-h) are the same as (a-d) except for the ‘S’ shaped object. (i-l) are the same as (a-d) except for the in 
vivo human finger. The scale bars denote 5 mm.
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human finger described in Section 2.4 are presented here. Fig. 6 shows 
photos, the conventional DAS reconstruction results, upgUNET results 
and Hybrid-BCNN results for these objects using exactly the same pro
cedure as that used to produce the simulation results in Fig. 2 except that 
a soft segmentation threshold of 0.05 is first used in Hybrid-BCNN to 
generate the corresponding PA and PA uncertainty images. The Lap- 
BCNN results are not shown since, as demonstrated above, they pro
vide less accurate PA images. PA reconstructions and uncertainties are 
presented on a 50 dB log scale relative to the peak signal in the image. 
PA segmentations and predicted segmentation uncertainties are pre
sented on a linear scale.

Similar to the findings in the simulation, Hybrid-BCNN has compa
rable performance as upgUNET in PA image predictions, and both 
outperform the DAS approach, as demonstrated in Fig. 6(b) and (c) 
where the local structure of the W-shaped wire indicated by the white 
dashed arrows can be reconstructed by Hybrid-BCNN and upgUNET but 
is absent in the DAS image. However, the added uncertainty information 
from Hybrid-BCNN highlights most missing features while upgUNET 
cannot. For the human finger, both Hybrid-BCNN and upgUNET can 
reconstruct the microvessel indicated by the dashed ellipse in Fig. 6(j) 
and (k). Note that the upgUNET and DAS results for the ‘S’ shaped object 
and human finger have higher noise in the background due to lower SNR 
compared to the W-phantom. However, the segmentation in Hybrid- 
BCNN can distinguish vessel regions from the background, thus elimi
nating background noise.

Although the ground-truth is only approximately known from the 
photos (Fig. 6(a), (e) and (i)) for these objects, most obvious artifacts 
and missing features can be easily identified and compared to uncer
tainty predictions to test whether they can be used to identify these 
errors even when the ground truth is unknown (e.g., in clinical imaging). 
As presented in Fig. 6(c), the missing feature marked by the blue dashed 
arrow in the predicted PA segmentation is also marked with high un
certainties by the corresponding blue dashed arrow in the predicted PA 
segmentation uncertainty. The artifacts noted with the white dashed 
arrow in the predicted PA image shown in Fig. 6(g) are marked with 
high uncertainties by the white dashed arrow in the predicted PA image 
uncertainty. Separate data and model uncertainty results are shown in 
Fig. S3 in Supplementary Section 7. They clearly show that data un
certainty dominates model uncertainty, indicating that the major error 
comes from input data imperfection.

Fig. 6 also shows confidence processing results when ground truth is 
not precisely defined using the same approach as in Fig. 5. The relative 
segmentation uncertainty threshold is 1, as in the simulations. The 
confident PA images of the ‘W’ and ‘S’ shaped wire objects and human 
finger at different PA confidence levels (i.e., SD/M thresholds) are pre
sented in Fig. 6(d), (h) and (l). As the confidence level increases (i.e., 
decreasing SD/M), more artifacts are removed, as expected. For the ‘S’ 
shaped object, in particular, artifacts in the original predicted PA image 
as shown by the white arrows in Fig. 6(g) are removed in Fig. 6(h) at all 4 
confidence levels. For the human finger, the microvessel indicated by 
the dashed ellipse in Fig. 6(k) is mostly preserved in Fig. 6(l) at all 4 
confidence levels. However, for all three objects, at very low levels of the 
SD/M threshold, useful image information is also removed. Therefore, 
there is a tradeoff between artifact removal and loss of real image fea
tures using this simple confidence processing approach. In general, a 
user can tune the threshold to see images at different confidence levels 
for different imaging tasks.

Overall, these experimental results suggest that the proposed Hybrid- 
BCNN has the potential to be a reliable tool to make comparable DL 
predictions as conventional CNNs (e.g., upgUNET) and, at the same 
time, at least partially validate DL reconstructions from predicted un
certainties when the ground-truth is unknown (e.g., DL-reconstructed 
clinical images). The proposed approach can help evaluate reconstruc
tion confidence, identify artifacts and, potentially, remove them with 
simple processing. This can be a very useful tool to validate quantitative 
PA methods and provide a measure of confidence in quantitative results. 

