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Mitochondrial disease refers to a heterogenous group of genetic disorders that result from dysfunction of the final common pathway of
energy metabolism. Mitochondrial DNA mutations affect key components of the respiratory chain and account for the majority of mitochon-
drial disease in adults. Owing to critical dependence of the heart on oxidative metabolism, cardiac involvement in mitochondrial disease is
common and may occur as the principal clinical manifestation or part of multisystem disease. Recent advances in our understanding of the
clinical spectrum and genetic aetiology of cardiac involvement in mitochondrial DNA disease have important implications for cardiologists in
terms of the investigation and multi-disciplinary management of patients.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Keywords Mitochondrial DNA disease † Cardiac involvement † Cardiomyopathy † Conduction system disease †

Ventricular pre-excitation

Introduction
Mitochondrial disease includes various clinical disorders that occur
as a result of dysfunctional cellular oxidative phosphorylation
(OXPHOS), due to a primary genetic defect. Such mitochondrial
disease can be caused by defects in either mitochondrial or
nuclear DNA, but mitochondrial DNA (mtDNA) mutations are
the commonest cause of mitochondrial disease in adults, identified
in �70% patients, and present unique challenges in diagnosis and
management. Clinical disease-based prevalence studies suggest
that mtDNA disease affects 9.2/100 000 adults aged ,65 years,
with a further 16.5/100 000 children and adults aged ,65 years
at risk of development of disease.1 These figures derive from
regional referral patterns and are likely an underestimation of the
true prevalence of mtDNA disease. The m.3243A.G mutation
is present in �1 in 300 of the general population and, while
many individuals will possess low levels of mutation and remain

asymptomatic, mtDNA disease appears more common than previ-
ously thought, causing disease in �1 in 5000 individuals.2

The clinical spectrum in mtDNA disease is wide (Figure 1) with
both isolated organ involvement and more frequent multisystem
disease recognized. Presentation may be at any age and in
almost any organ, but those with high energy requirements, includ-
ing the brain, eye, skeletal muscle, and heart, are most frequently
involved.3,4 Indeed natural history studies have demonstrated that
cardiac involvement in mtDNA disease is progressive and an inde-
pendent predictor of morbidity and early mortality.5,6 Cardiac and
neurological diseases are the commonest causes of early death in
patients with mitochondrial disease due to the m.3243A.G mu-
tation, while sudden death, often with a suspected cardiac aeti-
ology, is frequently reported.7 Hence, cardiologists are likely to
become increasingly involved in the multi-disciplinary care of
these patients. They should be familiar with the unique non-
Mendelian inheritance pattern and distinctive pathophysiology,
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the clinical spectrum of cardiac manifestations, and the challenges
of diagnosis and management in patients with mtDNA disease.

Clinical features
The manifestations of mtDNA disease vary from oligosymptomatic
states (e.g. type 2 diabetes mellitus or migraine) to complex syn-
dromes often involving neurological, ophthalmological, cardiologic-
al, gastroenterological, or endocrine features.4 Proximal skeletal
myopathy may be slowly progressive, while ophthalmological man-
ifestations, including ptosis, ophthalmoplegia, cataracts, and optic
atrophy, are common presenting symptoms. Central nervous
system involvement is often associated with more severe disease,
including deafness, migraine, epilepsy, ataxia, encephalopathy,
stroke, or dementia. Diabetes is common in patients with
mtDNA disease, while liver, renal, and other endocrinological ab-
normalities are more rarely described.

Clinical syndromes of mtDNA disease (Table 1), originally
described in individual families, have permitted investigations of
well-characterized groups of patients.5,7,8 However, it is now
recognized that many patients with mtDNA disease do not fit
into such clinical categories. Patients may present with features
suggestive of mtDNA disease, such as involvement of distant

organs (e.g. deafness and diabetes) or a family history of isolated
organ involvement [e.g. hypertrophic cardiomyopathy (HCM)].9

Mitochondrial genetics
Mitochondria are involved in essential cellular processes including
calcium signalling, apoptosis, and generation of reactive oxygen
species (ROS) but their principal function is adenosine triphso-
phate (ATP) synthesis via OXPHOS. The transfer of electrons
between respiratory chain enzyme complexes I– IV drives proton
transfer across the inner mitochondrial membrane, forming an
electro-chemical gradient that is utilized by complex V to generate
ATP. The mitochondrial genome encodes 22 transfer RNAs
(mt-tRNAs), 2 ribosomal RNAs (mt-rRNAs), and 13 polypeptides
that are all critical components of OXPHOS enzyme complexes.
All other proteins involved in mitochondrial function are
encoded by the nuclear genome. This bi-genomic control of the
mitochondrial proteome is an important feature of mitochondrial
biology.

