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Abstract: In a colonoscopy, accurate computer-aided polyp detection and segmentation can help
endoscopists to remove abnormal tissue. This reduces the chance of polyps developing into cancer,
which is of great importance. In this paper, we propose a neural network (parallel residual atrous
pyramid network or PRAPNet) based on a parallel residual atrous pyramid module for the seg-
mentation of intestinal polyp detection. We made full use of the global contextual information of
the different regions by the proposed parallel residual atrous pyramid module. The experimental
results showed that our proposed global prior module could effectively achieve better segmen-
tation results in the intestinal polyp segmentation task compared with the previously published
results. The mean intersection over union and dice coefficient of the model in the Kvasir-SEG dataset
were 90.4% and 94.2%, respectively. The experimental results outperformed the scores achieved by
the seven classical segmentation network models (U-Net, U-Net++, ResUNet++, praNet, CaraNet,
SFFormer-L, TransFuse-L).

Keywords: medical image analysis; semantic segmentation; colonoscopy; polyp segmentation; deep
learning; health informatics

1. Introduction

Colorectal cancer is widely believed to strike middle-aged adults and is a cancer
with one of the highest death rates globally [1,2]. Polyps grown in the gut are one of the
early symptoms of this cancer. If not removed in a timely manner, the polyps can cause
colon cancer [3,4]. Therefore, detecting and diagnosing intestinal polyps is one of the
primary methods of avoiding colorectal cancer [5]. Currently, clinicians mostly depend
on an endoscopy to detect and diagnose polyps [6]. However, an endoscopy occasionally
neglects cancer-causing polyps, mainly due to the lack of experience of the physicians. As
a result, it is critical to build a computer-aided system [7,8] that can precisely detect the
positions of polyps in the endoscopic video stream [9,10] and, if the clinician neglects the
polyp area, the system can operate another round of scanning, redirecting the clinician to
analyze the lesion information in this location.

There are currently only a few public datasets of intestinal polyps available for model
training and testing. Polyps exist in various shapes and colors as well as textures [11].
As shown in Figure 1, the minute difference between polyps and the normal ambient
environment or partially diseased areas covering the feces is the main challenge in the
detection of polyps. In this paper, we used the open datasets of Kvasir-SEG [12] and
CVC-ClinicDB and performed relevant experiments
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Figure 1. An example of polyp pictures from the Kvasir-SEG dataset, together with their accompa-
nying masks. The first and third columns show the original image; the second and fourth columns 
show the accompanying masks. 

With the expanding utilization and further development of deep learning, a growing 
number of deep learning-based segmentation methods have recently been proposed [13–
17]. Although these methods have made progress, they can only label the detected polyps 
using bounding boxes and cannot effectively determine the polyp boundary contours, re-
sulting in a poor user experience. Brandao et al. [18] proposed a pre-trained model based 
on an FCN network to identify and segment polyps to solve this problem. Akbari et al. 
[19] proposed an advanced FCN-based network to further improve polyp segmentation 
accuracy. 

Since a U-shaped network architecture [14,20–23] was proposed, its proposed codec 
structure has been widely used in the field of medical image segmentation. Many newly 
proposed image segmentation networks continue to follow the core design ideas of the U-
network architecture to improve the performance of medical image segmentation tasks 
by adding new modules or incorporating other design concepts. U-Net++ and ResUNet++ 
[17] were developed based on the U-Net network structure. Although they achieve ideal 
results in the polyp segmentation task, these methods focus on segmenting the overall 
contour of the polyp and tend to ignore the constraint of the polyp region boundaries, 
resulting in polyp segmentation with rough edges, which is crucial for improving the per-
formance of segmentation. Moreover, the training process of these networks requires a 
significant amount of time and is difficult to converge. 

After Vaswani et al. [24] proposed transformer architecture in 2017, an increasing 
number of models based on transformer architecture have been proposed for medical im-
age segmentation with proficient results in recent years [25,26]. However, the transformer 
loses the location information of the original image when converting the polyp image into 
a word vector for the analysis. The position information is crucial for the polyp segmen-
tation task. Transformer architecture is inferior to a fully convolutional network in the 
local information acquisition of polyp images. The transformer model is a combination of 
a few residual modules and layer normalization modules. The most common transformer 
models today use the layer normalization module, which is located between two residual 
modules. Therefore, the final output layer has no direct connection path to the previous 
transformer layer and the gradient flow is blocked by the layer normalization module, 
which often leads to the problem of disappearing gradients in the top layer during the 
model training. 

