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ABSTRACT Recent microscopic and simulation studies have shown that the genome structure fluctuates dynamically in the
nuclei of budding yeast Saccharomyces cerevisiae. This genome-wide movement should lead to the fluctuations of individual
genes in their territorial regions. This raises an intriguing question of whether the resulting distribution of genes is correlated
to their transcriptional activity. An effective method for examining this correlation is to analyze how the spatial distribution of
genes and their transcriptional activity are modified by mutation. In this study, we analyzed the modification observed in a
budding yeast mutant in which genes necessary for anchoring telomeres to the nuclear envelope, yku70 and esc1, are silenced.
Taddei et al. reported that 60 genes are clearly misregulated by this mutation, with 28 and 32 genes downregulated and
upregulated, respectively. We calculated the probability density maps of the misregulated genes using a model of dynamical
movement of the yeast genome in both wild-type (WT) and yku70 esc1 mutant and showed that the density of downregulated
genes is larger near the nucleolus, whereas the density of upregulated genes is larger at the opposite side of the nucleus. By
comparing these genes with those highly (top 200 of transcriptome) and lowly (bottom 200) expressed, we showed that the simu-
lated distribution of 28 downregulated (12 out of 32 upregulated) genes has a distinctly larger overlap with the distribution of lowly
(highly) expressed genes in the mutant than in the WT. The remaining 20 upregulated genes are localized near the nuclear en-
velope both in the WT and in the mutant. These results showed that the transcriptional level of genes is affected by their spatial
distribution, thus highlighting the importance of the structural regulation in the yeast genome.
INTRODUCTION
The eukaryotic genome is compactly packed in the nucleus.
For example, the haploid genome of budding yeast, with a
total length of ~4 mm, is packed in the nucleus with a diam-
eter of 2 mm. Understanding how the genome is organized in
such a narrow space has been a long-standing problem in
cell biophysics (1–3). In particular, the quantitative under-
standing of the genome structure and dynamics is important
because they should regulate the access of proteins to DNA
sequences (4). Recently developed experimental techniques
shed new light on this problem. Particularly, the Hi-C
method, which combines next-generation sequencing and
chromosome conformation capture techniques, is important
for inferring the average three-dimensional (3D) genomic
structure (5–8). The dynamics of chromosome structural
fluctuation has been monitored for budding yeast using the
LacO/LacI or TetO/TetR system marked with green fluores-
cent protein (9–11). Here, we focus on haploid budding
yeast Saccharomyces cerevisiae as a model organism. Using
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the Hi-C results (12) and the results from fluorescence
monitoring (10,11,13) as reference data, we develop a
computational model to simulate the 3D structure and dy-
namics of the yeast genome to improve upon the model
we previously reported (14). With this improved version
of the model, we show that the largely fluctuating genome
determines the spatial distribution of genes in the nucleus,
and we discuss how the spatial distribution of genes is corre-
lated to their transcriptional regulation.

Experimental and computational evidence suggests rela-
tionships between the spatial distribution of genes and their
transcriptional regulation. For example, telomeres and sub-
telomeric regions in yeast are distributed around the nuclear
envelope to coexist with silent information regulators
(SIR proteins; Sir2, Sir3, and Sir4), which form complexes
with other factors at around the nuclear envelope (4,15).
The effect of SIR proteins to repress genes located next to
telomeres is referred to as the ‘‘telomere position effect’’
(16–18). Some part of the repeats of ribosomal DNA
(rDNA) in yeast is repressed through localization of rDNA
near the nuclear envelope, which is mediated by inner
nuclear membrane proteins including Heh1 and others
(19,20). RNA Pol III-transcribed genes, such as transfer
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RNA (tRNA) genes in yeast, are localized around the nucle-
olus (21), and RNA Pol II-transcribed genes nearby the
tRNA genes are repressed, which is a phenomenon termed
‘‘tRNA gene-mediated silencing’’ (22). In mammalian cells,
actively transcribed genes are localized in discrete foci as
transcription factories, which are associated with the local-
ization of RNA Pol II (23–25). For fission yeast (26,27) and
budding yeast (27), a similar localization of highly ex-
pressed genes was suggested using computational models
of 3D genome structures. Moreover, it was suggested that
functionally related genes belonging to particular gene
ontology groups tend to colocalize (26,27). Localization
of the functionally related genes was also assessed through
statistical analyses of the Hi-C data (28–30).