Mitochondrial genetics are complex and display a number of
unique characteristics.10,11 Multiple copies of mtDNA exist
within each cell. In the general population, although a small
number of mtDNA molecules may contain mutations, their

Figure 1 Clinical features of mitochondrial DNA disease. Diverse organ systems can be affected in mitochondrial DNA disease either within
an individual or a family. Patterns of distant organ involvement (e.g. diabetes and deafness) or a relevant family history may prompt consideration
of a mitochondrial aetiology.
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proportion is usually so small (,1%) that the tissue can be
regarded as uniform for the normal mitochondrial genome (homo-
plasmy).4 In contrast, for most pathogenic mtDNA mutations, two
or more distinct mitochondrial genomes exist within the same
tissue at high percentage (heteroplasmy). Most mtDNA mutations
behave recessively, only manifesting when the proportion of
mutated mtDNA exceeds a threshold level, typically �60–90%
(Figure 2). Tissue mtDNA mutation load and threshold may
affect the onset and extent of clinical disease.12 The recognition
of pathogenic homoplasmic mtDNA mutations, which frequently
result in isolated organ phenotypes including cardiomyopathy,

emphasizes the fact that other genetic (e.g. expression of aminoa-
cyl tRNA synthetases) or environmental factors can modulate the
phenotype.9,13,14

Human mtDNA exhibits strict maternal inheritance. Clinical
disease exclusively in maternal relatives raises suspicion of
mtDNA disease, and genetic counselling is manifestly different to
that in nuclear genetic disorders. The nature of the defect also
affects the likelihood of maternal transmission such that single,
large-scale deletions are rarely transmitted from females to their
offspring, while point mutations are frequently transmitted.15

Indeed, during female germline development, the number of
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Table 1 Clinical syndromes associated with mitochondrial DNA mutations

Syndrome Principal clinical features Mitochondrial DNA mutation

CPEO External ophthalmoplegia, myopathy Single or multiple mtDNA deletions

Kearns-Sayre syndrome Pigmentary retinopathy, ataxia, cardiac conduction defects Single, large-scale mtDNA deletion

Leigh syndrome Subacute necrotizing encephalopathy, basal ganglia lesions Complex I, IV, and V gene mutations

LHON Acute or sub-acute visual loss Complex I gene mutations

MELAS Myopathy, encephalopathy, lactic acidosis, stroke-like episodes mt-tRNA gene mutations

MERRF Myoclonus, epilepsy, ataxia mt-tRNA gene mutations

NARP Neuropathy, ataxia, pigmentary retinopathy Complex V mutations

Pearson’s marrow-pancreas syndrome Sideroblastic anaemia, exocrine pancreatic insufficiency,
hepatopathy, nephropathy

Single, large-scale mtDNA deletion

CPEO, chronic progressive external ophthalmoplegia; LHON, Leber’s hereditary optic neuropathy; MELAS, myopathy, encephalopathy, and lactic acidosis with stroke-like
episodes; MERRF, mitochondrial encephaolopathy with ragged red fibres; mtDNA, mitochondrial DNA; NARP, neurogenic ataxia and retinitis pigmentosa.

Figure 2 Mitochondrial DNA mutations and patterns of cellular respiratory function. (A) In normal individuals, all cardiomyocytes contain
multiple copies of wild-type mitochondrial DNA (black circles, upper panel), with sequential cytochrome c oxidase/succinate dehydrogenase
histochemistry showing all cardiomyocytes as cytochrome c oxidase-positive (brown, lower panel). (B) In patients with heteroplasmic mito-
chondrial DNA mutations, different proportions of wild-type (black) and mutated mitochondrial DNA (red) are present in individual cardio-
myocytes (upper panel); cytochrome c oxidase/succinate dehydrogenase histochemistry reveals a mosaic pattern of cytochrome c
oxidase-deficient and cytochrome c oxidase-positive cardiomyocytes, with cellular respiratory deficiency only apparent when a threshold pro-
portion of mutated mitochondrial DNA is reached (lower panel). (C) In patients with homoplasmic mitochondrial DNA mutations, all cardi-
omyocytes contain multiple copies of mutated mitochondrial DNA (red, upper panel), with the majority of cells displaying cytochrome c
oxidase deficiency (blue, lower panel).
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mtDNA molecules within each oocyte is dramatically reduced
before being re-amplified to a final number .100 000. This
‘genetic bottleneck’ accounts for shifts in mtDNA mutation load
between generations and partly explains variations in clinical
disease severity.16

The mitochondrial genome acquires mutations at a rate
10–17-fold higher than nuclear DNA due to proximity to the
OXPHOS system and deficiency in DNA repair mechanisms.4

Owing to the continuous replicative nature of mtDNA, the pro-
portion of mutated mtDNA molecules can be increased by
clonal expansion, even in post-mitotic cells including cardiomyo-
cytes.17 Although the clinical importance of these acquired
mtDNA mutations in the general population is debated, in patients
possessing high levels of a mtDNA mutation, this process can lead
to profound changes in mtDNA mutation load and contribute to
clinical progression.