Inspired by a fully convolutional network structure [18,19,27–29] and a residual net-
work structure [30], in this paper we present a novel deep neural network model for the 
polyp segmentation task: the parallel residual atrous pyramid network (PRAPNet). We 
used the residual network as our backbone network for extracting the common features. 
The ResNet50 network was used due to computing resources and the operation time. 
Atrous convolution [31] has previously shown its prominence in obtaining global contex-
tual information. To further explore the information contained in each region of the image, 

Figure 1. An example of polyp pictures from the Kvasir-SEG dataset, together with their accompa-
nying masks. The first and third columns show the original image; the second and fourth columns
show the accompanying masks.

With the expanding utilization and further development of deep learning, a growing
number of deep learning-based segmentation methods have recently been proposed [13–17].
Although these methods have made progress, they can only label the detected polyps using
bounding boxes and cannot effectively determine the polyp boundary contours, resulting in
a poor user experience. Brandao et al. [18] proposed a pre-trained model based on an FCN
network to identify and segment polyps to solve this problem. Akbari et al. [19] proposed
an advanced FCN-based network to further improve polyp segmentation accuracy.

Since a U-shaped network architecture [14,20–23] was proposed, its proposed codec
structure has been widely used in the field of medical image segmentation. Many newly
proposed image segmentation networks continue to follow the core design ideas of the U-
network architecture to improve the performance of medical image segmentation tasks by
adding new modules or incorporating other design concepts. U-Net++ and ResUNet++ [17]
were developed based on the U-Net network structure. Although they achieve ideal results
in the polyp segmentation task, these methods focus on segmenting the overall contour
of the polyp and tend to ignore the constraint of the polyp region boundaries, resulting
in polyp segmentation with rough edges, which is crucial for improving the performance
of segmentation. Moreover, the training process of these networks requires a significant
amount of time and is difficult to converge.

After Vaswani et al. [24] proposed transformer architecture in 2017, an increasing
number of models based on transformer architecture have been proposed for medical image
segmentation with proficient results in recent years [25,26]. However, the transformer loses
the location information of the original image when converting the polyp image into a
word vector for the analysis. The position information is crucial for the polyp segmentation
task. Transformer architecture is inferior to a fully convolutional network in the local
information acquisition of polyp images. The transformer model is a combination of a few
residual modules and layer normalization modules. The most common transformer models
today use the layer normalization module, which is located between two residual modules.
Therefore, the final output layer has no direct connection path to the previous transformer
layer and the gradient flow is blocked by the layer normalization module, which often
leads to the problem of disappearing gradients in the top layer during the model training.

Inspired by a fully convolutional network structure [18,19,27–29] and a residual net-
work structure [30], in this paper we present a novel deep neural network model for the
polyp segmentation task: the parallel residual atrous pyramid network (PRAPNet). We
used the residual network as our backbone network for extracting the common features.
The ResNet50 network was used due to computing resources and the operation time.
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Atrous convolution [31] has previously shown its prominence in obtaining global contex-
tual information. To further explore the information contained in each region of the image,
we designed a new parallel residual atrous pyramid module (PRAP Module). To further
refine the segmentation contour, we applied an attention module [24] and a conditional
random field [32]. Table 1 presents the advantages and disadvantages of the model pro-
posed in this paper and the current state-of-the-art models. The main contributions of this
paper are as follows.

(1) We offer a novel parallel residual atrous pyramid module for accurate polyp seg-
mentation. Including this module in the FCN-based pixel-level intestinal polyposis
prediction framework allows for a more accurate and precise segmentation of the
intestinal polyp area, which can greatly enhance the segmentation results when com-
pared with other state-of-the-art approaches. Our proposed improvement can make
an effective use of a tiny quantity of picture data.

(2) A practical system is established for the intestinal polyp segmentation task that
includes all the key implementation details of the method in this paper.

Table 1. Strengths and weaknesses of the current state-of-the-art models and the model proposed in
this paper.