One approach to examine the hypothesis that the spatial
distribution of genes is correlated with transcriptional regu-
lation is to analyze mutants in which the genome structure is
arranged in a different way from the wild-type (WT). In the
WT budding yeast nucleus, telomeres are localized around
the nuclear envelope. Taddei et al. (31) generated a mutant
in which Yku70 and Esc1, which are proteins necessary for
anchoring telomeres to the nuclear envelope, are knocked
out. They showed that the pattern of gene expression in
the microarray data was significantly changed by this
mutation (31). In particular, 60 genes were misregulated
by >1.5-fold change in the transcription level, wherein
28 genes were downregulated and 32 genes were upregu-
lated (31). They considered that genes located near telo-
meres, which detect the telomere position effect in the
WT, are upregulated because they do not interact with the
SIR proteins when telomeres are not anchored to the nuclear
envelope in the mutant. They showed that seven upregulated
genes are indeed located within 20 kb from telomeres, and
argued that this portion (7/32 ¼ 22%) is higher than the
probability of finding randomly selected genes near telo-
meres. However, the reason for the upregulation of the
remaining 25 genes is not clear. The authors also demon-
strated a statistical tendency for the downregulation of genes
whose promoters contained RNA polymerase A and C pro-
moters, ribosomal RNA processing elements, or Abf1 mo-
tifs. They considered that SIR proteins are sequestered in
the SIR complex in the WT, which is formed together
with Yku70 and Esc1, and that SIR proteins are released
to the nucleoplasm and operate on these target promoters
to downregulate the corresponding genes when the SIR
complex is lost in the mutant. However, not all the downre-
gulated genes have the above RNA polymerase A and C pro-
moters, ribosomal RNA processing elements, or Abf1
motifs. A possible explanation is that many genes are mis-
regulated by the action of genes that directly interact with
SIR proteins; however, there is as yet no evidence for
such an indirect mechanism. Taddei et al. (31) also argued
that there is no evidence for the bias in the one-dimensional
(1D) positions of misregulated genes distributed along
chromosomes. In this way, the reason for the observed mis-
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regulation has not yet been fully elucidated, and other mech-
anisms than the one suggested in Taddei et al. (31) may also
occur in the mutant. In this article, we consider the possibil-
ity that the shifted spatial distribution of genes in the mutant
may lead to the shift in the pattern of gene expression, and
this hypothesis is tested using a computer simulation.

When initiating a computer simulation, some basic prob-
lems must be considered: One is about the approach using
Hi-C data in modeling. In the model of Duan et al. (12),
the Hi-C data were used as major constraints to simulate a
genome structure together with some minor constraints rep-
resenting localization of centromeres and confinement of
rDNA in the nucleolus. In other models, the Hi-C data
were not used for modeling, and structures were simulated
under the constraints to represent interactions between chro-
mosomes and nuclear structures such as the spindle pole
body (SPB), nuclear envelope, and nucleolus (27,32,33).
In our previous model, constraints generated from the
Hi-C data were used as moderate forces to restrict structural
fluctuation. The Hi-C based interactions to represent these
constraining forces and interactions to represent nuclear
structures were used in a combined way in our previous
model (14). Because of the small size of the yeast nucleus,
interactions between chromosomes and nuclear structures
have significant effects on the constraining of the genome
structure; therefore, these interactions should be carefully
considered during the construction of a model. Even without
using the Hi-C data, the simulated genome structures were
in reasonable agreement with the observed experimental
features when interaction potentials between chromosomes
and nuclear structures were suitably introduced (27,32,33).
However, interactions between chromosome loci mediated
by proteins binding on chromatins are not represented by
the interactions between chromosomes and nuclear struc-
tures. We will show later in this article that interactions be-
tween tRNA genes and other chromosome loci, which were
estimated from the Hi-C data (12), play important roles in
determining the genome structure in yeast; therefore, the
careful consideration of interactions between chromatin
loci appears indispensable. Therefore, in this study, we
use the combined interactions including the Hi-C based in-
teractions by extending our previous model (14). The other
problem to consider is the approach to represent fluctuations
in the genome structure. Microscopic observations using of
the fluorescent markers have shown that the budding yeast
genome fluctuates dynamically in the nucleus (9,11,34).
An equation of motion of the genome to simulate these dy-
namics has not yet been established; however, we here as-
sume that a method analogous to the one used to describe
protein folding dynamics can be used in this problem of
genome fluctuation, although the physical scale of the two
problems differs largely. In protein dynamics, potentials
that stabilize the observed average structure (i.e., the native
protein structure) can describe the fluctuating structural dy-
namics of proteins even for the process of large structural
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change, including unfolding/folding. Similarly, we expect
that in genome folding, potentials that stabilize the observed
average structure are useful to describe the large-amplitude
liquidlike fluctuation of genome structure around the
average structure inferred from the Hi-C data. We use the
Langevin dynamics method to describe fluctuations under
these potentials and to calculate the spatial distribution of
genes in the nucleus.