Clearly, more sophisticated approaches can be used, but the relative 
uncertainties output by this network can help separate artifacts from 
image features.

4. Discussion

We presented predicted uncertainties to quantify errors in PA seg
mentations and images and used these predictions to generate confident 
PA images. However, we have not fully used these uncertainties to 
improve network predictions themselves. Therefore, our future work 
will focus on using predicted uncertainties as feedback to tune network 
structures or parameters and better select training datasets. We will also 
focus on applying the proposed BCNN to more in vivo PA studies to 
explore how uncertainty predictions can help clinical applications of DL- 
based quantitative PA imaging.

Although the proposed BCNN is used to predict the IPD and its error 
in this paper, it can also improve quantitative PA imaging since the error 
prediction of the IPD can help produce a more reliable reconstruction of 
optical absorption. As a further step, we can extend the BCNN approach 
to directly predict the optical absorption coefficient and its error, and, 
therefore, the confidence in the predicted absorption coefficient.

The simple confidence processing approach presented here leverages 
the strong correlation between predicted uncertainties and actual errors 
to improve PA image quality (e.g., artifact removal). Although it is very 
effective at removing artifacts, it is far from perfect because it can also 
eliminate real image features. A human observer can vary the confi
dence level of the PA image to tune the tradeoff between artifact and 
true feature removal for a given imaging task, but more sophisticated 
schemes should be explored to optimize this tradeoff. We also will 
investigate other ways to use confidence measures for different appli
cations. For example, confidence processing can help select high confi
dence pixels in quantitative PA images of blood vessels to determine 
blood oxygenation levels. Given the typical artifacts in limited view and 
bandwidth imaging, high confidence pixels are much more likely to 
produce more accurate blood oxygenation values for real-time PAUS 
imaging with handheld US arrays.

Finally, the MC approach was used to preprocess measurement data 
to facilitate network training. We would also like to explore unprocessed 
measurement data as BCNN inputs. We expect that a much deeper neural 
network and a much larger training dataset are needed since this BCNN 
also must learn to map from measurement to image domains. However, 
the added information in unprocessed signals may lead to more robust 
images and uncertainty predictions.

5. Conclusions

In summary, we proposed a Hybrid-BCNN for limited-view-and- 
bandwidth PA imaging to jointly reconstruct PA segmentations (struc
tural segmentation excluding artifacts and background noise) and im
ages with uncertainty quantification by minimizing the loss function in 
Eq. (2), which jointly combines Bernoulli-distributed and Laplacian- 
distributed likelihood functions. Compared to conventional CNNs (e. 
g., upgUNET), BCNNs not only reconstruct images with comparable 
performance but also predict uncertainties in these images without 
knowing the ground truth. Due to the sparsity of PA images acquired in 
limited-view-and-bandwidth PA imaging (e.g., with conventional 
handheld linear-array transducers), a single probability distribution is 
not sufficient to describe both background and PA (non-background) 
pixels. Therefore, two probability distributions (Bernoulli and Lap
lacian) are used, and the segmentation focuses the network on mini
mizing the loss function in regions with PA signals. In addition, it can 
identify background regions and PA signal regions.

Simulation and experimental results show that the Hybrid-BCNN 
accurately reconstructs PA segmentations, images and corresponding 
uncertainties. Compared to the poor results from Lap-BCNN, which only 
reconstructs PA images without segmentation, the importance of 
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segmentation in Hybrid-BCNN is verified in simulations. Predicted un
certainties were also shown to strongly statistically correlate with actual 
reconstruction errors with two statistical methods. Thus, uncertainty 
predictions provide a potentially reliable tool to validate PA segmen
tations and images by marking incorrect reconstruction areas (e.g., 
missing features and artifacts) with high uncertainty. This can be very 
important in practical applications (e.g., clinical imaging) where the 
ground truth is unknown. Confidence processing is effective at removing 
artifacts to further improve PA image quality. With some adjustments, 
the proposed Hybrid-BCNN and confidence processing can be applied 
directly to quantitative PA imaging. In particular, confidence processing 
may be a powerful tool to accurately estimate blood oxygenation from 
spectroscopic PA data acquired with conventional handheld ultrasound 
array transducers.
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