Method Strength Weakness

SFFormer-L [24] These transformer-based models have the perceptual field
of the entire image and can take advantage of global

contextual information

These models are not as successful at acquiring local
information as CNNs and do not take full advantage of the

local information on different scalesTransFuse-L [25]

U-Net [14]
These models take full advantage of global contextual

information and enhance the perception of local
contextual information

These network models do not take into account the balance
between global and multi-scale information and there is a large

number of repetitive operations
U-Net++ [33]

ResUNet++ [17]

PraNet [34] These two models fully exploit the edge information using
the reverse attention mechanism, making the segmentation

results appear with fine edges

These two network models mainly focus on the edge
information of polyps and do not fully utilize the contextual

information of different regionsCaraNet [32]

PRAPNet
The model proposed in this paper fully takes into account

the global contextual information and multi-scale
contextual information of different regions

Due to the use of a two-branch architecture in the proposed
decoding module, additional computation may be added by

channel redundancy

The paper is organized as follows. Section 2 details the methodology proposed in
this paper, Section 3 presents the experiments and results, and Section 4 discusses the
experimental results. Finally, the conclusions are given in Section 5.

2. Methods
2.1. Proposed Network Structure

The PRAPNet architecture was based on fully convolutional neural network archi-
tecture. A pre-trained residual network, ResNet50, was employed in the network coding
section to encode the characteristics of the intestinal polyp images. The input image size
was 480 × 480 pixels and the output feature map size was 2048 × 60 × 60 pixels. The
feature map was then inputted into the parallel residual atrous pyramid module to obtain
another feature map that aggregated different regional context information and further
global information. The segmentation results were refined by the attention block and
conditional random field. Figure 2 depicts the structure of the network model described in
this paper.
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Figure 2. The parallel residual atrous pyramidal network architecture proposed in this paper. 
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especially with higher layers. As a result, many networks are unable to properly exploit 
the overall context information to improve the model performance. Therefore, we present 
an efficient overall prior module to address this issue. 

The training complexity of a neural network grows as the number of network layers 
increases. Simultaneously, during the network training phase, the network model will de-
generate [15,30]. Previous published research presented a residual architecture to reduce 
the possibility of network model degradation during training, which enhanced channel 
dependency whilst lowering the computing cost. This inspired us to propose the model 
introduced in this paper. 

Although low-level features contribute less to performance, they demand more pro-
cessing resources than high-level features due to their higher spatial resolution. Hence, 
we created a branch to extract a greater number of high-level characteristics in this mod-
ule, as shown in Figure 3. A squeeze and excitation unit [33] was also applied to improve 
the feature encoding to fully exploit the obtained overall information. 

A pyramid convolution can obtain the features from each layer of the image and this 
overall prior design can effectively obtain the context information from each area in the 
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lution in the parallel residual atrous pyramid module proposed in this paper. As shown 
in Figure 3, this branch used four convolution kernels of different scales to fuse the fea-
tures. The number of parallel atrous convolutional layers could be adjusted according to 
the various needs of the experiments. To ensure the weight of the overall features, a 1 × 1 

Figure 2. The parallel residual atrous pyramidal network architecture proposed in this paper.

2.2. Parallel Residual Atrous Pyramid Model

Current mainstream medical image segmentation networks usually rely on U-Net
and U-Net-derived networks (e.g., U-Net++ and ResUNet). These models are essentially
encoder–decoder frameworks and the usual practice is to concatenate the multi-level
features without fully exploiting the contextual information contained in each region of
the image. For medical images, the differences between the background area and the
area of interest are not very obvious. This problem becomes more prominent in intestinal
endoscopy images. The intestinal polyp area and the background area are very similar and
are difficult to distinguish. Thus, the intestinal context information of various regions of
the polyp images becomes particularly important for the accurate identification of polyps.
Considering the above-mentioned situation, improving the ability of a model to identify
intestinal polyps is closely related to whether the model can fully utilize the contextual
information and the overall body information obtained by the receptive field of the model.

The size of the receptive field of a deep neural network can roughly represent to what
extent the researchers can utilize the contextual information. Although the theoretical
receptive field of ResNet [30] is already larger than the input picture, previously reported
results [34] indicate that the empirical receptive field of a CNN is substantially smaller,
especially with higher layers. As a result, many networks are unable to properly exploit
the overall context information to improve the model performance. Therefore, we present
an efficient overall prior module to address this issue.

