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In macropinocytosis, cells take up micrometre-sized droplets of medium into

internal vesicles. These vesicles are acidified and fused to lysosomes, their

contents digested and useful compounds extracted. Indigestible contents

can be exocytosed. Macropinocytosis has been known for approaching 100

years and is described in both metazoa and amoebae, but not in plants or

fungi. Its evolutionary origin goes back to at least the common ancestor of

the amoebozoa and opisthokonts, with apparent secondary loss from

fungi. The primary function of macropinocytosis in amoebae and some

cancer cells is feeding, but the conserved processing pathway for macropino-

somes, which involves shrinkage and the retrieval of membrane to the cell

surface, has been adapted in immune cells for antigen presentation. Macro-

pinocytic cups are large actin-driven processes, closely related to phagocytic

cups and pseudopods and appear to be organized around a conserved

signalling patch of PIP3, active Ras and active Rac that directs actin polymer-

ization to its periphery. Patches can form spontaneously and must be

sustained by excitable kinetics with strong cooperation from the actin

cytoskeleton. Growth-factor signalling shares core components with macro-

pinocytosis, based around phosphatidylinositol 3-kinase (PI3-kinase), and

we suggest that it evolved to take control of ancient feeding structures

through a coupled growth factor receptor.

This article is part of the Theo Murphy meeting issue ‘Macropinocytosis’.
1. Introduction
Macropinocytosis—the non-specific uptake of fluid into large cytoplasmic vesicles—

is an actin-driven endocytic process that was clearly described by Warren Lewis in

the 1930s [1,2]. His time-lapse movies showed macrophages and tumour cells

ruffling and taking in bright droplets of medium at their periphery, which

they then transported centripetally (figure 1a). The vesicles became progress-

ively stained with neutral red as they acidified and Lewis speculated that the

cells were digesting their contents and so feeding. Macropinocytosis was

described at about the same time or even earlier in amoebae, such as Amoeba
proteus, where it could be triggered by dilute salt solutions [6–9]. Much later,

laboratory strains of the soil amoeba Dictyostelium discoideum were isolated

that performed macropinocytosis at a high rate, allowing them to grow in

liquid culture [10–12].

Today, tissue culture cells and these Dictyostelium amoebae are the main

subjects for macropinocytosis research [13,14]. The similarities in how they per-

form macropinocytosis—particularly the fundamental role of PIP3

(phosphatidylinositol (3,4,5)-trisphosphate in mammals and the functionally

equivalent ether-linked inositol phospholipid in Dictyostelium [15])—points to

a deep evolutionary origin of macropinocytosis in single-celled organisms.

Our purpose in this article is to extend this comparison, and explore some of

the implications.
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Figure 1. Examples of macropinocytosis and its evolution. (a) Macropinocytosis in macrophages. A still taken from a time-lapse movie made by Warren Lewis, who
first described macropinocytosis in mammalian cells in 1931 [1]. Vigorous ruffling and macropinosome formation can be seen in the movie—newly formed macro-
pinosomes are indicated by arrows in the figure (added by the authors). The movie was recovered by Dr Joel Swanson, to whom we express our gratitude. (b)
Macropinocytic cups in a Dictyostelium amoeba. The cell is expressing a fluorescent reporter for F-actin and is viewed by lattice light sheet microscopy [3]. The cups
are several microns in diameter and are produced at a rate of 1 – 2 per minute. An axenic strain, Ax2, was used in which neurofibromin (NF1) is deleted and
macropinocytosis is much higher than in wild-type cells. Taken from [4]. (c) Evolutionary origin of macropinocytosis. Macropinocytic organisms were identified
from the literature. The plants and fungi taken as negative are well studied, making it unlikely that macropinocytosis could have been overlooked. Homologous
genes were identified by reciprocal BLAST searches and the expected domain structure confirmed using Pfam. The negative organisms have well-annotated genomes,
making it unlikely that a homologue would be missed. Note that PI3K orthologues found in Physocomitrella and other plants lack Ras-binding domains and thus are
not functionally equivalent. The evolutionary relationship among animals, fungi, amoebozoa and plants is shown, with the amoebozoa as a sister clade to the
opisthokonts [5]. (d ) Organization of macropinocytic cups in a Dictyostelium amoeba. The macropinocytic patch is revealed by a reporter for PIP3 and the irregular
necklace of the SCAR/WAVE reporter around it by HSPC300-GFP. As SCAR/WAVE activates the Arp2/3 complex and is always recruited to the edge of patches, this
arrangement should trigger a ring of actin polymerization to form the walls of the macropinocytic cup. Taken from [4].
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2. How widespread is macropinocytosis?
In general, macropinocytosis is easily recognizable by light