Cardiac disease
More than 250 different pathogenic mtDNA mutations have been
reported in humans, many in association with cardiac disease,
which ranges from cardiomyopathy to electropathy, including con-
duction disease and ventricular pre-excitation. This diversity and
the absence of a cardiac phenotype that is unique to patients
with mtDNA disease present challenges to the cardiologist.

Prevalence and natural history
The true prevalence of mtDNA-related cardiomyopathy is unknown
although, based on the prevalence of mtDNA disease and the fre-
quency of cardiac involvement, at least �1 in 10–15 000 of the
general population will be affected. Public databases of mtDNA
mutations associated with human disease exist and will be an import-
ant resource in determining prevalence.18,19 However, such data-
bases are currently not completely accurate as, owing to extensive
variability of the mitochondrial genome and a lack of adherence to
strict canonical criteria for determining pathogenicity, some non-
disease causing variants are listed. Challenges lie ahead with regard
to the analysis of such bio-informatic data.20–22

Natural history studies have demonstrated both the high preva-
lence of cardiac disease and the deleterious effects on patient
outcome of a cardiac presentation. A significant difference in sur-
vival to age 16 years was noted in 113 children with mitochondrial
disease (18 and 92%, respectively, in those with and without car-
diomyopathy).6 This result, in a cohort including patients with
mitochondrial and nuclear DNA mutations, has subsequently
been confirmed in other large paediatric cohorts.23,24 Adult
studies, in patients with mtDNA mutations exclusively, have estab-
lished the progressive nature of cardiac involvement,8,25,26 with im-
portant impacts on morbidity and early mortality.7,27 In common
with many newly recognized disorders, early reports of cardiac in-
volvement in mtDNA disease featured patients with severe pheno-
types. Family genetic screening has undoubtedly broadened the
spectrum of mtDNA disease to include more asymptomatic or oli-
gosymptomatic adults, perhaps limiting the applicability of early
studies. A recent study of 32 adult patients demonstrated that, al-
though cardiac involvement was apparent in 78% patients, minor
electrocardiogram (ECG) abnormalities represented the most

common manifestation, with cardiomyopathy present in 25%
patients.5 Progressive systolic dysfunction and high-grade atrio-
ventricular (AV) block did occur in a minority but the incidence
of severe cardiovascular complications was relatively low over a
median follow-up of 4 years. Large multi-centre prospective clinical
cohort studies are underway and will provide novel insights into
the natural history and response to intervention of adult
mtDNA disease.

Pathogenetic mechanisms
The molecular events linking mtDNA defects to cardiac dysfunc-
tion are poorly understood. Although several factors, including
rarity of the disorder, limited access to human cardiac tissue and
an absence of reliable animal models of mtDNA disease play a
role in limiting investigation, the weak nature of genotype–pheno-
type correlations is a critical factor. The development of cardio-
myocyte cell lines from patients with mtDNA disease using
inducible pluripotent stem cell technology will undoubtedly be
an important step forward in this area.

Early mechanistic insights developed from observation of pat-
terns of disease. Although patients with specific mtDNA mutations
may present with different cardiac phenotypes,25 and similar
cardiac involvement can occur in patients with different mtDNA
mutations,25,28 cross-sectional studies suggest patterns of cardiac
involvement do exist (Table 2). For example, cardiomyopathies,
often with a hypertrophic phenotype, are more frequently
reported in association with mt-tRNA gene mutations, while AV
block is a feature of Kearns-Sayre syndrome (KSS), which is com-
monly caused by single, large-scale deletions in mtDNA.5 The only
cardiac phenotype reported in association with the m.1555A.G
mt-rRNA gene mutation is a restrictive cardiomyopathy.29 Al-
though differential effects of mutations in mt-tRNA, mt-rRNA,
and polypeptide genes on mitochondrial transcription, translation,
and protein function may be expected, the mechanisms underlying
this apparent genotype–phenotype relationship are unclear. Tissue
specificity of mutation load is widely recognized as a factor in the
diverse clinical features of mtDNA disease generally; a similar phe-
nomenon occurring within, rather than between, tissues may be
equally important. Higher mutation load of a single, large-scale
mtDNA deletion has been reported in post-mortem AV nodal
and His-Purkinje system tissue than in contractile myocardium
from a patient with KSS, suggesting a reason for the apparent sen-
sitivity of the conduction system.30