In this simulation of Langevin dynamics, 16 chromo-
somes in haploid budding yeast are described as 16 polymer
chains, where each chain is composed of beads representing
3 kb segments of chromatin connected by springs. These
coarse-grained chains of chromosomes are assumed to be
subjected to the Langevin equation of motion under the po-
tentials representing the Hi-C based interactions and inter-
actions between chromosomes and nuclear structures. This
model is an improved version of the previous model (14).
Three aspects of this version represent major improvements
to the previous version: (1) interactions between tRNA
genes and 5S rRNA genes were introduced to explain the
localization of tRNA genes around the nucleolus as was
observed by monitoring using fluorescence markers (21)
and shown by the Hi-C data analysis (12,30); (2) the previ-
ous semilunar shape of potential function to represent the
constraint for confinement of rDNA in the nucleolus was
changed to a more realistic crescent shape; and (3) we
removed biases from the Hi-C data by filtering out the noise
from the data. The details of the filtering method are
described in the Methods section. The yku70 esc1 mutant
in which telomeres are not anchored to the nuclear envelope
is represented in the model by turning off the attractive in-
teractions between telomeres and nuclear envelope while
these interactions are turned on in the WT model. In this
way, we describe the yku70 esc1 mutation as a perturbation
to the WT.

With this model, we simulate the genome structure and
fluctuation in both the WT and the yku70 esc1 mutant and
calculate the spatial distribution of the misregulated genes.
We also calculate spatial distributions of highly and lowly
expressed genes by extracting 200 genes showing the high-
est and lowest transcription levels, respectively (top 200 and
bottom 200 genes, respectively) from the ArrayExpress
database (Accession number: E-TABM-630) (31,35). By
comparing these distributions, we discuss how the spatial
distribution of genes is correlated to their transcriptional
activity.
MATERIALS AND METHODS

In a previous study, we developed a model to simulate dynamic genome

movement in interphase haploid budding yeast (Tokuda-Terada-Sasai

(TTS) model) (14). Here, we use the improved version of the model to bet-

ter reproduce the observed spatial distributions of centromeres, telomeres,

rDNA, and other genes.

We describe 16 chromosomes as polymer chains that are composed of

beads connected by finitely extensible springs. One bead corresponds to a
3 kb segment of chromatin, so that each chromosome has 78 (chromosome

I) to 806 (chromosome XII) beads and the entire genome comprises 4460

beads. We simulate movement of these 16 chains by numerically solving

the following Langevin equation:

m
d2rmi
dt2

¼ � v

vrmi
U � z

drmi
dt

þ wm
i : (1)

Here, m is the mass of a bead; rmi is the position of the ith bead of the mth

chain with m ¼ 1–16; U is the potential representing interactions between

chromosomes and those between chromosomes and inner structures of

the nucleus; z is the friction coefficient; and the vectorwm
i is Gaussian white

noise with D
wm

iaðtÞwn
jbðt0Þ

E
¼ 2zTdðt � t0Þdijdmndab; (2)

where a and b represent the x, y, or z component of the vector, and T is

the effective temperature with the unit of kB ¼ 1. Although the move-

ment of chromosomes in the nucleus is out of equilibrium and the rate of

structural change depends on the ATP consumption (4,15), we expect

that the rapidly fluctuating movement of local segments to be much

faster than the global movement of chains. Therefore, we use white

noise to represent such rapid fluctuation and its strength is repre-

sented here by the effective temperature T. We use T as a unit to

define interaction strengths in U. The potential U in Eq. 1 comprises

three terms:

U ¼ Uchain þ UHiC þ Unucleus; (3)

where the first term describes interactions that define the basic physical fea-

tures of the chain, the second term represents interactions derived from the

Hi-C data (12), and the third term represents interactions between chromo-

somes and nuclear structures.
Interactions to define the physical features of the
chain

The first term in Eq. 3 is composed of two terms as Uchain ¼ Uex þ Uspring,

where Uex represents the exclusive interactions between beads, and Uspring

represents a finitely extensible spring potential that connects the neigh-

boring beads in chains. Explicit functional forms of Uex and Uspring are

explained in the Supporting Material.