microscopy as the droplets of fluid taken up by cells are

readily visible. It has been described in several branches of

the amoebozoa. Among the social amoebae, apart from the

well-studied Dictyostelium discoideum (figure 1b) [12,16], Poly-
sphondylium pallidum and Dictyostelium purpureum are also

proficient, based on their growth in liquid medium [17,18].

Macropinocytosis occurs in other free-living and patho-

genic amoebae, including Acanthamoeba castellanii [19]

and Entamoeba histolytica [20,21]. Large freshwater

amoebae such as Chaos carolinense can perform a morpho-

logically distinct form of macropinocytosis where the fluid

is taken into vesicles pinched off from channels penetrating

the cytoplasm [9].
Practically any mammalian cell in tissue culture seems

capable of macropinocytosis in the right circumstances.

Macrophages [1,22] and dendritic cells [23] of the immune

system are particularly adept. Others include 3T3, MDCK

and HeLa cell lines, where growth factors or activation of

the growth factor signalling pathway generally stimulate

macropinocytosis [24–27]. Lewis described macropinocytosis

in rat and mouse sarcomas [2], and recent attention has

focused on Ras-activated tumour cells, such as pancreatic

duct adenocarcinoma cells, which can feed by macropinocyto-

sis, thus reverting to the habits of amoebae [28].

Macropinocytosis in tissue culture cells takes different forms,

with macropinosomes deriving from either dorsal or periph-

eral ruffles, which can form cups or flaps that close, or from

large circular dorsal ruffles that contract and often leave

macropinosomes as their residue.
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Macropinocytosis has also been shown in immune cells

from both worms and flies. The coelomocytes of Caenorhabditis
elegans inhabit the pseudocoelom and efficiently clear it of

secreted GFP protein [29–31], while endocytosis by Drosophila
haemocytes is shown by uptake of fluorescent dextrans in

primary cultures, where it is independent of dynamin [32],

or when the dextran is injected into embryos [33]. The presence

of macropinocytic cells in these two organisms opens the

possibility of applying powerful genetic methods to the

process, as well as studying it in vivo.

We are not aware of accepted instances of macropinocyto-

sis in plants or fungi, where in most cases the rigid cell wall

would be a hindrance. In particular, it is unreported in the

well-studied yeasts Saccharomyces cerevisiae, S. pombe or in

the fungus Aspergillus nidulans.

The occurrence of macropinocytosis in multiple species

from both the amoebozoa and animals places its evolutionary

origin at least as far back as the common ancestor of these

two groups (assuming common descent) and implies that it

has been secondarily lost from at least some fungal lineages,

such as yeasts, that diverged after this common ancestor

(figure 1c).

Ras-activated PI3-kinases (class-1 PI3-kinase), Ras and

probably the protein kinase Akt (which binds PIP3) are central

organizers of macropinocytic cups (see below). Genes for these

three proteins are present in all macropinocytic organisms

examined. Strikingly, in the limited set of non-macropinocytic

organisms examined, representing plants and fungi, PI3-

kinase and Akt are both absent and Ras is only present in

fungi [34]. Thus, it appears that macropinocytosis first evolved

in single-celled organisms for feeding, and has been main-

tained and adapted in animals, but lost from some other

branches of the evolutionary tree. Its presence correlates with

Ras, class-1 PI3-kinase and Akt.
3. Macropinocytosis in mammalian cells and
Dictyostelium amoebae compared

Given a common evolutionary origin, comparing macropino-

cytosis in mammalian cells and amoebae should reveal its

core, conserved components and mechanisms. Up to the

point of sealing an internal vesicle, macropinocytosis is an

actin-driven process, sensitive to inhibitors of the actin cyto-

skeleton and likely to involve a largely generic set of

cytoskeletal proteins, such as the Arp2/3 complex and its

activators, in both mammals and amoebae. It is the organiz-

ation of these components in space and time that

distinguishes a macropinocytic cup from other structures

made by the actin cytoskeleton, such as pseudopods. This

organization is a job for small G-proteins and phosphoinositides

such as PIP3, as well as the cytoskeleton.
(a) PIP3 and other phosphoinositides
PIP3 stands out as a key molecule in macropinocytosis in

both amoebae and mammalian cells, despite chemical differ-

ences in the phospholipid tails between them [15].