Marked induction of mitochondrial biogenesis is a prominent
feature of end-stage mtDNA-related cardiomyopathy,31– 33 and
has been demonstrated in diverse tissues from patients with
mtDNA disease. Although in skeletal muscle this response can par-
tially compensate for OXPHOS dysfunction, experimental, and
clinical evidence suggests that it may have a detrimental effect in
cardiac muscle.34,35 Proliferation of intermyofibrillar mitochondria
mechanically interferes with sarcomeric function, contributing to
adverse cardiac remodelling.32,34 Induction of genes involved in
mitochondrial biogenesis and fatty acid oxidation (FAO) in
mtDNA-related cardiomyopathy increases oxygen consumption
and contrasts with other pathologies, including left ventricular
hypertrophy (LVH), where cardiac energy metabolism shifts from
FAO to glucose oxidation to reduce oxygen consumption.36
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Moreover, in the absence of induction of antioxidants, an increased
mass of mutated mitochondria causes increased ROS.32,37 The
pathogenetic role of ROS has been confirmed in animal models
of nuclear mitochondrial disease, but data on mtDNA disease
are lacking.38,39

Cardiomyopathy
Hypertrophic cardiomyopathy/left ventricular
hypertrophy
Hypertrophic remodelling is the dominant pattern of cardiomyop-
athy in all forms of mitochondrial disease,5,28,40,41 occurring in up
to �40% patients,5,6 and can mimic HCM. The prevalence of
HCM within the general population is �1 in 500 yet sarcomeric
protein mutations are identified in only �60% of HCM patients.
mtDNA-related cardiomyopathy represents a potential pheno-
copy of HCM and may partly account for this discrepancy similar

to single gene disorders that have already been identified in
HCM cohorts such as Anderson-Fabry and glycogen storage
diseases.42,43 Cardiologists should be alert to the presence of
extra-cardiac features (Figure 1), or possible maternal inheritance
patterns, in this population.

Point mutations in mtDNA can cause sporadic or maternally
inherited cardiomyopathy, which may be the only or presenting
feature. Recent cohort studies using echocardiography have iden-
tified LVH in 38–56% patients harbouring the m.3243A.G muta-
tion and have revealed a correlation between skeletal muscle
mutant load and indexed left ventricular mass.28,41 Patients with
high mutation load may therefore be at increased risk of develop-
ment of cardiomyopathy. Left ventricular hypertrophy is recog-
nized in patients with other mtDNA mutations including several
mt-tRNA genes (e.g. m.8344A.G in MTTK, m.4269A.G and
m.4317A.G in MTTI) and infrequent polypeptide genes (e.g.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 Cardiac phenotypes associated with pathogenic mtDNA mutations