In addition to the above terms, a kinkable bending potential was included

in Uchain of the previous TTS model. This bending potential constrains the

angle fluctuation between neighboring segments, which results in the chain

of a 20–30 kb persistent length. We used this bending potential in the pre-

vious model because the fluorescence-in-situ-hybridization observation

showed that chromatin chains in yeast cells should be kept straight for

this distance (36). This persistent length was also consistent with the

assumption that chromatin forms a regular 30-nm fiber. However, we should

note that in the yeast nucleus, chromosomes tend to show stretched forms

because centromeres are anchored to the SPB and telomeres are anchored

to the nuclear envelope (4,15). Therefore, chains in the in situ condition

are far from free polymer chains in solution, and chromosomes in the nu-

cleus should be kept rather straight for 20–30 kb even when the persistent

length, which should be defined in free solution, is sufficiently small.

Because the regular 30-nm fiber is unstable against perturbations (such as

the heterogeneous length distribution of linker DNA between nucleosomes,

partial depletion of histone H1, or histone acetylation (37–40)), it is as yet

uncertain whether the regular 30-nm fiber is indeed formed in the yeast nu-

cleus. With the recent high resolution Micro-C analyses, no evidence for the

regular nucleosome arrangement was found in yeast chromatin (41,42). Ex-

istence or absence of regular 30-nm fibers is under debate because the
Biophysical Journal 112, 491–504, February 7, 2017 493
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accumulating evidence shows that irregularly folded 10-nm fibers, rather

than the regular 30-nm fibers, dominate the nuclei of various organisms

(43). Here, we do not use the bending potential to constrain angles between

segments, which corresponds to the assumption that the persistence length

is <3 kb. Even with this assumption, the simulation results are not signif-

icantly different from those obtained with the bending potential because

chromosomes tend to be stretched through interactions with nuclear struc-

tures. To define Uex, we use 30 nm as a measure of thickness of chromo-

somes by assuming that an irregularly folded 10-nm fiber should

typically have the effective thickness of 30 nm (44) particularly in a

coarse-grained representation, although the chain is more flexible than

the regular 30-nm fiber.
Interactions derived from the Hi-C data

The potential UHiC in Eq. 3 represents interactions derived from the Hi-C

data obtained by Duan et al. (12). In the previous TTS model, the poten-

tial representing the Hi-C based interactions was termed the G�o-like poten-

tial because a similar structure-based potential termed the G�o-like potential

was used in protein folding studies as the potential to stabilize the observed

average structure. In this study, we emphasize the effectiveness of the use of

such structure-based potential to describe structural fluctuations. However,

unlike the protein folding problem, the simulated genome does not fold into

a unique structure, but rather continues fluctuating largely around the

average structure. In this study, to avoid confusion, we refrain from refer-

ring to our potential as G�o-like potential, and instead refer to Hi-C based

potential.

We first remove biases from the observed Hi-C data. An interaction fre-

quency obtained by the Hi-C measurement represents frequency demon-

strating that two chromatin fragments in the genome are in physical

proximity in an ensemble of cells. However, it has been shown that

Hi-C data contain some biases because various features such as the

fragment length, the guanine-cytosine content of the fragment, and the

mappability of fragment affect the interaction frequencies (45,46).