Macropinocytosis is strongly inhibited by blocking PI3-

kinase activity, either with drugs or genetically [35–37]. In

Dictyostelium, PI3-kinase mutants take up very little fluid,

but are able to make rudimentary cups and similarly in
macrophages inhibitors of PI3-kinase do not stop cups from

forming, but inhibit their closure.

The most striking feature of macropinocytic cups is the

presence at their heart of an intense patch of PIP3. This is

very clear in Dictyostelium amoebae [38,39] and also seen in

mammalian cells [40–42]. PIP3 patches appear to fill the

macropinocytic cup up to the lip and have surprisingly

sharp edges. In Dictyostelium, PIP3 patches can form spon-

taneously or by splitting and are present throughout the life

of the cup, up to the moment it closes. The situation is similar

in macrophages, except that the patch only appears when

linear ruffles circularize.

PI3-kinase activity is counteracted by the lipid phosphatase

PTEN, which converts PIP3 back to PI(4,5)P2, and in whose

absence PIP3 levels are elevated. PTEN is excluded from

macropinocytic cups in Dictyostelium, but recruited to the rest

of the plasma membrane [37,43]. Deletion of PTEN has oppo-

site effects in mammalian cells and Dictyostelium: in mouse

embryonic fibroblasts (MEFs) and prostate cancer cells macro-

pinocytosis is enhanced [44,45], whereas in Dictyostelium it is

almost completely abolished [4]. A key difference is that the

Dictyostelium experiment used axenic mutants in which PI3-

kinase activity is already elevated, giving very high PIP3

levels, which appear to disorganize the actin cytoskeleton.

However, both results support the importance of PIP3 for

macropinocytosis and perhaps suggest that its level must be

carefully regulated.

PI(4,5)P2 levels spike in the macropinocytic cups of

macrophages before PIP3 [42]; this has not been described

in Dictyostelium, though fluid uptake is dependent on PI5-

kinase required for PI(4,5)P2 synthesis [46]. After closure of

the cup, PIP3 is rapidly lost from the internal vesicle and

replaced by PI(3,4)P2 in both Dictyostelium and macrophages

[30,38,42].

(b) Ras
Ras also appears to be crucial in macropinocytosis and can

activate class-1 PI3-kinases through their Ras-binding

domain. In the early days of Ras research, it was found

that growth factors both activate Ras and cause cell

ruffling and macropinocytosis. Crucially, injection of acti-

vated (oncogenic) Ras protein into fibroblasts alone was

sufficient to drive ruffling, providing the first direct link

between Ras and macropinocytosis [26]. Surprisingly,

however, recent work has shown that a triple Ras knock-

out cell line can still carry out macropinocytosis, although

it depends on PIP3 to do so [44]. At the moment, it is

unclear whether in this situation one of its close relatives

has substituted for Ras, or whether PIP3 alone can

sometimes be sufficient.

Dictyostelium has an expanded set of Ras genes, making

genetic manipulation difficult. However, expressing activated

Ras stimulates macropinocytosis in wild-type cells [47], while

single and double knock-out mutants show that RasG, RasS

and RasB are important for macropinocytosis [4,48–50].

Strong evidence for the importance of Ras comes from increas-

ing its activity by knocking out the RasGAP NF1

(neurofibromin). This results in a 4–10-fold increase in fluid

uptake, larger and more frequent macropinosomes and confers

the ability to grow in the standard liquid medium [51]. In

addition to Ras, its close relative Rap may be involved in macro-

pinocytosis, because knock-down inhibits growth in liquid

medium [52] and knock-out of the RapGEF, GflB, reduces
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macropinocytosis apparently by arresting macropinocytic

cups in an extended form [53].