Gene mtDNA mutation

Electropathy Cardiomyopathy

Ventricular
pre-excitation

Conduction
disease Hypertrophic Dilated Restrictive

Left ventricular
non-compaction Histiocytoid

Common

MTTL1 m.3243A.G ++ + ++ + + + 2

MTTI m.4300A.G 2 2 ++ + 2 2 2

MTTK m.8344A.G ++ + ++ ++ 2 2 +
MTND4 m.11778G.A ++ 2 + 2 2 2 2

single, large-scale
mtDNA deletion

2 ++ 2 + 2 2 2

Rare

MTRNR1 m.1555A.G 2 2 2 2 + 2 2

MTTV m.1624C.T 2 2 + + 2 2 2

MTTL1 m.3252T.C 2 + 2 + 2 2 2

m.3260A.G + 2 + + 2 2 2

m.3303T.C 2 + + + 2 2 2

MTND1 m.3337G.A 2 2 + + 2 2 2

m.3460G.A + 2 + 2 2 + 2

MTTI m.4269A.G 2 2 2 + 2 2 2

m.4277T.C 2 2 + 2 2 2 2

m.4284G.A 2 + + + 2 2 2

m.4317A.G 2 2 + + 2 2 2

m.4320C.T 2 2 + 2 2 2 2

MTTK m.8363G.A 2 2 + + 2 2 2

MTATP8/
MTATP6

m.8528T.C 2 2 + 2 2 2 2

m.8529G.A 2 2 + 2 2 2 2

MTATP6 m.8993T.G 2 2 + 2 2 2 2

MTTG m.9997T.C 2 2 + 2 2 2 2

MTND4 m.11778A.G 2 2 2 + 2 2 2

MTTL2 m.12297T.C 2 2 2 + 2 2 2

MTND5 m.13513G.A + + 2 2 2 2 2

MTND6 m.14484T.C 2 2 2 + 2 2 2

MTCYB m.14849T.C 2 2 + 2 2 2 2

m.15498G.A 2 2 2 2 2 2 +

Pathogenic mitochondrial DNA mutations were identified from a search of online databases,18,19 together with the cumulative experience of the authors, excluding rare single
nucleotide polymorphisms, and haplogroup markers. mtDNA, mitochondrial DNA; ++, reported in cross-sectional cohort study with ≥10% frequency; +, reported in single
case report(s)/family series only; 2, not reported.
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m.8993T.G in MTATP6 and m.8528T.C in the MTATP6/MTATP8
overlap region).25,44 –47 Indeed the mt-tRNA genes appear to be a
particularly sensitive location in the mitochondrial genome for
mutations associated with the hypertrophic phenotype (Table 2).
Although LVH is reported in patients with mitochondrial disease
due to mutations in genes encoding mt-rRNAs and polypeptides,
it appears to be a much less common clinical finding in this
subset of patients than in patients with mt-tRNA gene mutations.
Homoplasmic mtDNA mutations, which characteristically cause
organ-specific phenotypes, have also been reported in patients
with cardiac disease.9,14 The homoplasmic m.4300A.G mutation,
in the mt-tRNAIle (MTTI) gene has now been identified in several
families with isolated mtDNA-related cardiomyopathy and may
play a more important role in inherited cardiomyopathy than pre-
viously appreciated, although this is yet to be confirmed through
systematic analysis of HCM cohorts.9

There are important differences in the cardiac phenotype and
natural history of HCM and mtDNA-related cardiomyopathy.
Left ventricular outflow tract (LVOT) obstruction is rarely
observed in mtDNA-related cardiomyopathy, yet it appears that
the likelihood of progression to ventricular dilatation and heart
failure is higher than in HCM.41 A longitudinal study with 6.9
years mean follow-up duration demonstrated that the degree of
LVH correlated positively with chamber dilatation and negatively
with systolic function in patients harbouring the m.3243A.G
mutation.26 Heart failure with ventricular dilatation and impaired
systolic function has been reported in patients with LVH and the
m.3243A.G or m.8344A.G mutations.25,26

Dilated cardiomyopathy
Although dilated cardiomyopathy (DCM) can be the initial pattern
of cardiac involvement in mtDNA disease,48 it more commonly
represents progression of pre-existing hypertrophy with chamber
dilation and systolic dysfunction.25,49,50 One patient with DCM
was identified among 17 patients with mitochondrial disease,
while a recent study of 18 patients with the m.8344A.G mutation
confirmed DCM in 22% patients.25,27 Dilated cardiomyopathy is
rarer than the hypertrophic phenotype in association with other
mt-tRNA point mutations, including m.3243A.G, m.4269A.G,
and m.4317A.G,45,46,48 and appears to be an infrequent and
late phenomenon in KSS, described in only 2% of published
patients.51,52

Due primarily to phenotypic rarity, data are lacking concerning
natural history in patients with mtDNA disease and DCM pheno-
type. Mouse models of DCM and mitochondrial disease do
exist, 39,53,54 but do not feature mtDNA point mutations or
single deletions and have little direct relevance to patients with
these specific mutations. Cardiac symptoms may be limited in
patients with multisystem mtDNA disease due to progressive
skeletal myopathy restricting physical activity. However, limited
echocardiographic studies in adults suggest that progression of
DCM may be slow and, at least in some patients, responsive to
conventional heart failure therapies.25,48

Rarer cardiomyopathies
Restrictive cardiomyopathy is a rare presentation of cardiac in-
volvement in mtDNA disease but has been reported in association

with maternally inherited deafness and diabetes due to the
m.3243A.G mutation55 and as the only clinical finding in a
subject with the m.1555A.G mutation.29

Left ventricular non-compaction (LVNC) is caused by abnormal
compaction of myofibrils during cardiac development and results in
progressive ventricular dilatation and systolic dysfunction. Differen-
tiation from normal variants can be difficult, diagnosis remains con-
troversial, and the natural history is unclear.56,57 Mutations in
sarcomeric or ion channel genes account for only a small propor-
tion of LVNC cases.58 Left ventricular non-compaction has recent-
ly been recognized as a cardiac manifestation of mtDNA disease,
particularly in paediatric populations, and most commonly as
part of multisystem disease.6,59 A recent report of an association
between a m.3398T.C MTND1 variant and LVNC supports the
assertion that mtDNA mutations may be important in
pathogenesis.60

Histiocytoid cardiomyopathy is another rare cardiomyopathy
characterized by pathognomonic histiocyte-like cells within the
subendocardium. Reported cases frequently document aggregates
of structurally abnormal mitochondria,61 and have been linked to
the m.8344A.G mutation and a mutation in the MTCYB gene
that encodes an complex III enzyme subunit.62,63

Electropathy
Conduction system disease and bradyarrhythmias
Conduction system disease occurs commonly in patients with
mtDNA disease, and prevalence increases with age as in the
general population. Atrio-ventricular block forms part of the diag-
nostic criteria of KSS such that a review of the published literature
suggests a prevalence of conduction system disease of 84%.51

Conduction system disease occurs, albeit less commonly, in
�5–10% of patients in other forms of mtDNA disease with AV
or intra-ventricular conduction disturbances reported in associ-
ation with the m.3243A.G and m.8344A.G mutations.25,28

Although mechanisms are currently unknown, differences in muta-
tion load or in sensitivity of different cardiac cell types to different
mtDNA mutations (threshold) may account for this phenotypic
discrepancy.30

Importantly in patients with neuromuscular disease, including
mtDNA disease, progression to high-grade AV block is often un-
predictable necessitating prompt recognition of any conduction
system disease and consideration of early intervention.64,65 Early
deaths in patients with KSS may be directly attributable to infra-
nodal heart block.66 Risks of progression and clinical outcomes
associated with conduction system disease in other forms of
mtDNA disease are unknown.

