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Background and Rationale: Anaplastic thyroid cancer (ATC) is characterized by pleomor-
phic cells, has a poor prognosis, is highly devastating disease, and is not curable. No
reliable biomarkers of metastatic potential, helpful for early diagnosis of ATC and therapeu-
tic response have been found yet. Thrombospondin-1 (TSP-1) plays a fundamental role in
cancer progression by regulating cell stromal cross-talk in the tumor microenvironment.

Goals: Our goal was to understand whetherTSP-1 could affect protein levels of its integrin
receptors (e.g., ITGα3, α6, and β1) and cell morphology in BRAFV600E-ATC cells in vitro and
in vivo.

Experimental Design: Anaplastic thyroid cancer-derived cell cultures and western blotting
were used to assess integrin protein expression uponTSP-1 silencing. Immunohistochem-
istry was performed on orthotopic primary human ATC and metastatic ATC in lung tissue
to compare TSP-1 and integrin protein expression levels.

Results: TSP-1 knock-down down-regulates ITG 3, 6, and 1 in BRAFV600Eα α β -human ATC
cells. BRAFV600E-ATC cells withTSP-1 knock-down were rounded compared to control cells,
which displayed a spread morphology. TSP-1 knock-down also reduced TSP-1, ITGα3, α6,
and β1 protein expression levels in vivo in the ATC microenvironment, which is enriched in
stromal and inflammatory cells.

Conclusion: TSP-1 silencing causes changes in ITG levels and ATC cell morphology. The
assessment of TSP-1 and ITG levels might contribute to earlier metastatic potential of
BRAFV600E-positive aggressive thyroid cancers, and allow improved patient selection for
clinical trials.

Keywords: BRAFV600E, integrins, thyroid cancer, microenvironment, extracellular matrix,TSP-1

INTRODUCTION
The incidence of thyroid cancer is increasing more rapidly than
other cancers in the US (1) and in other countries (2). Anaplas-
tic thyroid cancer (ATC) has perhaps the worst prognosis of any
cancer, with a median survival of about 5 months and a 20% 1-
year survival rate (3). ATC is resistant to standard chemotherapy,
external beam radiation, and radioiodine treatment (3), thus new
treatments are urgently needed. Outcomes could be improved with
routine assessment of pro-metastatic biomarkers, which could
enable earlier metastatic potential of this type of fatal thyroid
cancer. The BRAFV600E mutation is the most prevalent genetic
alteration (greater than 50%) in papillary thyroid cancer (PTC)
and is implicated in the progression of PTC to ATC (4–6), a crucial
challenge in thyroid cancer. Our previous studies demonstrated

the pro-metastatic role of the secreted extracellular matrix (ECM)
protein thrombospondin-1 (TSP-1) in BRAFV600E-positive PTC
(5, 7, 8) and indicated that TSP-1 increased phosphorylation of
ERK1/2 (5). Gene Set Enrichment Analysis (GSEA) (5) was per-
formed on a cohort of BRAFV600E or BRAFWT PTC specimens and
normal thyroid tissue (NT) samples. We found 18 independent
gene sets (of 539 tested) significantly associated with BRAFV600E

PTCs: 17 up-regulated and 1 down-regulated set (5). The GSEA
data revealed that TSP-1 and several integrins were up-regulated
in the BRAFV600E-positive human PTC (5).