(c) Macropinocytic patches and downstream effectors
In both macrophages and Dictyostelium, PIP3 patches are

coincident with patches of active Ras and Rac [4,42], thus

giving a signalling region of up to several micrometres in

diameter contained within the walls of the macropinocytic

cup. This set of signal molecules recruits effector proteins to

carry through cup formation and closure. Apart from activat-

ing PI3-kinase, Ras may directly regulate cytoskeletal

proteins such as the formin, ForC [49]. Rac is also required

for macropinocytosis in both mammalian cells and Dictyoste-
lium [54–56] and through activation of actin nucleation, gives

a link to the cytoskeleton.

PIP3 patches recruit PIP3-binding proteins, some of which

are expected to have important roles in macropinocytosis.

These include class-1 myosins [57,58], but the classic effector

is the protein kinase Akt/PKB. In Dictyostelium, Akt is

nearly essential for macropinocytosis, providing that a related

protein kinase that is not PIP3-dependent but is partially

redundant is also eliminated. In these PKB-/PKBR1-cells,

PIP3 patches still form but their efficiency of fluid uptake is

much reduced [59] (Thomas Williams 2018, personal com-

munication). In mammalian cells the situation is less clear,

with inhibition of Akt having little effect on macropinocytosis

in macrophages [60], but inhibiting it in stellate cells [61].

(d) Some differences
In mammalian cells, macropinocytosis is often stimulated by

growth factors, though it is constitutive in macrophages and

dendritic cells, where it depends on extracellular calcium

sensed through a calcium receptor [62]. By contrast, macropi-

nocytosis in Dictyostelium does not need receptor stimulation,

occurring in isolated cells [56] and in mutants where

G-protein coupled receptor (GPCR) signalling is genetically

ablated by removal of the Gb subunit of hetero-trimeric

G-proteins. Nor does it depend on extracellular calcium,

because it occurs in calcium-free media [56].

Diacyl-glycerol (DAG), produced from PIP3 by phospho-

lipase C (PLC), accumulates in macropinocytic cups in

macrophages [42] and inhibiting PLC inhibits macropino-

cytosis in fibroblasts [63]. However, a similar role for DAG

in Dictyostelium has not been reported to date, and although

PLC is able to feedback and promote PIP3 production, axenic

growth is unaffected [64,65].

each protrusion is driven by SCAR/WAVE activation, cups differ from pseudo-
pods by the presence of a static interior domain, corresponding to the
presence of PIP3. This self-organizes within a macropinocytic cup, but may
be driven by interactions with the target during phagocytosis.
4. The relationship between macropinocytosis,
phagocytosis and chemotaxis

As we are learning more about the mechanisms used by cells

to generate macropinosomes, it is clear that there is signi-

ficant overlap with other pathways that rely on the

production of membrane protrusions. The similarities

between macropinocytic and phagocytic cups are obvious,

but local activation of the Arp2/3 complex by SCAR/

WAVE also generates the pseudopodia and lamellipodia

that drive migration and chemotaxis [66–68]. Both cups

and pseudopodia are generated by the same underlying

excitability of the cytoskeleton and like macropinosomes,

pseudopodia also spontaneously form de novo as well as
by splitting [4,69–71]. The differently shaped protrusions

thus appear to have evolved by differential regulation of

the same core machinery.

In Dictyostelium at least, the formation of the more

complex cup shape appears to be an elaboration of the

underlying pseudopod machinery. In a simple model, all

that is required to convert a pseudopod to a cup is to

superimpose a central region where the protrusion is

blocked, corresponding to the PIP3 patch (figure 2). In

the case of phagocytosis, this is supported by compu-

tational models, whereby adhesion to an immovable
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particle drives a pseudopod to wrap around it [72]. How

this would occur in the absence of any particle to form a

macropinosome is less clear.

Although the enrichment of PIP3 at the leading edge of

chemotaxing Dictyostelium cells was initially implicated in

chemotaxis [39], there is increasing evidence that PIP3 instead

defines the conversion from pseudopodia to macropinocytic

and phagocytic cups. While inhibition of PIP3 production

almost completely blocks macropinocytosis across evolution,

both Dictyostelium and neutrophils can still chemotax effi-

ciently when this is done [73,74]. Furthermore, in growing

cells with high levels of macropinocytosis, the PIP3-mediated

conversion from pseudopodia to cups actually inhibits

migration and inhibiting PI3-kinase or physically restricting

macropinocytosis enhances chemotaxis of Dictyostelium to

folic acid [75].