Ventricular pre-excitation and tachyarrhythmias
Ventricular pre-excitation and Wolff–Parkinson–White syndrome
may be more common in patients with mtDNA disease than in the
general population. First observed in association with Leber’s her-
editary optic neuropathy, ventricular pre-excitation has been
reported in 10% patients and 8% maternal relatives compared
with 1.6% of paternal relatives.67 Although supported by several
studies, the failure of some groups to replicate this finding has sti-
mulated debate as to whether these results represent chance find-
ings or evidence of a direct aetiological link.40 Evidence in support
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of the latter is provided by reports of ventricular pre-excitation oc-
curring in association with the m.8344A.G and m.3243A.G
mutations, where manifest pre-excitation was observed in
3–27% of patients.25– 27,68 Although ventricular pre-excitation
has been reported in association with mtDNA-related cardiomy-
opathy,69 this combination does not appear as common as in
other forms of inherited disease such as that caused by PRKAG2
gene mutations.70 Symptomatic patients with mtDNA disease
and manifest ventricular pre-excitation have undergone successful
radio-frequency ablation (RFA) of accessory pathways, but natural
history remains unclear and invasive management of asymptomatic
patients is controversial.

Supraventricular and ventricular tachyarrhythmias have both
been reported in patients with mtDNA disease, particularly in chil-
dren and in those with cardiomyopathy.6,71 Although prolongation
of the QT interval has been identified in some patient groups,72 de-
termination of the true incidence of this finding and the risk of ven-
tricular arrhythmia requires larger longitudinal studies.

Diagnosis
The diagnosis of mtDNA disease is complex and requires a multi-
disciplinary approach (Figure 3). A maternal inheritance pattern or
the presence of extra-cardiac features of mtDNA disease may raise
suspicion of the diagnosis. Although these extra-cardiac manifesta-
tions include common or non-specific features (Figure 1), particular
patterns of organ involvement (e.g. diabetes and deafness) should
alert the cardiologist to the possibility of mtDNA disease.

Molecular genetic testing
Emerging evidence supports screening of peripheral lymphocytes
or urine samples for mtDNA mutations (e.g. 3243A.G,
m.4300A.G) in specific clinical scenarios. In patients with unex-
plained LVH not fulfilling standard criteria for HCM, symmetrical
hypertrophy and the absence of LVOT obstruction may favour
an alternative diagnosis, such as mtDNA-related cardiomyop-
athy.73 Sequencing of the mitochondrial genome may be an appro-
priate next step in investigation. However, with more pronounced
variation than the nuclear genome, challenges exist in the deter-
mination of pathogenesis.21 Comparison with published databases
is necessary but true determination of the pathogenicity of novel
mtDNA mutations is complex and reliant on canonical criteria in-
volving segregation of mutation within tissues and families, evolu-
tionary conservation of affected nucleotides or amino acids, and
occasionally biochemical studies in cultured cells.

Invasive biopsy analysis
Although molecular genetic testing may expedite diagnosis of mito-
chondrial disease in some patients, in many, particularly those with
novel mutations, analysis of invasive biopsy tissue remains important.
Pathological studies of the myocardium are available from a small
number of patients with mtDNA-related cardiomyopathy.9,32

Common but relatively non-specific histological findings are diffuse
cellular hypertrophy with swollen, often vacuolated, cardiomyocytes
(Figure 4). Interstitial fibrosis varies but myofibre disarray, typical of
HCM, is absent and ultrastructural examination reveals proliferation
of abnormal mitochondria with sarcomere displacement.74 On

cardiac frozen sections, the sequential assay of cytochrome c
oxidase (COX)/succinate dehydrogenase (SDH) activities can dem-
onstrate the typical mosaic appearance of COX deficiency (Figure 4).
Skeletal muscle biopsy is a low-risk procedure that can provide
similar evidence for mtDNA disease, even in patients without evi-
dence of myopathy. However, the tissue specificity of biochemical
defects due to mtDNA mutations is such that in isolated or prom-
inent cardiomyopathy, examination of endomyocardial biopsy
(EMB) tissue may be relevant. This procedure is associated with a
serious complication rate of �1% and remains controversial.75

International guidelines suggest pathological methodologies and clin-
ical scenarios where EMB can reasonably be performed, including in
the investigation of possible mtDNA-related cardiomyopathy.74,76

