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Background: Oxidative phosphorylation (OXPHOS) is a major energy resource occurring in 
mitochondria. Targeting OXPHOS-related genes has emerged as potential targets for cancer therapy. This 
study aimed to explore the significance of OXPHOS-related genes in breast cancer (BRCA).
Methods: Differentially expressed genes (DEGs) related to OXPHOS in BRCA were identified using 
packages of Limma and VennDiagram using the data from public databases. A prognostic model based 
on differentially expressed OXPHOS-related genes was constructed using least absolute shrinkage and 
selection operator Cox regression analyses and then evaluated through Kaplan-Meier and receiver operator 
characteristic (ROC) curves. Additionally, gene set variate analysis (GSVA) and gene set enrichment analysis 
(GSEA) were performed to explore the potential pathways involved in BRCA. Furthermore, the tumor 
microenvironment (TME) difference between low- and high-risk BRCA groups was investigated. The 
prognostic significance of hub genes was then examined. We conducted a protein-protein interaction (PPI) 
network to uncover the potential gene interactions and identify key genes, whose expressions were validated 
in cells.
Results: Our analyses revealed 234 differentially expressed OXPHOS-related genes, from which a nine-
gene (ATP5PF, FOXP3, IGF2, IREB2, MIEF2, NOTCH1, PDE12, SHC1, and UCP3) prognostic model was 
constructed. Patients in the high-risk group exhibited poorer survival outcomes and a suppressed immune 
microenvironment compared to the low-risk group. Additionally, except for IGF2, abnormal expression 
levels of hub genes were significantly associated with poor prognosis of BRCA patients. GSVA and GSEA 
highlighted the involvement of TME-related pathways, such as transforming growth factor beta (TGF-β) 
and mechanistic target of rapamycin (mTOR) signaling pathways. PPI network identified 4 common genes 
that interacted with all hub genes. The in vitro experiment on the key genes showed a consistent result with 
the bioinformatics finding. 
Conclusions: Our study provides insights into the prognostic biomarkers and molecular mechanisms in 
BRCA, offering potential therapeutic avenues and guiding personalized treatment strategies for improved 
patient outcomes.
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Introduction

Breast cancer (BRCA) is one of the most prevalent 
malignancies that threaten females’ health (1). Approximately 
410,000 BRCA new cases occur in China every year, and 
over 110,000 people die from this disease (2). BRCA is a 
clinically and molecularly heterogeneous disease (3). In the 
contemporary landscape of personalized medicine, traditional 
prognostic markers, including tumor size, histological tumor 
grade, and lymph node metastasis, have become inadequate for 
guiding the management of early-diagnosed BRCA patients (4).  
Recent technological advancements have significantly 
enhanced our comprehension of the molecular underpinnings 
of tumor progression and treatment responses (5). Identifying 
reliable molecular prognostic markers and therapeutic 
targets remains crucial for refining patient management and 
improving survival rates.

Among the various biological processes (BP) implicated 
in cancer biology, oxidative phosphorylation (OXPHOS) 
has garnered attention due to its role in energy metabolism 
and its potential implications for tumor therapeutic 
response (6,7). OXPHOS is a fundamental cellular 
process that occurs within the mitochondria, involving the 
production of adenosine triphosphate (ATP) through the 
transfer of electrons along the mitochondrial respiratory 
chain (8). Metabolic abnormalities are an important 
characteristic of cancer, and during the occurrence and 

development of cancer, many signaling and metabolic 
pathways change in cancer cells (9). To adapt to the 
changes, even under aerobic conditions, cancer cells tend to 
produce ATP through glycolysis (10). However, in recent 
years, it has been recognized that cancer cells rely on high 
levels of OXPHOS as an energy source (11). Activation of 
mitochondrial OXPHOS has also been observed in some 
cancers, including BRCA (12,13). Regulating OXPHOS 
signaling pathways could induce BRCA cell cycle arrest 
and apoptosis, thus inhibiting BRCA proliferation and 
metastasis (14). 

Beyond its direct impact on tumor cells, OXPHOS has 
also been implicated in shaping the tumor microenvironment 
(TME), influencing immune cell function, and modulating 
anti-tumor immune responses (15). The TME comprises 
a complex network of immune cells, stromal cells, and 
extracellular matrix components that interact dynamically 
with cancer cells, influencing tumor progression and 
treatment sensitivity (16). Understanding the interplay 
between OXPHOS, the TME, and BRCA biology holds 
promise for identifying novel prognostic markers and 
therapeutic targets that may enhance patient outcomes.