Nonetheless, given a strong enough stimulus, chemotaxis

receptors can clearly stimulate localized PIP3 production

[39,76,77]. This may be explained by a recent report that

both chemotaxis and phagocytosis are mediated by the

same receptor that recognizes both diffusible folate and

the bacterial surface component lipopolysaccharide [72].

The two processes are thus inextricably linked, with the

potential for erroneous signalling if saturated, although

whether cyclic-AMP-mediated chemotaxis has similar

crossover is not known.

Although phagocytosis and macropinocytosis are highly

related and have presumably co-evolved, macropinosomes

self-assemble in the absence of localized external signals and

receptor activation. If macropinocytic cups are adaptations of

pseudopods, the generation of a static cup interior must

occur spontaneously. Interestingly, while PIP3 accumulates

in macropinocytic cups in all Dictyostelium strains, only shal-

low gradients are seen in pseudopodia of non-axenic strains

(Douwe Veltman 2017, unpublished data). It may, therefore,

be that formation of a self-sustaining PIP3 patch requires a

higher threshold of Ras activation than normal pseudopodia;

i.e. low levels of active Ras form pseudopodia while high

levels generate cups. The transition to a cup can thus be regu-

lated at the level of GTPase regulatory proteins and stochastic

variations in Ras activity.

The dynamic and excitable nature of the cytoskeleton

enables it to be flexible and respond to multiple external

and intrinsic cues. Although it is impossible to infer evol-

utionary order, it is easy to imagine how receptor activation

could be imposed on macropinocytosis to evolve phagocyto-

sis, or feedback loops allowing phagocytic cups to form

spontaneously would allow cells to engulf fluid.
5. Processing macropinocytic vesicles
As macropinocytosis probably evolved as a feeding mechan-

ism in single-celled organisms, its initial job was to digest

captured proteins or macromolecules to support growth.

This role has been maintained throughout evolution to

human cancers, but whether other mammalian cells use

macropinocytosis for feeding is not known, though clearly

worth investigating. Metazoan cells have also adapted

macropinocytosis for other purposes, primarily by changing

the processing of macropinosomes once internalized. In

immune cells, antigen presentation still requires proteins to

be fragmented. Therefore, the early stages of macropinosome
maturation are broadly conserved between cells and across

evolution.

Although many details remain to be resolved, macropino-

some maturation shares common elements with other

endocytic pathways, such as being regulated by the activities

of the Rab family of small GTPases [14,59,78,79]. Classical

clathrin-mediated endocytosis (CME) generates endosomes

in a completely different way, and largely serves a different

purpose—being more a mechanism to turn over specific

membrane proteins than feeding. However, both CME and

macropinocytosis-derived vesicles accumulate PI(3)P and

active Rab5 immediately after internalization to define an

‘early’ compartment, before Rab5 is replaced by active Rab7

to define a ‘late’ stage of maturation and lysosomal fusion

[78,80–82]. This indicates a common evolutionary ancestry.

The different endocytic pathways thus have core con-

served elements with, for example, Rab5 acting as a generic

marker for newly internalized vesicles. While there must

also be pathway-specific trafficking steps and a host of

other Rabs help to add specificity and variation, there are cur-

rently no exclusive markers of macropinosomes, which are

frequently identified simply by their size and loading with

fluorescent dextran.
(a) Macropinosome-specific problems
Although there are parallels with other endocytic pathways,

macropinocytosis also poses some unique challenges for the

cell. First, as the cups lack any clathrin or sorting adaptor

protein coats, there is little apparent selectivity in the surface

proteins internalized as macropinosomes form [83,84]. Cells

undergoing high levels of macropinocytosis will therefore

rapidly digest their surface proteins unless they are retrieved

before degradation. This is achieved via the combined activi-

ties of WASP and SCAR homologue (WASH) and Retromer

sorting complex [84]. These complexes are able to sort pro-

teins into recycling vesicles and play multiple roles in

endocytic trafficking and are among the first molecules to

be recruited to both macropinosomes and phagosomes—

having a burst of activity for just the first 2–3 min after

internalization.

Macropinosomes are large, aqueous vesicles with a

relatively low nutrient content compared to phagosomes.