These biases depend on the definition of fragments used, and the frag-

ments are determined by which restriction enzyme is used to excise

the fragments from the genome. Therefore, we filter out these biases by

comparing two sets of the Hi-C data obtained from two experiments

using different restriction enzymes, HindIII and EcoRI, and extracting

the common signals from them. From the libraries of fragments defined

by the Tables S5 and S6 for HindIII and Tables S7 and S8 for EcoRI in

Duan et al. (12), we first map each fragment to a bead in the model by as-

signing a bead nearest to the midpoint of the fragment. From this mapping,

the matrix of interaction frequency f mnij between the ith bead in the mth

chromosome and the jth bead in the nth chromosome is defined for

both HindIII and EcoRI, and we select the matrix elements that satisfy

the condition

1

1þ x
<

f mnij ðHindIIIÞ
�
ftotalðHindIIIÞ

f mnij ðEcoRIÞ
�
ftotalðEcoRIÞ

< 1þ x; (4)

where ftotalðHindIIIÞ ¼
P

mn

P
ij f

mn
ij ðHindIIIÞ and ftotalðEcoRIÞ ¼P

mn

P
ij f

mn
ij ðEcoRIÞ are total frequencies. Using the threshold value x ¼ 4

for both intra- and interchromosome frequencies, we use f mnij that satisfies

Eq. 4 for estimating the average distance between beads by maintaining

the value of f mnij as it is, and set the other matrix elements that do not satisfy

Eq. 4 as f mnij ¼ 0.

As discussed by Yaffe and Tanay (45), the effects of the filtering can be

assessed by comparing the 1D coverage. Here we use the normalized

1D coverage, gm intra
i ¼Pj f

mm
ij =
P

i;j f
mm
ij for the intrachromosome compari-

son in the chromosome m, and gm inter
i ¼PnðsmÞ

P
j f
mn
ij =
P

m

P
nðsmÞ

P
i;j f

mn
ij

for the genomewide comparison of the interchromosome interactions.
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If biases are removed through filtering, two values of 1D coverage,

gm a
i ðHindIIIÞ and gm a

i ðEcoRIÞ, where a ¼ ‘‘intra’’ or ‘‘inter’’ should

show a large correlation. Fig. S1 shows the 1D coverage gm intra
i with

m ¼ 1 (chromosome I) as a function of i. We find that data for two 1D

coverages, g1 intra
i ðHindIIIÞ and g1 intra

i ðEcoRIÞ, show a small correlation

before filtering, as indicated by a Spearman correlation coefficient of

r ¼ 0.2; however, this correlation coefficient increases to r ¼ 1.0 after

filtering. In Fig. S2, gm intra
i ðHindIIIÞ and gm intra

i ðEcoRIÞ are compared for

m¼ 1–16 (the normalized intrachromosome 1D coverage for chromosomes

I–XVI) for the data after filtering. Also for the interchromosome interac-

tions, comparing two gm inter
i s, it shows that the correlation is largely

increased from r ¼ 0.5 to r ¼ 1.0 as shown in Figs. S3 and S4.

From the filtered interaction matrix, f mnij ðHindIIIÞ, we estimate the

average spatial distance rðm; i; n; jÞ between beads ðm; iÞ and ðn; jÞ. The
relation between the intrachromosome frequency f mmij ðHindIIIÞ and the

average distance rðm; i;m; jÞ was estimated as summarized in Supplemen-

tary Fig. 17 of Duan et al. (12). Here, we use the same relation in this study.

In addition, for interchromosome interactions, as was proposed by Duan

et al. (12), the same relationship is used to estimate the average interchro-

mosome distances, rðm; i; n; jÞ. We expect that the estimation could be

further improved if we used the interchromosome fluorescence-in-situ-hy-

bridization data for budding yeast as a reference, as was used for fission

yeast by Tanizawa et al. (26).

Here, the Hi-C based potential has the following terms:

UHiC ¼
X
m> n

X
i;j

UHiC

�
rmnij
�þX

m

X
j > i

UHiC

�
rmmij
�

þ
X
m

X
i˛tRNA

X
j˛5S rRNA

UtRNA

�
rm12ij

�
;

(5)

where rmnij ¼
���rmi � rnj

��� . The first term in Eq. 5 represents the interchromo-

some interactions, whereas the second term represents the intrachromo-

some interactions. The third term represents the effective interactions

between tRNA genes and 5S rRNA genes. The first and second terms

have the same functional form as

UHiC

�
rmnij
� ¼ � xr0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pðrðm; i; n; jÞÞ2
q

� exp

 
�
�
rmnij � rðm; i; n; jÞ�2
2ðrðm; i; n; jÞÞ2

!
:

(6)

Because the number of interacting pairs becomes smaller after filtration, we

use a larger x than used in the previous TTS model before filtration. Here,

we use r0¼ 10 nm as a unit of distance, and x=T ¼ 50. Notably, the overall

features of the simulated genome structure, such as the distributions of telo-

mere positions, are not altered greatly from those obtained before filtration

because they are mostly determined by interactions between chromosomes

and nuclear structures; however, the spatial distributions of individual genes

are largely modified because they are affected by the interactions between

chromatins.