This study explored the role of OXPHOS-related genes 
in BRCA prognosis and their influence on the tumor 
immune microenvironment. By elucidating the intricate 
relationship between OXPHOS, tumor biology, and the 
immune microenvironment, this study aimed to provide 
insights that may inform the development of personalized 
therapeutic approaches and improve outcomes for BRCA 
patients. We present this article in accordance with the 
TRIPOD reporting checklist (available at https://tcr.
amegroups.com/article/view/10.21037/tcr-24-1181/rc).

Methods

Identification and enrichment analysis of differentially 
expressed genes (DEGs) in BRCA

Clinical data and RNA-sequencing data of BRCA were 
downloaded from The Cancer Genome Atlas (TCGA) 
database (https://portal.gdc.cancer.gov). After excluding 
samples with an overall survival (OS) of less than 30 days, 
113 normal samples and 1,066 tumor samples were included 
in the final analysis. The histologic subtype for all tumor 
samples is presented in the online table (available at https://
cdn.amegroups.cn/static/public/tcr-24-1181-1.pdf). DEGs 
in the normal and tumor samples were identified Using the 
R package Limma (P<0.05 and |fold change| ≥1.5) and 
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visualized through a volcano plot. The study was conducted 
in accordance with the Declaration of Helsinki (as revised 
in 2013). 

Using R packages clusterProfiler and org.Hs.eg.db, Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analyses were performed 
on the DEGs. The GO analysis included BP, cellular 
component (CC), and molecular function (MF). The 
criterion was set as P<0.05.

Screening of differentially expressed OXPHOS-related genes

The OXPHOS-related genes were screened from the 
Metabolic Atlas and National Center for Biotechnology 
Information databases. Using the Venn Diagram package 
in R, differentially expressed OXPHOS-related genes were 
then screened out by intersecting the DEGs and OXPHOS-
related genes.

Identification of hub prognostic features and construction 
of risk model

To identify genes related to the prognosis of BRCA patients, 
univariate Cox regression analysis was performed on the 
differentially expressed OXPHOS-related genes. After 
reducing redundancy in the predictive framework through 
the least absolute shrinkage and selection operator (LASSO) 
regression, hub prognostic genes were identified using 
multivariate Cox regression. The LASSO regression was 
conducted using the R package glmnet. The hub prognostic 
genes were then applied to construct a prognostic model 
for BRCA patients. The risk scores for each TCGA-BRCA 
patient were calculated as: risk score = expRNA1*coefRNA1 + 
expRNA2*coefRNA2 + … + expRNAi*coefRNAi.

The TCGA-BRCA patients were divided into low- and 
high-risk groups based on the optimal truncation value of 
risk scores. The differences in OS in the low- and high-
risk groups were shown using Kaplan-Meier (K-M) curves. 
Time-dependent receiver operating characteristic (ROC) 
curves at 3-, 5-, and 10-year were constructed using the R 
package survival. The area under the curve (AUC) value 
was calculated to reflect the prognostic performance of the 
model.

Gene set variation analysis (GSVA) and gene set 
enrichment analysis (GSEA)

Biological enrichment differences in the low- and high-risk 

groups were determined using the GSVA analysis. GSVA 
analysis was performed through R packages GSEABase and 
GSVA. h.all.v2023.2.Hs.symbols was set as a reference gene 
set, and the results were visualized using ggplot2. GSEA 
analysis was conducted to screen hub gene-related pathways 
using the GSVA package.

TME analysis

Immune cell infiltration between the low- and high-risk 
groups was detected through the CIBERSORT algorithm 
of the IBOR package in R. Immune checkpoint-related 
genes were obtained from a literature (17). Expression levels 
of these genes in the low- and high-risk groups were further 
explored. Tumor immune dysfunction and exclusion (TIDE) 
score was measured on the TIDE website (http://tide.dfci.
harvard.edu/).