Indeed, in such patients, opportunistic assessment of cardiac tissue
obtained during other invasive cardiac procedures (e.g. ventricular
assist device implantation) should be considered.77 A recent consen-
sus statement supports attempts to maximize the diagnostic utility
of such specimens.78

Cardiac investigations
Cardiac involvement in mtDNA disease can remain asymptomatic
until an advanced stage is reached, often due to limited mobility of
patients. Although the utility of screening is debated in mtDNA
disease given variability in clinical course, best practice supports
a high index of suspicion and instigation of regular surveillance.
Multi-disciplinary care is essential given potential involvement of
organs that can cause symptoms associated with cardiac disease.
Exercise intolerance, for example, may result from skeletal myop-
athy or respiratory muscle weakness, as well as cardiomyopathy or
arrhythmia. A cardiologist with an understanding of mtDNA
disease should be involved in the care of all patients with con-
firmed cardiac involvement (Figure 5).

In common with a number of other rare neuromuscular or
metabolic conditions, there are few clear recommendations for
disease management. There is general agreement that all patients
with mtDNA disease, unaffected carriers of a known mutation,
and obligate carriers should have baseline cardiac assessment.
This should include clinical history and examination, 12-lead ECG
and an assessment of cardiac structure and function, typically echo-
cardiography, as a minimum standard in all forms of mtDNA
disease as, although specific cardiac phenotypes are associated
with different mtDNA mutations (e.g. single, large-scale mtDNA
deletion and AV block), diverse cardiac phenotypes can occur. Al-
though the initiation, nature, and frequency of cardiac screening
has not been subject to specific study, many experienced centres
use an initial 12-month interval for repeated ECG and functional
assessments, consistent with guidelines for HCM and different
forms of neuromuscular disease, with extension of this interval
to 3–5 years if normal findings are repeated (Figure 5). Magnetic
resonance imaging (MRI) may reveal cardiac involvement when
standard evaluation is unremarkable,79 and permits imaging
without reliance on acoustic windows, often absent in patients
with skeletal or respiratory muscle disease. Cardiac MRI also
permits accurate tissue characterization using late gadolinium en-
hancement,48 an area where ongoing studies may reveal important
features of mtDNA-related cardiomyopathy. Several lines of
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evidence suggest a central role of disrupted energy metabolism in
HCM and phenocopies, including mtDNA disease.80,81 Abnormal
cardiac bioenergetics have been demonstrated in patients with
m.3243A.G mutation and structurally normal hearts on echocar-
diography.82 Contemporaneous assessments of myocardial bio-
energetics, fibrosis, and myocardial deformation, using cardiac
tagging may permit early identification of patients at risk of devel-
oping cardiomyopathy. The preferred approach may therefore
involve both cardiac MRI and echocardiography at diagnosis to

establish a baseline, with subsequent screening performed with
echocardiography alone. However, larger longitudinal studies are
necessary to clarify the role of such investigations in patients
with mtDNA disease.

Management
Although clinical trials are underway, a recent Cochrane review
suggests that there is no current drug treatment that has shown

Figure 3 Algorithm for investigation of mitochondrial DNA disease. Ideally, mitochondrial disease should be assessed in the most affected
tissue. However, this is often not possible and skeletal muscle biopsy can serve as an alternative even without clinical myopathy. Histochemical
analysis, although not always possible due to tissue availability, can direct genetic investigation but it may be necessary to perform biochemical
or molecular genetic analysis directly (dashed arrows). mtDNA, mitochondrial DNA; PCR, polymerase chain reaction.
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clear clinical benefit in the primary outcome in patients with
mtDNA disease.83 Resistance and endurance exercise training pro-
grammes both improve symptoms in mtDNA disease but effects
on cardiac structure and function are currently unknown, and ben-
efits are lost on cessation of exercise with deconditioning.84,85

Patients with mtDNA disease remain at risk of common acquired
cardiac disorders and current guidelines to address conventional
risk factors should be followed.

Cardiomyopathy
Recommendations for the management of hypertrophic remodel-
ling in mtDNA disease are reliant on clinical studies in HCM and
LVH, with interventions based on reasonable clinical assumptions
of similar treatment effects, together with reports of successful
outcomes.48,86,87 Non-dihydropyridine calcium channel antagonists
and b-blockers are recommended in symptomatic patients or
those with asymptomatic severe LVH in HCM.73,88 b-blockers,
angiotensin-converting enzyme (ACE) inhibitors, and angiotensin
receptor blockers have been demonstrated to reduce LVH in
the general population. Given the progressive nature of hyper-
trophic remodelling in mtDNA disease, these drugs are often
started with the first appreciation of LVH.