They also have much less membrane in comparison to

their contents relative to smaller vesicles: the surface

area-to-volume ratio of a 1 mm diameter macropinosome is

10-fold lower than a typical 100 nm endosome. This means

that the macropinosomal lumen is relatively hard to acidify

by pumps such as the Vacuolar ATPase (V-ATPase) and the

concentration of lysosomal hydrolases and their substrates

will be low.

These problems appear to be solved by the ability of

macropinosomes to tubulate and shrink during the first

stages of maturation (figure 3). This was reported in the first

observations of macropinosomes and has been shown in macro-

phages and epithelial cells [1,86,87], as well as Dictyostelium
[88–90]. Importantly, at the same time the vesicle contents

become more concentrated, indicating that macropinosomes

are shrinking by loss of water and membrane, rather than

splitting. This is likely driven by the increased osmotic

pressure that must occur upon both tubulation and the fission

of small vesicles as they will remove more surface area than

volume from the vesicle [91]. Shrinkage and concentration,
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therefore, appear to be universal parts of macropinosome

maturation.

How this shrinkage is achieved is not clear, especially as it

occurs at the same time that lysosomes are fusing with the

macropinosome and adding membrane. In Dictyostelium at

least, shrinkage coincides with the presence of PI(3)P on

macropinosomes (figure 3b), and in mammalian cells was

shown to be partly dependent on the activity of the PI5-

kinase PIKfyve, which phosphorylates PI(3)P to form

PI(3,5)P2 [86]. It seems logical that forming a smaller, more

concentrated compartment will aid digestion. However,

when shrinkage is reduced upon PIKfyve inhibition, degra-

dation is not significantly affected, and the major defect

appeared to be in nutrient extraction, as macropinocytosis

could no longer be used to support growth [86]. Although

shrinkage is a general feature of macropinosome matu-

ration, the assumption that it aids digestion may not be

true in all cases.

(b) Diversification of the endocytic pathways
The early phases of maturation are highly conserved, but the

fate of macropinosomes after they have shrunk has diversi-

fied more (figure 4). Dictyostelium macropinosomes are able

to fuse with one another during the early phases of their tran-

sit, but appear to be kept in isolation from other endosomes,

as internalized dextrans do not accumulate in any other

compartments [88–90].

In higher eukaryotes, the fate of internalized material is

more complex and cell-type specific. In particular, there are

clear differences in the interactions between macropino-

somes and other endocytic pathways. In macrophages,

macropinosomes appear to completely assimilate into the

lysosomal system after shrinkage and can fuse with
clathrin-derived tubular endosomes as well as both early

and late macropinosomes [92].

By contrast, in both the human epidermal carcinoma cell

line A-431 and NIH3T fibroblasts, though macropinosomes

can fuse to each other, they rarely if ever interact with conven-

tional clathrin-mediated endocytic compartments [93,94].

Whether this can be generalized to all epithelial or cancer

cells and how this might be achieved mechanistically is

unclear, but it indicates fundamental differences in how cells

process macropinosomes.

One explanation may be the differing functions of macro-

pinocytosis. Like amoebae, cancer cells use macropinocytosis

for feeding. Therefore, the only major prerequisite is to deli-

ver lysosomal components and transport out liberated

nutrients. In antigen presenting cells, however, there is an

additional requirement to load the digested extracellular pro-

teins onto the Major Histocompatability Complex II (MHC II)

molecules before transport to the cell surface. As MHC II is

found on a specialized late endosomal compartment, it is

essential for macropinosome-derived antigens to interact

with the endosomal system at some point. The molecular

details of antigen presentation trafficking remain surprisingly

poorly understood [95], but it may be that during the evol-

ution of adaptive immunity, immune cells evolved a

distinct mechanism to deliver macropinocytic products to

the endocytic system absent in other cells.

(c) Macropinosome efflux
Although digestible components will be transported out and

assimilated by the cell, other molecules, such as the dextran-

conjugated dyes frequently used to study macropinocytosis,

must ultimately be released from cells. In amoebae and presum-

ably other protists feeding by phagocytosis or macropinocytosis,
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indigestible material is continuously released by constitutive

exocytosis [96–99]. This is again best characterized in Dictyo-
stelium, where 45 min after internalization, the vesicles transit

to a neutral post-lysosomal state. This transition is driven by a

second phase of WASH activity, which removes the V-ATPase

and hydrolases [100–102]. This is essential for exocytosis

and post-lysosomes fuse with the plasma membrane shortly

afterwards (figure 4).