Construction of protein-protein interaction (PPI) 
network

Gene sets interacting with hub genes were identified 
from the genetic perturbation similarity analysis (GPSA) 
database (https://www.gpsadb.com/). A Venn diagram 
was utilized to acquire the common genes that modulate 
all of the hub genes. The interactions among hub genes 
and their interactions with the common genes were 
visualized through the PPI networks. The PPI networks 
were generated by the Search Tool for the Retrieval 
of Interacting Genes/Proteins (STRING) database 
(http://stringdb.org) and visualized using Cytohubba in 
Cytoscape 3.7.0.

Drug sensitivity analysis

Drug sensitivity analysis of hub genes was conducted using 
Gene Set Cancer Analysis (GSCA) (https://guolab.wchscu.
cn/GSCA/#/). The correlation between hub genes and 
the sensitivity of potential drugs was assessed using the 
Pearson method.

Cell culture

Wuhan Pricella Biotechnology Co., Ltd. provided MCF-
12A (CL-0791) human mammary epithelial cell line and 
MDA-MB-231 (CL-0150) human BRCA cell line. Both 
cell lines were maintained in Dulbecco’s Modified Eagle’s 
Medium (Gibco, NY, USA) with 10% fetal bovine serum 
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under standard conditions of 37 ℃ and 5% CO2.

Quantitative real-time polymerase chain reaction  
(qRT-PCR)

TRIzol reagent (Invitrogen, CA, USA) was employed 
to isolate total RNA following the manufacturer’s 
instructions. The reverse transcription of total RNA 
to complementary DNA was conducted using the 
PrimeScript RT reagent kit (Takara, Dalian, China). 
Subsequently, qRT-PCR was carried out utilizing the Hieff 
UNICON Universal Blue qPCR SYBR Green Master Mix 
(Yeasen, Shanghai, China) on an ABI7900HT System. The 
relative messenger RNA (mRNA) expression levels were 
calculated using the 2−ΔΔCt method, and glyceraldehyde 
3-phosphate dehydrogenase (GAPDH) was set as the 
internal control. The primer sequences used in this study 
are shown in Table 1.

Statistical analysis

All statistical analyses were performed using R software 
version 4.2.0, SPSS, and GraphPad Prism 8.0.2. The 
predictive performance of hub genes was evaluated using 
the K-M curve. Student’s t-test was used to compare the 
differences between the two groups, and the Pearson 
method was used for correlation analysis. Statistical 

significance was set as P<0.05.

Results

Identification of differentially expressed OXPHOS-related 
genes in BRCA

In total, 9,390 DEGs were identified from the TCGA 
dataset, with 3,672 down-regulated genes and 5,718 up-
regulated genes in the tumor samples. The results were 
visualized in a volcano plot (Figure 1A). Furthermore, 
biological function of these DEGs was explored. The top 
five BP terms were cellular protein metabolic process, 
macromolecule biosynthetic process, establishment of 
localization, transport, and system development (Figure 1B). 
CCs of these DEGs were major related to cytosol, nuclear 
part, protein-containing complex, endomembrane system, 
and non-membrane-bounded organelle (Figure 1C). The 
MFs were mainly associated with catalytic activity, cation 
binding, metal ion binding, nucleic acid binding, and anion 
binding (Figure 1D). KEGG pathways were mainly enriched 
in the phosphatidylinositol 3-kinase (PI3K)-protein kinase B 
(Akt) signaling pathway, mitogen-activated protein kinases 
(MAPK) signaling pathway, focal adhesion, Ras-associated 
protein 1 (Rap1) signaling pathway, and cellular senescence 
(Figure 1E). 

In addition, after intersecting the DEGs and OXPHOS-
related genes, 234 differentially expressed OXPHOS-
related genes were obtained (Figure 1F). These overlapping 
genes were used for further analysis.

Identification and evaluation of prognostic features in 
OXPHOS-related genes

Subsequently, univariate Cox regression analysis was 
performed on the 234 differentially expressed OXPHOS-
related genes and 27 genes with statistical significance were 
identified (Figure 2A). The LASSO regression analysis 
further screened out 22 genes related to prognosis with 
the optimal λ value of 0.0046 (Figure 2B). Finally, the 
multivariate Cox regression analysis filtered nine hub 
genes including ATP5PF, FOXP3, IGF2, IREB2, MIEF2, 
NOTCH1, PDE12, SHC1, and UCP3 (Figure 2C). A BRCA 
prognostic model was then constructed based on the nine 
hub genes. The risk score of each sample in the TCGA 
dataset was calculated as follows: risk score =0.018*ATP5PF 
– 0.17*FOXP3 + 0.024*IGF2 + 0.06*IREB2 – 0.088*MIEF2 
+ 0.035*NOTCH1  – 0.152*PDE12  + 0.021*SHC1  – 