Standard optimal medical therapies for heart failure with systolic
dysfunction are used in mtDNA disease, with reports of both clin-
ical improvement and progression despite therapy.48,79 Angiotensin-
converting enzyme inhibitors have been shown to slow the onset
and progression of cardiomyopathy associated with Duchenne mus-
cular dystrophy, and reduce mortality.89 Complex device therapy
including the use of implantable cardioverter defibrillators (ICDs)
and cardiac resynchronization therapy should be considered in
patients with mtDNA disease provided conventional guidelines are
met, including life expectancy of .1 year. Cardiac transplantation,
although controversial in metabolic disease with potential multisys-
tem involvement, has been performed successfully in patients with
mtDNA disease.86,87,90,91 Clinical outcomes appear to be dependent
on the extent of extra-cardiac involvement in addition to complica-
tions of transplantation itself, although data are lacking.

Electropathy
International guidelines recommend permanent pacemaker (PPM)
implantation at an earlier stage of conduction system dysfunction
in patients with neuromuscular disease, including mtDNA
disease, than in the general population due to unpredictable pro-
gression.64,65 In patients with neuromuscular disease, any degree

Figure 4 Histological, histochemical, and ultrastructural features of mitochondrial DNA-related cardiomyopathy. (A) Histological examination
of explanted left ventricular tissue from a patient with a homoplasmic mt-tRNAIle mutation reveals enlarged cardiomyocytes with prominent
cytoplasmic vacuolization (H&E, 20×). (B) Vacuoles contain lipid droplets that stain with Oil Red O (40×). (C) Sequential cytochrome c
oxidase/succinate dehydrogenase histochemistry shows several cytochrome c oxidase-deficient cardiomyocytes (blue) with scattered cyto-
chrome c oxidase-positive cells (brown, 40×). (D) Ultrastructural analysis reveals proliferation of polymorphic mitochondria and displacement
of sarcomeres (uracyl acetate lead citrate, 3150×).
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of AV block, including first-degree block, and/or any degree of fas-
cicular block are class IIb indications for PPM implantation, irre-
spective of symptoms. Such prophylactic PPM implantation,
however, remains controversial. Severe surface ECG abnormalities
(PR interval .240 ms, QRS duration .120 ms, rhythm other than

sinus, or high-grade AV block) and an HV interval .70 ms are
high-risk features for sudden death in myotonic dystrophy.92,93

Recent evidence suggests that an invasive strategy to assess AV
conduction in those with high-risk non-invasive features is asso-
ciated with improved survival.94 Many centres use similar criteria

Figure 5 Clinical algorithm for cardiac screening and management in mitochondrial DNA disease. International guidelines support early inter-
vention for conduction disease in patients with mitochondrial DNA disease.64,65 ACE-I, angiotensin-converting enzyme inhibitor; ARB, angio-
tensin receptor blocker; AV, atrio-ventricular; CPEO, chronic progressive external ophthalmoplegia; DCM, dilated cardiomyopathy; EPS,
electrophysiological study; HCM, hypertrophic cardiomyopathy; KSS, Kearns-Sayre syndrome; LVH, left ventricular hypertrophy; LVOTO,
left ventricular outflow tract obstruction; mtDNA, mitochondrial DNA; PPM, permanent pacemaker; *many experienced centres regard
rapid progression of conduction disease, severe surface ECG abnormalities, and/or HV interval .70 ms as high-risk features for progression
to AV block.92,93

M.G.D. Bates et al.3032



in patients with mtDNA disease, particularly KSS. Although sudden
deaths have been reported in patients with functioning PPMs and a
variety of neuromuscular diseases, there are no data to guide ICD
implantation in patients with mtDNA disease out with standard
primary and secondary indications.

Conventional medications for symptomatic supraventricular
arrhythmias can be used in patients with mtDNA disease. Ven-
tricular pre-excitation can lead to symptomatic re-entrant tachyar-
rhythmia in patients with mtDNA disease and is, in other patients,
associated with a small risk of sudden cardiac death. Consistent
with international guidelines, and following non-invasive assess-
ment including an exercise ECG, consideration should therefore
be given to invasive electrophysiological study (EPS) in all patients
with mtDNA disease and non-intermittent pre-excitation.95,96

Asymptomatic pre-excitation is a class IIa indication for EPS+
RFA in adults and class IIb in children .5 years of age, but class
III (i.e. not indicated) in those ,5 years of age.

Conclusions
Cardiac involvement in mtDNA disease is common and an import-
ant predictor of morbidity and early mortality. Specific disease-
modifying therapies do not yet exist, and data are scarce concern-
ing natural history, screening, and management. Comprehensive
clinical algorithms for cardiac disease are vitally needed, and con-
siderable international collaborative efforts will be required to
achieve this aim. Nevertheless, cardiologists will become more
involved in the care of patients with mtDNA disease as recognition
of these disorders increases. Appreciation of the clinical spectrum
of cardiac involvement in mtDNA disease and risks of disease pro-
gression will enable appropriate input to the multi-disciplinary care
of patients.
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