There is no evidence for a comparable neutral post-

lysosomal compartment in mammalian cells, and therefore

macropinosome efflux happens by different mechanisms (sum-

marized in figure 4). Consistent with a complex redistribution

across multiple compartments, the release of macropinocytic

components from macrophages has complex dynamics, indi-

cating it occurs by at least two pathways with different

kinetics [103,104].

In immature dendritic cells, processed antigen from macro-

pinosomes can be both delivered to the MHC II loading

compartment, or stored in a late endocytic compartment

before being released into the extracellular environment to acti-

vate B cells [105]. The details of exocytosis are unclear but it is

dependent on both Rab27 and cytoplasmic Ca2þ [106].

Remarkably, large increases in cytoplasmic Ca2þ are sufficient

to stimulate regurgitation of macropinosomes en masse, leaving

endosomes unaffected, implying this is a specific regulated

pathway. Calcium also regulates the fusion of other types of

vesicles to the plasma membrane, including lysosomes

and synaptic vesicles [107–109]. It therefore seems likely
that related mechanisms are employed to deliver the

macropinosome-derived vesicles to the surface.

Perhaps surprisingly, little appears to be known about

what ultimately happens to indigestible material in non-

phagocytic cells. Studies are largely focused on uptake and

nutrient liberation, and the prevalence of imaging-based

analysis makes studies of efflux dynamics difficult. While

early work using C14-sucrose as an indigestible marker in

fetal lung fibroblasts indicates similarly complex efflux

dynamics to that observed in macrophages [104] and fluor-

escent dextrans are largely lost from A431 cells within 2 h

[91], we could find no further mechanistic studies of what

ultimately happens to indigestible macropinosome contents.

However, the limited information from electron microscopy

studies indicates that macropinosomes do not acquire intra-

luminal vesicles and mature into multivesicular bodies,

suggesting an independent fate from classical endosomes

[87,110–112]. This may therefore be an interesting subject

for future studies.
6. Perspectives and questions
Macropinocytosis has been known for approaching 100 years,

yet today is much less well understood than the more

recently discovered CME: searching for titles containing

‘macropinocytosis’ in the Web of Science yields 367 papers

and containing ‘clathrin’ 3229 papers, as of July 2018. This
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is changing. The realization of the importance of macropino-

cytosis in the immune system, infection and drug delivery,

cancer nutrition and neuro-degeneration [113] has fuelled a

complete change in outlook in recent years. As we gain knowl-

edge, several fascinating questions about macropinocytosis

come into focus.

(a) Macropinocytic signalling patches as templates
for circular ruffles

A major conceptual problem is to understand how actin can

be persuaded to polymerize in a ring under the plasma mem-

brane to form the walls of the macropinocytic cup. This

requires organization of actin polymerization over distances

of several micrometres, meaning that more than local inter-

actions within the polymerization machinery are required.

We suggest that this spatial organization is provided by the

patch of PIP3, active Ras and active Rac around which macro-

pinocytic cups form. In Dictyostelium, these patches recruit

the SCAR/WAVE complex and WASP to their periphery, so

in principle activating the Arp2/3 complex and actin

polymerization in a hollow ring (figure 1d ) [4]. How recruit-

ment occurs—whether by movement of the actin effectors to

the edge of the patch or unique binding properties there—is

not known, nor whether a similar recruitment occurs in

mammalian cells.

PIP3 patches must be sustained by unusual dynamics,

since PIP3, Ras and Rac are all normally freely diffusible in

the membrane. One element is likely to be restricted diffusion

at the edges of patches, as described in macrophages

[114,115], and another may be positive feedback loops

between components of the patches. Active Ras and Rac

can still form patches in Dictyostelium mutants lacking all

class-1 PI3-kinases, suggesting that the autocatalytic kinetics

sustaining patches do not require PIP3, although they may

be augmented by it [4]. PIP3 patches have been extensively

studied under the guise of ‘basal actin waves’ [116] and

their formation can be stimulated by the chemoattractant

cyclic-AMP in starving cells [117]. High doses of cyclic-

AMP induce more patches than low doses, but they are of

otherwise the same size and intensity. This suggests patches

form by an excitable process, which once triggered proceeds

through to completion. The unusually large and intense PIP3

patches of axenic Dictyostelium cells, which can be viewed in

TIRF microscopy, make an excellent system for discovering

the principles of patch formation.