Table 1 Primer sequences used in this study

Gene Sequences 

FOXP3-forward 5'-GTGGCCCGGATGTGAGAAG-3'

FOXP3-reverse 5'-GGAGCCCTTGTCGGATGATG-3'

SHC1-forward 5'-TACTTGGTTCGGTACATGGGT-3'

SHC1-reverse 5'-CTGAGTCCGGGTGTTGAAGTC-3'

NOTCH1-forward 5'-GAGGCGTGGCAGACTATGC-3'

NOTCH1-reverse 5'-CTTGTACTCCGTCAGCGTGA-3'

IGF2-forward 5'-GTGGCATCGTTGAGGAGTG-3'

IGF2-reverse 5'-CACGTCCCTCTCGGACTTG-3'

UCP3-forward 5'-TGTTTTGCTGACCTCGTTACC-3'

UCP3-reverse 5'-GACGGAGTCATAGAGGCCGAT-3'

GAPDH-forward 5'-GGAGCGAGATCCCTCCAAAAT-3'

GAPDH-reverse 5'-GGCTGTTGTCATACTTCTCATGG-3'

GAPDH, glyceraldehyde 3-phosphate dehydrogenase.
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Figure 1 Identification of differentially expressed OXPHOS-related genes in BRCA. (A) Volcano plot showed the DEGs between the normal 
and tumor samples in the TCGA-BRCA cohort. (B-D) GO terms related to DEGs, including BP (B), CC (C), and MF (D). (E) KEGG 
pathways associated with DEGs. (F) Venn diagram revealed the overlapping genes between DEGs and OXPHOS-related genes. Sig, significant; 
OXPHOS, oxidative phosphorylation; BRCA, breast cancer; DEGs, differentially expressed genes; TCGA, The Cancer Genome Atlas; GO, 
Gene Ontology; BP, biological process; CC, cellular component; MF, molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes; 
PI3K, phosphatidylinositol 3-kinase; Akt, protein kinase B; MAPK, mitogen-activated protein kinases; Rap1, Ras-associated protein 1.

0.757*UCP3.
Based on the optimal truncation value of the risk scores, 

patients in the TCGA-BRCA dataset were categorized 
into low- and high-risk groups. The K-M curve showed 
that individuals in the low-risk group had a higher survival 

probability than those in the high-risk group (Figure 3A). 
The AUCs of the time-dependent ROC curve at 3-, 5-, and 
10-year were 0.68, 0.69, and 0.75, respectively (Figure 3B).  
Subsequently, K-M survival was conducted to assess the 
model’s performance across different BRCA subtypes. As 
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Figure 2 Identification of hub genes related to prognosis. (A) Univariate Cox regression analysis was performed on 234 differentially expressed 
OXPHOS-related genes. (B) Correlation coefficient change curve and cross-validation curve in the LASSO regression analysis. (C) Nine hub 
genes were identified using multivariate Cox regression analysis; Hazard ratio >1 represents risk factor, and hazard ratio <1 represents protective 
factor. OXPHOS, oxidative phosphorylation; LASSO, least absolute shrinkage and selection operator; CI, confidence interval.

illustrated in Figure S1, the high-risk group consistently 
exhibited poorer prognoses compared to the low-risk 
group in BRCA patients with human epidermal growth 
factor receptor 2-positive (HER2+), triple-negative breast 
cancer (TNBC), luminal A, and luminal B subtypes. These 
results revealed that the nine-gene prognostic risk model 

performed well in predicting the survival of BRCA patients.

GSVA and GSEA analyses

To further elucidate the pathways related to the prognostic 
risk model, GSVA analysis was performed between the 
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Figure 3 Evaluation of the prognostic risk model. (A) Kaplan-Meier curve for overall survival of patients in the low- and high-risk groups 
based on the TCGA-BRCA cohort. (B) Time-dependent receiver operating characteristic curves at 3-, 5-, and 10-year. TCGA, The Cancer 
Genome Atlas; BRCA, breast cancer.