TSP-1 binds to a wide variety of integrins, however the
best characterized are integrin alpha3/beta1 and alpha6/beta1
(ITGα3/ITGβ1 or ITGα6/ITGβ1) (9–11). TSP-1 also binds non-
integrin cell surface receptors (i.e., proteoglycans, CD36, CD47),
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matrix proteins [i.e., Fibronectin (FN)], cytokines (i.e., TGF-β1),
pro-angiogenic factors (e.g., VEGF), and matrix proteases (i.e.,
MMP-9), indicating its importance in cross-talk between ECM
molecules and their receptors (11, 12). Also, TSP-1 is involved in
tumor cell adhesion and migration, and it may direct clustering
of receptors to specialized domains for these biological processes
(10). Integrins are a family of cell surface glycoproteins that func-
tion as receptors for ECM proteins, mediating both cell–cell and
cell-ECM adhesion. Integrins are non-covalent, heterodimeric
complexes of an alpha (α) and a beta (β) subunit (13). Their role
is fundamental in cell microenvironment homeostasis, including
either physiological or pathological conditions. Whereas, the role
of TSP-1 in angiogenesis is well documented, its role in tumor
metastasis is only just emerging. TSP-1 has been shown to pro-
mote metastasis in a breast cancer model (14). Our previous study
has shown that the N-terminal domain of TSP-1 is involved in
BRAFV600E-mediated invasion in thyroid cancer cells (5). Chan-
drasekaran et al. (10) also showed a critical role for the TSP-1
N-terminal domain in breast cancer cell invasion via putative bind-
ing site(s) to ITGα3/ITGβ1, which has an important role in tumor
cell migration and invasion. Sumimoto et al. (15) have shown that
BRAFV600E knock-down decreased phospho-ERK1/2 protein lev-
els and inhibited invasion of melanoma cells accompanied by a
decrease of matrix metalloproteinase activity and ITGβ1 expres-
sion. Dynamic and reciprocal interactions involving cell adhesion
molecules (e.g., integrins, CD44), ECM non-cellular components
(i.e., TSP-1, FN), and soluble cytokines occur between tumor
epithelial cells and tumor microenvironment stromal cells (13).
Importantly, TSP-1 could be a valid biomarker for PTC aggressive-
ness and we have already established an immunohistochemistry
(IHC)-based screening assay suitable for clinical trials (5). The
goal of this brief research article is to understand whether TSP-1
affects integrin levels and cell morphology in BRAFV600E-positive
ATC cells, contributing to metastasis.

MATERIALS AND METHODS
CELL CULTURE
The SW1736 ATC cell line, which harbors heterozygous
BRAFWT/V600E, was kindly provided by N. E. Heldin (University of
Uppsala, Uppsala, Sweden). The 8505c ATC cell line homozygous
for BRAFV600E/V600E was purchased from DSMZ (German collec-
tion of microorganisms and cell culture) (Brunswick, Germany).
The 8505c cell line was established by Dr. M. Akiyama (Radiation
Effects Research Foundation, Hiroshima, Japan) from the primary
tumor of a 78-year-old woman with undifferentiated carcinoma.
It is histologically an ATC with some spindle, polygonal, and giant
cells (data by DSMZ). SW1736 and 8505c cell lines were grown in
RPMI 1640 medium supplemented with 10% fetal bovine serum
and penicillin/streptomycin/amphotericin.

ANTIBODIES
Antibodies against the following proteins were used: β-actin (A-
5316) (Sigma); TSP-1 (A6.1) for IHC (Abcam, USA), and the pre-
viously validated TSP-1 clone MA-I for Western blot (5, 16) and R1
for immunofluorescence (17, 18); anti-ITGα3 (C-18, Santa Cruz
Biotechnology, USA), anti-ITGα6 (H-87, Santa Cruz Biotechnol-
ogy, USA), and anti-ITGβ1 (kindly provided from Dr. Richard
Hynes, MIT, Cambridge, MA, USA); anti phospho-FAK (cat.

#3283, Cell Signaling, USA), and anti-total FAK (cat #3285, Cell
Signaling, USA). CD45 (cat#550539, BD Pharmingen, USA), F4-
80 (cat# 14-4801, eBioscience, USA), and αSMA (alpha-smooth
muscle actin) (A2547, Sigma, USA).

CELL TRANSFECTIONS FOR LENTIVIRUS PRODUCTION
HEK 293T cells (5× 105) were grown in 60-mm plates and trans-
fected using Fugene-6 (Roche) in OptiMEM (Invitrogen) for 48 h
according to the manufacturer’s instructions.

TSP-1 SILENCING TECHNIQUES
Stable transduced [shRNA (sh) viral transductions] ATC cells
with or without TSP-1 knock-down were established according
to Nucera et al. (5).