(b) Closing and sealing macropinocytic cups
To close a macropinocytic cup requires a different form of

spatial organization from forming it. As viewed by lattice

light sheet microscopy, cups sometimes appear to close by

concerted contraction of their lip, suggesting a purse string

mechanism [4]. Consistent with a contractile process,

myosin-1 proteins are recruited to cups with one class forming

a broad ring around the rim [58], and closing phagosomes

in macrophages also recruit myosins and are able to exert

contractile forces on engulfed particles [118].

The final stage of closing a macropinocytic cup is mem-

brane fusion to seal the cup and form an intracellular

vesicle. Little is known of this process at the moment. Because

membrane flaps appear able to fuse back to the plasma mem-

brane—though this needs confirming with lattice light sheet
microscopy—the mechanism may involve a fusogenic protein

such as that recently described in phagosome fusion in

C. elegans [119], rather than the neck constriction involved

in sealing coated pits. Once fusion has occurred it must be sig-

nalled so that the macropinosome processing can commence,

and again the mechanism is unknown.

(c) An evolutionary speculation: macropinocytosis and
the origins of growth factor signalling

It is a remarkable fact that the core set of proteins organizing

macropinocytic cups in Dictyostelium—Ras, NF1, Ras-

activated PI3-kinase, PTEN and Akt—are the same as those

mediating growth factor signalling in metazoa. All are also

notable oncogenes or tumour suppressors. The correspond-

ing growth factor receptors are missing in Dictyostelium as

the genome does not encode receptor tyrosine kinases [120].

We suggest an evolutionary hypothesis to explain this link

between growth-factor signalling and macropinocytosis.

We propose that the Ras/PI3-kinase/Akt signalling

module evolved in single-celled organisms before the appear-

ance of metazoa and was used to organize their feeding

structures, as it is in the amoebozoa to this day. As multicel-

lular cooperation evolved in the branch of phagotrophic

organisms leading to metazoa, specialized extracellular

digestion arose and most cells were freed of digestive

duties but became dependent on others for their food [121].

It was essential to regulate access to this shared resource to

prevent selfish appropriation by individual cells, and there-

fore the activity of the feeding structures in individual cells

had to be brought under global control. This we propose

was achieved by bringing them under the control of extra-

cellular signals—the growth factors. This would involve

linking Ras and PI3-kinase activation to cell surface receptors,

so that feeding became conditional on an external signal. The

innovation required might be as simple as bringing a critical

RasGEF under the control of a receptor. This linkage of feed-

ing structure to surface receptor has already been achieved in

Dictyostelium for a different purpose, as recent work shows

that the folate receptor, which is used to find bacteria, is

also capable of triggering their phagocytosis [72,122].

This viewpoint also gives some rationale to the otherwise

puzzling linkage of actin dynamics and growth factor signal-

ling. As is well established, growth factor signalling

stimulates actin dynamics and macropinosome formation.

Amino acids taken up from the medium and transported to

endolysosomes by macropinocytosis activate mTORC1 (the

mechanistic Target Of Rapamycin complex 1) from there in

synergy with a cytoplasmic route via Akt [123,124]. Surpris-

ingly, signalling of less than maximal intensity is sensitive to

inhibitors of the actin cytoskeleton, such as the combination

of jasplakinolide and blebbistatin [60,125]. It is proposed

that this is because macropinocytic cups are triggered by

growth factors, and act as signal amplifiers thanks to their

intrinsic self-organization and positive feedback loops. As

signal amplification depends on their structure, which in

turn depends on actin dynamics, signalling becomes sensitive

to inhibitors of the actin cytoskeleton [55].

In summary, we see in macropinocytosis an ancient pro-

cess that evolved for feeding in phagotrophic unicells, and

whose original purpose has been at least partially retained

in metazoa, with adaptation in immune cells to use the

engulfed material for antigen presentation. The traces of its
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original function can still be seen in the wiring of growth

factor signalling, which was added later to gain control of

phagotrophic feeding structures in metazoa.
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