Figure 4 Risk model-related gene set variation analysis. Blue means activated, and green means suppressed. KEGG, Kyoto Encyclopedia of 
Genes and Genomes; GSVA, gene set variate analysis.

low- and high-risk groups. The NOTCH signaling, 
transforming growth factor beta (TGF-β) signaling, and 
mechanistic target of rapamycin complex 1 (mTORC1) 
signaling were activated, while the p53 pathway and PI3K-
Akt-mTOR signaling were suppressed (Figure 4).

Additionally, GSEA analysis was performed to elucidate 

the hub gene-related pathways. As shown in Figure 5, these 
hub genes were mainly involved in TGF-β, mechanistic 
target of rapamycin (mTOR), and Wnt signaling pathways. 
Combined with GSVA and GSEA analysis, the results 
showed that the risk model as well as the individual gene in 
the model had an intimated relation with TME. 
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Figure 5 GSEA analysis of 9 hub genes. (A-I) GSEA analysis for ATP5PF (A), FOXP3 (B), IGF2 (C), IREB2 (D), MIEF2 (E), NOTCH1 (F), 
PDE12 (G), SHC1 (H), and UCP3 (I). L means a low expression of the gene, and H means a high expression of the gene. GSEA, gene set 
enrichment analysis; ECM, extracellular matrix; MAPK, mitogen-activated protein kinases; mTOR, mechanistic target of rapamycin.

Risk model-related TME analysis

We have demonstrated the tight association of the risk 
model with TME. Besides, various immune cells as 
important components in TME play essential roles in 
cancer pathogenesis (18). These triggered us to explore 
the TME between two risk groups. We compared the 
differences in immune cell infiltration between low- and 
high-risk groups. The number of natural killer (NK) cells 

resting (P<0.001), macrophages M0 (P<0.001), macrophages 
M2 (P=0.001), and dendritic cells activated (P=0.02) was 
significantly richer in the high-risk group (Figure 6A). Cell 
abundance of T cells CD8 (P<0.001), T cells CD4 memory 
resting (P=0.03), T cells CD4 memory activated (P=0.02), 
T cells follicular helper (P=0.005), T cells regulatory 
(Tregs) (P=0.03), NK cells activated (P=0.006), monocytes 
(P=0.008), macrophage M1 (P=0.02), dendritic cells resting 
(P=0.003), and mast cells resting (P<0.001) was significantly 
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Figure 6 Risk model-related TME analysis. (A) Immune cell infiltration in the low- and high-risk groups. (B,C) Expression levels of 
immune checkpoint-related genes in the low- and high-risk groups. (D) TIDE scores in the low- and high-risk groups. *, P<0.05; **, P<0.01; 
***, P<0.001. TME, tumor microenvironment; TIDE, tumor immune dysfunction and exclusion; NK, natural killer.

higher in the low-risk group (Figure 6A). Furthermore, 
we explored the expression of immune checkpoint-related 
genes in the low- and high-risk groups. Except for TDO2, 
CD276, TNFSF9, SIRPA, and PVR, most of the immune 
checkpoint-related genes were significantly downregulated 
in the high-risk group, especially HLA (Figure 6B,6C). 
There was a higher TIDE score in the high-risk group 
than in the low-risk group, with statistical significance 
(P<0.001, Figure 6D). The above findings indicated that a 
high-risk score was associated with a suppressive immune 
microenvironment. 

Expression and survival analyses of nine hub genes

Expression levels of the identified 9 hub genes and their 

association with the OS of BRCA patients were analyzed 
to investigate the role of these genes in the prognosis of 
BRCA. In comparison with the low-risk group, expression 
levels of ATP5PF, IREB2, NOTCH1, and SHC1 were 
significantly elevated while expression of FOXP3, MIEF2, 
PDE12, and UCP3 was reduced in the high-risk group (all 
P<0.001, Figure 7A). BRCA patients with higher levels of 
ATP5PF (P=0.02), IREB2 (P=0.03), NOTCH1 (P=0.04), and 
UCP3 (P=0.02) as well as lower levels of FOXP3 (P=0.003), 
MIEF2 (P=0.03), PDE12 (P=0.01), and SHC1 (P=0.01) had 
a poor prognosis (Figure 7B-7J). 
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Figure 7 Expression levels and survival analysis of the hub genes. (A) Expression levels of 9 hub genes in the low- and high-risk groups. ***, 
P<0.001; “-” means no significance. (B-J) Kaplan-Meier curves for overall survival between groups differentiated by high-expression or low-
expression of 9 hub genes. 