The training complexity of a neural network grows as the number of network layers
increases. Simultaneously, during the network training phase, the network model will
degenerate [15,30]. Previous published research presented a residual architecture to reduce
the possibility of network model degradation during training, which enhanced channel
dependency whilst lowering the computing cost. This inspired us to propose the model
introduced in this paper.

Although low-level features contribute less to performance, they demand more pro-
cessing resources than high-level features due to their higher spatial resolution. Hence, we
created a branch to extract a greater number of high-level characteristics in this module,
as shown in Figure 3. A squeeze and excitation unit [33] was also applied to improve the
feature encoding to fully exploit the obtained overall information.
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A pyramid convolution can obtain the features from each layer of the image and
this overall prior design can effectively obtain the context information from each area in
the intestinal polyp image. An overall prior branch was designed based on a pyramid
convolution in the parallel residual atrous pyramid module proposed in this paper. As
shown in Figure 3, this branch used four convolution kernels of different scales to fuse the
features. The number of parallel atrous convolutional layers could be adjusted according
to the various needs of the experiments. To ensure the weight of the overall features, a
1 × 1 convolutional layer was added after each pyramid layer to reduce the obtained
feature dimension to 1/4 of the original feature dimension. All pyramid features were then
bilinearly upsampled to restore them to the same size as the original feature map. Finally,
the pyramid features of the different scales were fused as the final pyramid pooling feature.

2.3. Attention Units

The attention mechanism [24] focuses on a subset of its input and it is widely used
in the application of natural language translations. In recent years, it has been used for
semantic segmentation tasks [35,36] such as pixel prediction. The attention mechanism
helps neural networks to determine which parts of the network need more attention. It
also reduces the computational cost of encoding the information in each polyp image into a
vector of fixed dimensions. The main advantage of an attention mechanism is its simplicity,
which can be applied to any size of the input. The quality of the features can be improved
and the results are enhanced. Inspired by this, we implemented attention blocks in the
decoder part of the architecture to focus on the basic regions of the feature map.

2.4. Conditional Random Field

Conditional random fields (CRFs) are a popular statistical modeling method; this
method was applied in this paper to assist with the task of medical image segmentation.
CRFs can model useful geometric features such as the shape, regional connectivity, and
contextual information to improve the overall results. A CRF was utilized in this work
as a further step to produce a more refined output on the prediction map to improve the
segmentation results.
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3. Experiment
3.1. Data Preprocessing

For the polyp image segmentation task, every pixel in the training image was la-
beled as either polyp or non-polyp. The evaluation of the PRAPNet was accomplished
utilizing the Kvasir-SEG dataset and CVC-ClinicDB [17] dataset. The Kvasir-SEG dataset
consists of 1000 polyp images and their corresponding mask maps annotated by specialist
endoscopists from Oslo University Hospital, Norway. The CVC-ClinicDB dataset consists
of 612 polyp images. Figure 1 shows example images from the Kvasir-SEG dataset and
their corresponding templates. As the number of polyp pictures was too small, direct
training would lead to overfitting. Thus, it was necessary to increase the number of polyp
pictures in the training set; the number of Kvasir-SEG images was 11,000 and the number
of CVC-ClinicDB images was 6732. Traditional data enhancement technology—namely,
vertical flip, horizontal flip, 90 degrees clockwise rotation, translation, changing the image
brightness, and Gaussian blur—was used to increase the training samples from the initial
images. Of these images, 80% were randomly selected for the training, 10% were used for
the validation, and 10% were used for the testing.

3.2. Implementation Details

The experiments were performed on an Intel(R) Core(TM) i7-7700K with a CPU of
4.20 GHz and a GTX1080Ti graphics card with 11 GB of video memory. PyTorch 1.9.0 and
Ubuntu18.0 LTS software environments were used for the neural network experiments.
The input of the network was set to 3 × 480 × 480 with a batch size of 4. The training epoch
was also set as an iteration of 2200 batches for a total of 100 epochs. In our experiment,
training was stopped early after 50 epochs with no significant improvement in validation
loss. The network model proposed in this paper was optimized using an ADAM optimizer;
the initial learning rate was set to 1 × 10−5. Although a lower learning rate slowed down
the convergence of the model, it was preferred because a larger learning rate tended to
cause convergence failures.