WESTERN BLOT
Western blotting assays were performed following standard pro-
tocols; cells were lysed in buffer, composed of 10 mM Hepes (pH
7.40), 150 mM NaCl, 5 mM EDTA, 1 mM EGTA, 1 mM sodium
vanadate, 5 mM sodium fluoride, and 1% Triton-X 100; pro-
tease and phosphatase inhibitors (Pierce) were used for protein
extractions (5).

IN VIVO STUDIES
The animal work was done in the animal facility at Beth Israel
Deaconess Medical Center (Boston, MA, USA) in accordance with
federal, local, and institutional guidelines. We used an ortho-
topic mouse model of ATC as previously described and validated
by Nucera et al. (19) (5), using female about 6-week-old severe
combined immunodeficient (SCID) mice (Taconic, USA).

HISTOLOGY AND IMMUNOHISTOCHEMISTRY
All tissue specimens (five primary orthotopic ATC or lung speci-
mens from mice with sh-control TSP-1 8505c cells; and five pri-
mary orthotopic ATC or lung specimens from mice with sh-TSP-1
knock-down 8505 cells) were fixed with 10% buffered forma-
lin phosphate and embedded in paraffin blocks. Histopathology
evaluation was performed by a pathologist (Peter M. Sadow) on
hematoxylin and eosin-stained tissue sections of orthotopic 8505c
ATC specimens (5). All photos were captured with an Olympus
BX41 microscope and the Olympus Q COLOR 5 photo camera
(Olympus Corp., Lake Success, NY, USA), using the Twain soft-
ware in Adobe Photoshop (7.0) and white balanced with the same
method for all images. Sections (4 µm thick) of formalin-fixed
orthotopic 8505c ATC specimens (5) were used for IHC pro-
cedures. After baking overnight at 37°C, deparaffinization with
xylene/ethanol and rehydration were performed. IHC analysis was
performed using primary antibodies against human TSP-1 (1:25,
citrate buffer for antigen retrieval), ITGα3 (1:250, citrate buffer
for antigen retrieval), ITGα6 (1:200, citrate buffer for antigen
retrieval), or ITGβ1 (1:500, citrate buffer for antigen retrieval);
anti-mouse CD45 antibody (#550539, BD Pharmingen, USA):
1:50, citrate buffer and pressure cooker for antigen retrieval;
anti-mouse F4-80 antibody (pan macrophage marker) (#144801,
eBioscience,USA): 1:50, citrate buffer and pressure cooker for anti-
gen retrieval; and anti-mouse alpha-smooth muscle actin (αSMA)
(#A-2547, Sigma, USA) (1:20,000). The sections, treated with
pressure cooker for antigen retrieval (Biocare Medical, Concord,
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CA, USA), were incubated at 123°C in citrate buffer (Dako Target
Retrieval Solution, S1699; DAKO Corp.), cooled and washed with
PBS. Antigen retrieval was performed for 60 min at room temper-
ature. The primary antibody was detected using a biotin-free sec-
ondary antibody (K4011) (Dako Envision system) and incubated
for 30 min. All incubations were carried out in a humid cham-
ber at room temperature. Slides were rinsed with PBS between
incubations. Sections were developed using 3,3-diaminobenzidine
(Sigma Chemical Co.) as a substrate and were counterstained
with Mayer’s hematoxylin. PAX8 and p53 immunostaining was
performed according to our previous study (19). We used specie-
specific IgG as negative control. The IHC markers were assessed
semiquantitatively using the following scoring method: 0 negative,
1 1–10% positive cells (low expression), 2 11–50% positive cells
(moderate), and 3 more than 50% positive cells (high expression)
according to Shaik et al. (20).