these 9 hub genes were then screened out from the GPSA 
website, and four common genes (TCF3, UPF1, LOXL2, 
and PRPF8) interacted with the expression of all 9 hub 
genes were obtained (Figure 8A). The interactions among 
9 hub genes and their interactions with the 4 overlapping 
genes were visualized in Figure 8B,8C. It revealed that 
FOXP3, IGF2, SHC1, NOTCH1, and UCP3 were interacted 
with each other (Figure 8A). 

In vitro validation of hub gene expression

qRT-PCR was further performed on the genes that 

interacted with each other in the PPI network to validate 
their expression in cells. FOXP3 expression was reduced 
while the other four genes’ expression (NOTCH1, IGF2, 
SHC1, and UCP3) was elevated in the MDA-MB-231 cells 
compared with the MCF-12A cells (P<0.001, Figure 9). 

Drug sensitivity analysis

Moreover, 30 potential drugs for BRCA were searched 
from the Genomics of Drug Sensitivity in Cancer (GDSC) 
database. The correlation of 9 hub gene expression levels with 
the sensitivity of 30 potential drugs is shown in Figure 10. 
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Figure 8 PPI network construction. (A) Four gene sets that affect the expression of 9 hub genes were identified. (B) PPI network of 9 hub 
genes with the four common interacting genes. (C) PPI network of the 9 hub genes. PPI, protein-protein interaction.

Figure 9 In vitro validation of hub gene expression. ***, P<0.001.

Expression of MIEF2, SHC1, and IGF2 was mainly positively 
related to these 30 drugs, while the other 6 gene expression 
levels were negatively associated with most of these 30 drugs.

Discussion

In recent years, more and more evidence has shown 
that mitochondrial genes associated with OXPHOS are 

upregulated in various cancers (19). OXPHOS has been 
a potential target for BRCA treatment. A recent study 
revealed a drug 9S1R-NulloPT that could kill TNBC cells 
by targeting mitochondrial metabolic pathways (20). El-
Botty et al. demonstrated that treatment with the OXPHOS 
inhibitor IACS-010759 significantly inhibits tumor growth, 
particularly in endocrine and palbociclib-resistant metastatic 
estrogen receptor-positive (ER+) BRCA (21). However, 
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Figure 10 Correlation between drug sensitivity and mRNA expression of 9 hub genes. GDSC, Genomics of Drug Sensitivity in Cancer; 
FDR, false discovery rate; mRNA, messenger RNA.

few studies have systematically screened OXPHOS genes 
associated with BRCA prognosis. This study attempted to 
screen potential prognostic biomarkers and explore their 
potential roles in regulating the immune microenvironment, 
thereby providing evidence for identifying new therapeutic 
targets and pathways for BRCA. 

Functional enrichment analysis indicates that DEGs 
in BRCA were associated with biological functions such 
as cellular protein metabolism process, macromolecular 
biosynthesis process, and transport. We particularly 
focused on the macromolecular biosynthesis process 
(namely synthetic metabolism). Active metabolism is 
crucial for tumor growth, and a common feature of cancer 
cells is their ability to undergo metabolic reprogramming 
to sustain macromolecular production (22). OXPHOS 
pathways provide the biological energy demands and 
lead to macromolecular synthesis to promote cancer 
cell proliferation (8). Metastatic BRCA heavily relies on 
OXPHOS (21). Based on TCGA data and LASSO Cox 
regression analysis, we identified 9 OXPHOS-related 
prognosis biomarkers, including ATP5PF, FOXP3, IGF2, 
IREB2, MIEF2, NOTCH1, PDE12, SHC1, and UCP3. The 