Further attention should be paid to the interactions of tRNA genes.

Although the sequence positions of tRNA genes in budding yeast are scat-

tered over the genome, some are spatially localized around the nucleolus

and the region where centromeres are gathered (4,12,15,21). Such localiza-

tion would be natural when we consider that Pol III-transcribed genes such

as tRNA and 5S rRNA genes, where the latter is confined in the nucleolus,

may share a concentration of RNA polymerase III and enter close prox-

imity. Because the frequency of interactions of 5S rRNA genes is not

explicitly included in the Hi-C data, we additionally introduce the following
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attractive interaction between the ith bead corresponding to the tRNA gene

and the jth bead corresponding to the 5S rRNA gene as

UtRNA

�
rm12ij

� ¼ � xtr0ffiffiffiffiffiffiffiffiffiffi
2pr2t

p exp
�
� �rm12ij

�2.�
2r2t
��

; (7)

where we use xt=T ¼ 10. We consider that the potential Eq. 7 does not

represent interaction in the atomic scale, but rather a mean-field-like effec-

tive interaction for a statistical tendency of gene gathering; therefore, we

use a relatively long distance as a parameter to define the potential as

rt ¼ 200 nm.

By analyzing the interacting frequencies in the Hi-C data, Duan et al.

showed that tRNA genes are clustered into three groups; one localized

around the nucleolus, one localized around the centromeres, and one

not showing a distinct localization, Details of the clustered results of

the Hi-C data are found on the web site (47). For the beads ðm; iÞ in

Eq. 7, tRNA genes that were identified as genes localized around the

nucleolus by the Hi-C analysis (47) are assumed to be targets of the po-

tential in this model; however, the tRNA genes in the vicinity of telomeres

are not considered as targets because they should be more attracted to the

nuclear envelope in the WT. For ð12; jÞ in Eq. 7, we use beads represent-

ing 5S rRNA genes, which are located in chromosome XII. We assume

that 5S rDNA has 150 repeats of sequences as j ¼ 154þ 3k with

k ¼ 0–149.
Interactions between chromosomes and nuclear
structures

In budding yeast, 16 chromosomes are packed in the nucleus, and their

motion is constrained by interactions between chromosomes and nuclear

structures such as the nuclear envelope, nucleolus, and SPB. We represent

these interactions by Unucleus in Eq. 3, which consists of the following

three terms;

Unucleus ¼ Uenvelope þ Ucen þ Unucleolus; (8)

where the first term Uenvelope represents interaction between chromosomes

and the nuclear envelope, and the second term Ucen represents interactions

between centromeres and the SPB. The last term Unucleolus represents inter-

actions that confine rDNA in the nucleolus and exclude other parts of chro-

mosomes from the nucleolus. In this model, the semilunar-shaped

functional form for Unucleolus in the previous TTS model is replaced by

the more realistic crescent-shape functional form. To describe interaction

terms in Unucleus, we define the coordinate system as shown in Figs. S5

and S6. With this coordinate system, the center of the nucleus is

rcenter ¼ (1000, 1000, 1000) in units of nanometers, the nucleus is a sphere

of 1000 nm radius, and the SPB is placed on (1000, 1000, 10).

Uenvelope in Eq. 8 is composed of three terms,

Uenvelope ¼ Utel�env þ UrDNA�env þ Uchr�env; (9)

where the first term Utel�env represents interactions between telomeres

or subtelomeric regions and the nuclear envelope, the second term

UrDNA�env represents interactions between the rDNA region and the nu-

clear envelope, and the last term Uchr�env represents interactions between

the other parts of chromosomes and the nuclear envelope. Telomeres

and subtelomeric regions attractively interact with the nuclear envelope

in the WT because they form a complex at the nuclear envelope in asso-

ciation with several factors: the inner membrane-associated protein

Esc1 (48), the Sad1-UNC-84 domain protein Mps3 (49), the end-binding

complex Yku70/80 (50), and the Rap1 (51) and SIR proteins (52,53).