IMMUNOFLUORESCENCE
For immunofluorescence experiments, 5× 104 8505c or SW1736
cells were seeded on type I collagen-coated cover slips (BD Bio-
sciences) for 24 h. Cells were washed three times with PBS, fixed
with 4% paraformaldehyde for 10 min at room temperature, and
permeabilized with PBS 0.5% Triton-X 100 for 5 min at room
temperature. After three washes with PBS, cells were blocked
with TBST 1% BSA for 20 min, followed by incubation with
phalloidin-fluorescein (Sigma, USA) in PBST 1% BSA for 30 min

at room temperature. Cells were rinsed three times with TBS.
Finally, the cover slips were mounted with a mixture of Vec-
tashield mounting medium and DAPI (Vector Laboratories). Cells
were imaged at 20× on a Nikon Eclipse 300 epifluorescence
inverted microscope connected to a Retiga 2000RV camera (Nikon
Instruments).

STATISTICAL ANALYSIS
Statistical analysis was carried out using Microsoft Excel Soft-
ware. Results were compared using the Student’s t -test and χ2

test. P values of <0.05 were considered significant (*P < 0.05,
**P < 0.01, ***P < 0.001). Densitometry analysis was performed
using Quantity One software (BioRad, USA).

RESULTS
KNOCK-DOWN OF TSP-1 DOWN-REGULATES INTEGRINS LEVELS AND
AFFECTS CELL MORPHOLOGY IN HUMAN ANAPLASTIC THYROID
CANCER CELLS WITH BRAFV600E

Our results show that ITGα3 (∼95%), ITGα6 (∼95%), and ITGβ1
(∼90%) subunits are decreased in homozygous BRAFV600E-
positive 8505c ATC cells with TSP-1 knock-down (Figure 1).
Furthermore, either homozygous BRAFV600E-positve 8505c ATC
cells or heterozygous BRAFV600E-positive SW1736 ATC cells with
TSP-1 knock-down display a markedly different morphology
(rounded cells) compared to sh-controls cells (spread morphol-
ogy) when plated on type 1 collagen (Figure 2). We also found

FIGURE 1 | TSP-1, ITGα α β
WT/V600E (SW1736 cells) or
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FIGURE 2 | Phalloidin staining in the control (sh-GFP) 8505c human
anaplastic thyroid cancer (ATC) cells or in the 8505c ATC cells withTSP-1
knock-down (sh-TSP-1), and in the sh-GFP (control) SW1736 ATC cells or

in theTSP-1 knock-down (sh-TSP-1) SW1736 ATC cells. The cells were
plated on type I collagen-coated cover slips (Magnifications: 20×). Sh, short
hairpin RNA used for knock-down.

that TSP-1 knock-down by shRNA (sh) caused a down-regulation
of pFAK protein levels (∼90%) in human thyroid cancer cells with
homozygous BRAFV600E (Figure 1).

TSP-1 KNOCK-DOWN DOWN-REGULATES INTEGRINS LEVELS IN THE
ORTHOTOPIC BRAFV600E METASTATIC 8505 ATC CELLS IN VIVO
The orthotopic human BRAFV600E-positive 8505c ATC microen-
vironment in vivo shows stromal cells, identified by expression
of some marker proteins: CD45+ (lymphocytic lineage), F4/80+
(macrophages) (21, 22), and αSMA+ (spindle-shaped pericytes)
(23) (Figure 3).

The 8505c cells with TSP-1 knock-down metastasize less (5)
and show very low protein levels of (i) ITGα3 [from 10 ITGα3-
positive cells (score 2) in the sh-control 8505 orthotopic tumors to
2 cells± 0.5/field in the sh-TSP-1 8505c orthotopic tumors, score:
1+, P < 0.05]; (ii) ITGα6 [from 16 ITGα6-positive cells (score 2)