The datasets used in the experiments in this paper contained different image resolu-
tions. To utilize the GPU more effectively and to reduce training time, the uniform size
of the image was set to 480 × 480 and then the image was cropped. We utilized 80% of
the dataset for the model training, 10% for the validation, and 10% for the testing. We
believed that different learning rates and training periods could have an impact on the
model training. Thus, to explore the most appropriate parameters for further experiments,
comparative experiments with different parameters were conducted.

3.3. Experimental Metrics

To verify the effectiveness of our proposed PRAPNet network, the experiments were
conducted using the Kvasir-SEG dataset and the CVC-ClinicDB dataset. For a model
comparison, the seven most popular segmentation networks (e.g., U-Net, ResUNet, and
ResUNet++) were chosen for the comparison. The mean intersection over union (mIoU)
and the dice coefficient were selected as the indicators of the quality of the network model.

3.4. Experimental Results

Different hyperparameters were applied to optimize the PRAPNet architecture. Hy-
perparameter tuning was manually performed by training the model with a different set
of hyperparameters and evaluating the results. The selection of hyperparameters mostly
relied on experience. Too large or too small hyperparameters could be detrimental to the
training model. To choose the appropriate hyperparameters, we selected three orders of
magnitude for the comparison. Figure 4 is a graph of the loss drop of our model over the
iterations of the training cycle with our given hyperparameters. Referring to the existing
experience of hyperparameter design, this experiment was conducted to compare three
learning rates, lr = 1 × 10−3, lr = 1 × 10−4, and lr = 1 × 10−5. We observed that when
the learning rate was set to 1 × 10−3, the loss has three peaks, indicating that the learning
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rate was too large and the gradient oscillated. During the training process, the model
was unable to effectively learn the relevant experience because the learning rate was too
large; Figure 4 demonstrates that the loss function of the model could not be reduced to
a satisfactory level. Figure 4 also demonstrates that when the learning rate was set to
1 × 10−4, the loss function of the model showed a rapid decrease at the beginning and the
most significant decrease in the first 20 rounds of training. Therefore, we judged that the
learning rate of the model could not be set to greater than 1 × 10−4. To determine the final
learning rate, we set the learning rate to 1 × 10−5 when the loss decreased the fastest; the
model reached a convergence at an epoch = 30. However, the difference between the value
reached by the loss function and the learning rate of 1 × 10−4 was very small so we did not
consider it necessary to choose a smaller learning rate.
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Figure 5 is a comparison of the direct prediction map of the model and the conditional
random field after refining the boundary. A conditional random field can effectively fine-
tune the boundary of a segmented image. In our work, a high-density conditional random
field was applied to the experiment.

Table 2 shows a comparison of the model indicators for three different learning rates.
Through the comparison of the indicators, we discovered that the model had the best
performance when the learning rate was set to 1 × 10−5.

Table 2. Indicator values of models at different learning rates.

Learning Rate Dice mIoU Precision

1 × 10−3 0.901 0.856 0.902
1 × 10−4 0.942 0.901 0.934
1 × 10−5 0.942 0.904 0.936

Tables 3 and 4 present the metric scores obtained by the different models and PRAPNet
from the datasets of Kvasir-SEG and CVC-ClinicDB. The comparison network models in
this article were all derived from a public code and trained with default parameters.
Table 3 shows that, for the Kvasir-SEG dataset, our proposed model outperformed all other
three metrics. It should be noted that the dice coefficient reflected the gap between the
segmentation results of our model and the actual results. Thus, it was a key parameter
and was considered for a further evaluation. In this case, our model achieved a 0.63%
improvement over the state-of-the-art SFFormer-L model in terms of the dice coefficients, a
2.4% improvement over the TransFuse-L and CaraNet models, a 4.4% improvement over
the PraNet model, and a 12.87% improvement over the classical model, ResUNet++.This
proved that our architecture exceeded the baseline architecture. The large class differences
and complex backgrounds of the samples in the CVC-ClinicDB dataset and the smaller
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number of samples in the CVC-ClinicDB dataset compared with the Kvasir-SEG dataset led
to the average performance of the model proposed in this paper from the CVC-ClinicDB
dataset. This indicated that the proposed model had room for improvement in terms of
its class imbalance and model generalization ability. The model generalization problem is
common in many models. Subsequent improvements will be made in these two directions.
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Figure 5. The first column is the original input image, the second column is the mask map, the third
column is the direct prediction map of the model, and the fourth column is the prediction map with
the conditional random field added.