In particular, SIR proteins in this complex promote heterochromatin for-

mation near telomeres and repress genes in that location (52,53). Here,

we represent the attractive interactions arising from the formation of
this complex as follows: Utel�env ¼
P

m

P
i ˛ telom; subtelomUtel�envðRm

i Þ
with

Utel�envðRm
i Þ ¼ 2e

"	
Rm
i � u0
u� u0


12

� c1

#
; for Rm

i > u3;

¼ �yc0e; for u2 <Rm
i %u3;

¼ �yce

	
Rm
i � u1
u2



; for u1 <Rm

i %u2;

¼ 0; for Rm
i %u1;

(10)

whereRm
i ¼ ��rmi � rcenter

�� . As a unit of interaction strength,we use e ¼ T. The

values c and c are determined to smoothly connect the parts ofU . For
0 1 tel�env

simulating the yku70 esc1 mutant, we set y ¼ 0 and c1 ¼ 0 (turned off),

whereas y ¼ 1 and c1s0 (turned on) for simulating the WT. Parameters are

chosen to set the telomere behaviors simulated with y ¼ 1 to be consistent

with the experimental observations of the WT (10,13) as u0 ¼ 800 nm,

u1 ¼ 400 nm, u2 ¼ 800 nm, u3 ¼ 950 nm, u ¼ 1000 nm, and c ¼ 3.

The rDNA repeats in budding yeast can be tethered to the nuclear enve-

lope by several proteins such as Heh1, Lrs4, and Sir2 (4,15,19). Here, we

consider that beads i ¼ 151–606 in the chain m ¼ 12 represent the rDNA

repeats. We represent the attractive interactions due to this tethering as

UrDNA�env ¼
P

i ˛ rDNA; m¼12UrDNA�envðRm
i Þ, where

P
i ˛ rDNA; m¼12 is a

sum over the randomly chosen 30% of beads in the rDNA repeat

region, and we use the same function for UrDNA�envðRm
i Þ as Utel�envðRm

i Þ
by maintaining y ¼ 1 and c1s0 in both the WT and the mutant.

The potential Uchr�env ¼
P

m

P
iUchr�envðRm

i Þ represents interactions

between other parts of chromosomes and the nuclear envelope, which

confine chromosomes inside the nucleus,

Uchr�envðRm
i Þ ¼ 2e

	
Rm
i � u0
u� u0


12

; for Rm
i > u0;

¼ 0; for Rm
i %u0;

(11)

where u0 ¼ 800 nm and u ¼ 1000 nm are used.

Explicit functional forms of other terms, Ucen and Unucleolus in Eq. 8 are

explained in the Supporting Material.
Simulation

We set m ¼ T ¼ 1. With this unit, t has the dimension of length L and the

friction constant z has the dimension of L�1. The friction constant z was set

to be z¼ 10�5 to allow efficient sampling in the allowed computation time.

Values of other parameters are explained in the Supporting Material and

summarized in Table S1. Starting from the structure inferred by Duan

et al. (12), the structure was relaxed under the potential U with the steepest

descent method. Then, using the Langevin equation of motion of Eq. 1, the

high temperature run with T0 ¼ 2Twas performed, and the last structure of

this high-temperature run was used as the initial structure of our simulation.

Equation 1 was discretized with the step length Dt¼ 0.01. We calculated up

to 1 � 105 steps, and from the last 5 � 104 steps we sampled data in every

200 steps to obtain 250 structures. By calculating 40 simulation runs with

different random number realizations, 250 � 40 ¼ 104 structures in total

were sampled for each analysis.
RESULTS

Simulated genome organization in the WT

To assess the performance of this model, we compare the
simulated and observed (13) probability density maps of
Biophysical Journal 112, 491–504, February 7, 2017 495