in the sh-control 8505 orthotopic tumors to 3 cells± 0.35/field;
score: 1+, P < 0.05]; and (iii) ITGβ1 [from 12 ITGβ1-positive
cells (score 2) in the sh-control 8505 orthotopic tumors to 2
cells± 0.42/field; score: 1, P < 0.05] in the primary orthotopic
8505c ATC (Figures 4A,B), as well as in the lungs (Figure 4C)
where generally 8505c ATC cells preferentially metastasize (19).
IHC staining in the TSP-1 knock-down condition (Figure 4C)
highlights TSP-1 and integrin protein expression in macrophages
(noted by the dot-like, granular cytoplasmic staining, and bland
histomorphology) but not in the metastatic 8505c cells. Addition-
ally, lung tissue from the 8505c ATC orthotopic mice with TSP-1
knock-down was also completely negative for both PAX8 and p53
protein expression that show prominent nuclear staining in 8505c
cells which were absent (data not shown) (19). Furthermore, we
have also found that TSP-1 [3 cells positive/field (score 2)], ITGα3
[6 cells positive/field (score 2)], and ITGβ1 [2 cells positive/field
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FIGURE 3 | Stromal cells in the orthotopic 8505c human anaplastic
thyroid cancer (ATC) microenvironment of SCID immunocompromised
mice (400× magnification, representative of eight mice). About 2% of
cells/field were of lymphocytic lineage (CD45, localized to plasma

membrane); ∼8% were identified as macrophages [F4/80 (pan macrophage
marker), localized to plasma membrane]; and ∼5% were spindle-shaped
pericytes, identified by staining for cytosolic αSMA (alpha-smooth muscle
actin).

(score 1)] proteins were expressed in the metastatic 8505c cells
in the lungs but not up-regulated compared to the their expres-
sion in the primary orthotopic 8505c human ATC cells (Figure 4),
thus suggesting that the potential intravasation and colonization
of ATC cells do not up-regulate the basal protein expression levels
of TSP-1, ITGα3, and ITGβ1, which might be sufficient to trigger
metastasis. By contrast, we found that ITGα6 protein expression
levels [2 cells positive/field (score 2)] were up-regulated in the
orthotopic metastatic 8505c ATC cells in the lungs compared to
the primary orthotopic 8505c ATC cells in the mouse thyroid.

DISCUSSION
Thyroid carcinomas are increasing in frequency and account for
2.5% of all cancers in the United States (USA). ATC is a devas-
tating disease with low survival rate due to uncontrolled systemic
metastasis and with no effective treatment options. ATC repre-
sents 1.7% of all human thyroid cancers in USA, and geograph-
ically its prevalence ranges from 1.3 to 9.8% (median= 3.6%)
(3). Conventional ATC therapy currently utilizes a multimodal

approach using radiation therapy and chemotherapeutic agents
such as doxorubicin. The local disease burden often is so extensive
that surgery is confined to tumor debulking and securing the air-
way. Additionally, no reliable biomarkers of metastatic potential,
helpful for early diagnosis of ATC and therapeutic response have
been found yet.

ATC shows a pleomorphic and interconnected network
between high-grade malignant cells and stromal cells (e.g.,
macrophages) that characterize tumor microenvironment (24).
Here our results from an in vivo orthotopic mouse model of
human ATC also suggest that the ATC microenvironment is
enriched in stromal cells, including macrophages, leukocytes,
endothelial cells, and pericytes, which might contribute to the ATC
aggressiveness.

Changes in the tumor microenvironment (e.g., deregulation
of ECM molecules or ECM receptors) are a critical step in
human cancer invasion, metastasis, and progression. We found
that TSP-1 (a key player for ECM remodeling) and integrins
(ECM receptors) are associated with BRAFV600E-positive PTC
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FIGURE 4 |TSP-1, ITGα3, ITGα6, and ITGβ1 immunoexpression in the
orthotopic 8505c human anaplastic thyroid cancer (ATC) (A) without
TSP-1 knock-down (control, arrows highlight protein
immunoexpression in the 8505c ATC cells in vivo) or withTSP-1
knock-down (arrows highlight protein immunoexpression in the
8505c ATC cells in vivo) and (B) withTSP-1 knock-down (control,
arrows highlight protein immunoexpression in the 8505c ATC cells
in vivo). (C) Orthotopic 8505c metastatic ATC cells in the lungs of SCID

mice; arrows mark protein immunoexpression of TSP-1, ITGα3, ITGα6, and
ITGβ1 in the metastatic 8505c cells in the lungs tissue of control SCID
mice. By contrast, IHC staining in the TSP-1 knock-down condition
highlights TSP-1, ITGα3 and ITGβ1 protein expression in macrophages
(noted by the dot-like, granular cytoplasmic staining, and bland
histomorphology) but not in the metastatic 8505c cells which were
absent; whereas, ITGα6 protein immunoexpression is completely negative
in the TSP-1 knock-down condition.