nine identified hub genes are integral to the OXPHOS 
pathway, influencing mitochondrial function and energy 
production in BRCA. As a component of ATP synthase, 
ATP5PF enhances ATP production (23). FOXP3, known 
for its role in regulatory T cells, also has been reported to 
drive OXPHOS (24). IGF2, a growth factor associated with 
cellular proliferation, exerts its effects by preprogramming 
maturing macrophages to commit OXPHOS (25). IREB2, 
involved in iron metabolism, affects mitochondrial function 
because iron is essential for OXPHOS (26). MIEF2 impacts 
mitochondrial dynamics, which can influence the efficiency 
of OXPHOS (27). NOTCH1, known for modulating 
cellular signaling, has been associated with mitochondrial 
metabolism and affects OXPHOS pathways (28). PDE12, 
which is involved in cyclic nucleotide metabolism, may 
influence signaling pathways that intersect with OXPHOS 
regulation (29). SHC1 participates in signaling pathways 
that impact metabolism and could activate OXPHOS (30). 
UCP3, which regulates mitochondrial uncoupling, affects 
both energy expenditure and OXPHOS efficiency (31). In 
our study, the risk model established based on these nine 
hub OXPHOS-related genes effectively predicted the 3-, 5-, 
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and 10-year survival rates of BRCA patients.
Further analysis provided insights into the molecular 

mechanisms underlying the roles of the nine hub genes in 
BRCA. The hub genes were found to be associated with 
key signaling pathways involved in TME regulation, such as 
TGF-β, mTOR, and Wnt signaling. Dysregulated TGF-β 
signaling within the TME promotes immunosuppression, 
angiogenesis, and metastasis in BRCA (32). Similarly, 
aberrant mTOR signaling contributes to tumor cell survival, 
proliferation, and immune evasion, while dysregulated 
Wnt signaling promotes cancer stemness, epithelial-
to-mesenchymal transition, and immune evasion (33). 
These pathways collectively influence TME dynamics by 
modulating immune cell recruitment, angiogenesis, and 
cytokine secretion, thereby impacting disease progression 
and therapeutic responses (34). The hub genes we identified 
may alter the TME and affect the development of BRCA by 
potentially influencing these pathways.

The metabolic changes in cancer cells are closely 
associated with the abnormal functions of immune cells and 
immune factors, leading to tumor immune escape (35). The 
intricate crosstalk between immune cells and cancer cells 
is a key mechanism in regulating cancer progression (36).  
Metabolic dysregulation in BRCA leads to restricted energy 
generation in the TME, ultimately resulting in impaired 
cellular function (37). Therefore, we analyzed the immune 
microenvironment and found that the activation levels 
of CD8 T cells, CD4 memory T cells, NK cells, and M1 
macrophages were higher in the low-risk group, while 
M2 macrophages and dendritic cells were enriched in the 
high-risk group. CD8 T cells possess immunosuppressive 
functions (38). T memory cells express high levels of immune 
checkpoint molecules, contributing to suppressing tumors, 
and have been shown to actively participate in immune 
surveillance of BRCA (39). Immune checkpoint-related 
gene HLA was observed to be upregulated in the low-risk 
group. HLA is an important mediator of anti-tumor immune 
responses (40). We speculate that high levels of CD8 T cells 
and CD4 memory T cells were associated with the high 
expression of HLA in the low-risk group. M1 macrophages 
trigger anti-tumor immune signaling and are associated with 
tumor-killing capabilities. Conversely, M2 macrophages exert 
pro-tumor effects, associated with angiogenesis, metastasis, 
and adaptive immune suppression (41). Correspondingly, we 
observed elevated CD40 expression in the low-risk group, a 
typical biomarker of M1 macrophages. Additionally, NK cells 
participate in anti-tumor immune responses by producing 
pro-inflammatory cytokines or directly killing tumor cells, 

playing a positive role in cancer immune surveillance 
(42,43). All in all, our result revealed an inhibited immune 
microenvironment in the high-risk group, thus more likely to 
suffer from BRCA. 

Conclusions

In conclusion, we identified nine OXPHOS-related 
prognosis biomarkers and developed a risk model for 
predicting BRCA prognosis, which effectively predicts 
survival rates at various time points. Furthermore, our 
findings shed light on the intricate interplay between 
metabolic dysregulation, immune microenvironment, and 
tumor progression in BRCA. Our study elucidated the 
molecular mechanisms underlying the roles of the identified 
hub genes in BRCA, highlighting their associations with 
key signaling pathways involved in TME regulation, such as 
TGF-β, mTOR, and Wnt signaling. These findings provide 
valuable insights into the molecular mechanisms underlying 
BRCA progression and may facilitate the development of 
personalized therapeutic strategies targeting OXPHOS-
related pathways and TME components.
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