Table 3. Evaluation results of different models using the Kvasir-SEG dataset.

Method Dice mIoU

SFFormer-L [25] 0.9357 0.8905
PraNet [34] 0.898 0.849
TransFuse-L [26] 0.918 0.868
CaraNet [35] 0.918 0.865
ResUNet++ [17] 0.8133 0.793
U-Net++ [37] 0.821 0.722
U-Net [14] 0.818 0.742
PRAPNet 0.942 0.906
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Table 4. Evaluation results of different models using the CVC-ClinicDB datase.

Method Dice mIoU

SFFormer-L [24] 0.9447 0.8995
PraNet [34] 0.899 0.849
TransFuse-L [25] 0.934 0.886
CaraNet [32] 0.936 0.887
U-Net++ [17] 0.794 0.729
U-Net [14] 0.818 0.746
PRAPNet 0.917 0.873

Figure 6 shows the qualitative results for all models. Figure 7 shows the highlighting
of TN, TP, FP, and FN by assigning different colors to the pixels of each category, where TN
is black, TP is white, FN is red, and FP is blue. In Table 3 and Figure 6, the advantages of the
PRAPNet over the baseline architectures are shown. The quantitative and qualitative results
all show that the PRAPNet model trained on the Kvasir-SEG dataset showed satisfying
results and transcended the other seven models in terms of the dice coefficient, mIoU, and
precision. Therefore, in the task of medical image segmentation, the PRAPNet architecture
has obvious advantages over the other segmentation methods.
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4. Discussion

The PRAPNet architecture proposed in this paper achieved satisfactory results from the
Kvasir-SEG dataset. From Figure 6, it could be concluded that, from the Kvasir-SEG dataset,
the segmentation maps generated by the PRAPNet outperformed the other architectures in
capturing the shape information, demonstrating that the segmentation masks generated in
the PRAPNet showed more precise information in the target area than the existing models.
The full convolutional network has room for improvement in capturing the polyp location
and edge details.

In this paper, we utilized the cross-entropy loss function and the dice loss function to
train the proposed model. With the same loss function, the proposed model achieved higher
dice coefficient values than the other models. Based on the empirical evaluations, the dice
coefficient loss function was chosen to obtain better segmentation results. Additionally, the
number of filters, batch size, optimizer, and loss function were observed to affect the results.

We speculated that the performance of the model could be further improved by
increasing the size of the dataset, applying more enhancement techniques, and applying
a few post-processing steps. We added a small number of parameters to ResNet50, but
achieved a higher performance. The application of the PRAPNet should not be limited to
biomedical image segmentation; it can also be extended to natural image segmentation
and other pixel classification tasks that require further detailed validation. Our work was
performed on a NVIDIA-1080ti machine and was limited by the computing power of the
machine; the image size was also adjusted. A larger downsampling rate was used for the
training, but could lead to a loss of useful information.

Future improvements include:

(1) Integrating the parallel residual atrous pyramid module proposed in this paper into
other polyp segmentation models to verify its enhancement of the model results.

(2) Using a larger batch size and a smaller downsampling rate on a platform with more
computing power for optimal training (the experiments in this paper were limited by
the computing power of the machine).

(3) Optimizing the model by referring to other excellent design concepts to achieve an
improvement in performance.

5. Conclusions

In this paper, we proposed the PRAPNet, an architecture for the segmentation of
intestinal polyps. The proposed architecture utilized a pre-trained ResNet50 model as
well as attention units, conditional random fields, and a parallel residual atrous pyramid
module. A comprehensive evaluation using publicly available datasets showed that the
proposed PRAPNet architecture outperformed the state-of-the-art U-Net and ResUNet++
architectures in generating semantically accurate prediction graphs. To achieve the goal of
generalizability, the architecture proposed in this paper should be further investigated for
improvements to obtain better segmentation results.
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