(5). We also showed that BRAFV600E or TSP-1 knock-down (5)
down-regulated ERK1/2 phosphorylation protein levels and inhib-
ited ATC cell proliferation adhesion, migration, and invasion, all
properties associated with integrin-mediated interactions with the
ECM.

TSP-1 is a secreted/soluble protein that can be assessed in the
plasma of patients with breast cancer, and shows significantly
higher plasma concentrations than normal individuals or patients
with benign breast disease (25, 26). It plays an important role in
the physiology and pathology of the cell microenvironment (7,
12, 27, 28), and it has been proposed to have both pro-metastatic
and anti-metastatic properties (14, 29). TSP-1 in the mammary
tumor microenvironment inhibits angiogenesis and breast cancer
growth, but promotes metastasis to the lung in a transgenic model
of breast cancer (14). The ability of TSP-1 to support metastasis
correlates with its ability to promote tumor cell migration (14).

Integrins are TSP-1 receptors that mediate tumor cell-ECM
adhesion and provide both the connection to the adhesive sub-
strate and cellular signaling crucial for cell proliferation, migra-
tion, and invasion (9, 13). To our best knowledge, this is the first
report that shows that TSP-1 affects protein levels of integrins in
BRAFV600E-positive human ATC cells in vitro and in vivo. Also,
TSP-1 knock-down per se significantly alters ATC cell morphol-
ogy on type 1 collagen. Collectively, our results may suggest that
BRAFV600E-ATC cells might acquire an adaptation in the host tis-
sue during their tissue colonization, reprogram their gene expres-
sion profile and up-regulate integrin (i.e., ITGα6) protein levels.
This observation is supported from a recent report that shows that
TSP-1 stimulates ITGα6 protein expression levels in human breast
carcinoma cells, promoting tumor cell adhesion and invasion (9).

Additionally, the missense SNP rs11895564 (Ala380Thr) in ITGα6
may be a risk factor of thyroid cancer, contributing to the progres-
sion of PTC (30). Also, our results suggest that the zygosity (e.g.,
homozygous vs. heterozygous allelic mutations) of the BRAFV600E

mutation represents an important factor to take under considera-
tion as a molecular modulator of the expression levels of integrins.
In fact, the expression levels of many target genes could depend on
the oncogenic dosage in human cancer cell. However, further stud-
ies are needed to understand better this aspect and the molecular
role of integrins in thyroid cancer metastasis and progression.

Furthermore, integrins can also activate the FAK signaling
cascade and promote PI3K kinase activity, which is essential to
promote cancer invasion (31). Here, our results may suggest that
TSP-1 protein levels also affect phospho-FAK protein levels, high-
lighting that TSP-1 might not only stimulate the ERK1/2 phospho-
rylation but additionally drive thyroid cancer cell adhesion and
migration through FAK pathway(s). Shibue and Weinberg (31)
demonstrated that ITGβ1 is fundamental to activate FAK signal-
ing axis in controlling the initial proliferation of micro-metastatic
mouse breast cancer cells disseminated in the lungs (31).

Overall, these results suggest that TSP-1 is a pro-metastatic
constituent and TSP-1 silencing causes changes in integrin expres-
sion levels and ATC cell morphology. Therapeutic strategies aimed
at modulating the thyroid cancer microenvironment might pro-
vide an additional perspective for the treatment of patients with
these types of cancers. Routine assessment of pro-metastatic bio-
markers, including TSP-1 and integrins, will help monitor patients
undergoing targeted therapies, enable earlier metastatic potential
of aggressive BRAFV600E-positive human thyroid cancer, foster
development of innovative therapies for refractory thyroid cancer
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to current treatments, and allow improved patient selection for
clinical trials.
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