Tokuda and Sasai
centromeres, rDNA, and the left telomere of chromosome
VII in the WT. As shown in Fig. 1 a, the 3D distribution
is projected onto a two-dimensional (2D) plane by defining
a grid of 0.1 � 0.1 mm spacing. The probability density
maps are then calculated using the method explained in
the caption of Fig. 1. Hereafter, this method of projection
is used throughout the Results to show the calculated
probability density maps of genes on the 2D plane. The
simulated probability density maps in Fig. 1 b show an
improved agreement with those of the observed data when
compared with the previous version of the model (14). In
Fig. S7 and Table S2, we compared the simulated and
observed (11) distributions of the telomere-telomere dis-
tance in the WT, which shows that the calculated results
explain the observed features of distributions. Two telo-
meres of a short chromosome, such as chromosome III,
tend to reside near to each other, whereas two telomeres
of a long chromosome, such as chromosome XIV, tend to
be separate from each other. Therizols et al. (54) reported
the median distances from subtelomeric regions of chromo-
somes IV, VI, and X to the other subtelomeric regions, which
FIGURE 1 2D representation of probability density maps of various parts of th

the cylindrical coordinate (R, a). The nucleus is represented as a sphere of radius

pole body) and the center of the nucleus. A grid of 0.1� 0.1 mm spacing is define

This tube has the radius R sin a and the 0.1� 0.1 mm2 square intersection. The pr

calculated by the number of beads found in this cylindrical tube divided by th

number of corresponding beads within the nucleus, and then averaged over 104 s

maps of each part in the wild-WTyeast nucleus; centromeres of 16 chromosome

(Panels of the observed data were reproduced from Berger et al. (13) with perm
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are compared with the simulation data in Fig. S8. The Pear-
son correlation coefficient is 0.52, which is similar to the
value obtained by the model of Wong et al. (33) created
without using the Hi-C based potential, suggesting that the
distribution of telomeres is almost determined by the inter-
actions between chromosomes and the nuclear envelope.

The simulation results for the WT model show intriguing
features. An example of the simulated movement of the
genome structure is shown in Movie S1. This movie shows
that the genome largely fluctuates in the nucleus. Depen-
dences of the motion on the friction coefficient z and the
other parameters that can affect fluctuation of chains are dis-
cussed in the Supporting Material and Table S2. Through
this genomewide movement, individual genes fluctuate in
their territorial region. Therefore, the probability density
maps of genes should provide useful information. The simu-
lated probability density maps of 5S rRNA genes and several
groups of tRNA genes are shown in Fig. 2. Near the nucle-
olus, we find the localized population of these tRNA genes,
which is consistent with the cluster analysis of the Hi-C data
(12) and the observed fluorescence localization of tRNA
e yeast genome. (a) A locus on an illustrated chromosome is represented by

1 mm, and the z axis is defined as the axis running through the SPB (spindle

d on the 2D plane and a cylindrical tube running around the z axis is defined.

obability density of beads at the position (R cos a, R sin a) on the 2D plane is

e volume of the tube, which is further normalized by dividing by the total

tructures. (b) Comparison of the simulated and observed probability density

s (top), rDNA (middle), and the left telomere of chromosome VII (bottom).

ission.) To see this figure in color, go online.



FIGURE 2 Probability density maps of RNA polymerase III-transcribed

genes in the simulatedWTyeast nucleus. (a) Probability density maps of 5S

rRNA genes. In this model, 150 copies of 5S rRNA genes were assumed to

be located on chromosome XII. (b–f) Probability density maps of tRNA

genes observed in Thompson et al. (21): (b) tRNALeu(CAA) genes (10

genes are found in the genome), (c) tRNALys(CUU) genes (14 genes), (d)

tRNAGly(GCC) genes (16 genes), (e) tRNAGln(UUG) genes (9 genes),

and (f) tRNAGlu(UUC) genes (14 genes). In (d), the region with a density

larger than 2 mm�3 is colored white. To see this figure in color, go online.

FIGURE 3 Differential probability density maps, DP, of highly and

lowly expressed genes in the simulated WT yeast nucleus. Differential

probability density maps of (a) highly expressed genes (the top 200 genes

in the transcription level), (b) lowly expressed genes (the bottom 200

genes), (c) highly expressed genes excluding the ribosomal protein genes

from the top 200 genes, and (d) the ribosomal protein genes within the

list of the top 200 genes. The differential probability density is defined

by subtracting the probability density of randomly distributed sites from

the corresponding probability density (see text for more explanation).

The top 200 and bottom 200 genes were extracted from the microarray

data deposited in ArrayExpress (E-TABM-630) (31,35). To see this figure

in color, go online.

Heterogeneous Distribution in Yeast Nuclei
genes (21). Here, each group comprises 9–16 copies of
genes, and the probability distribution of the summed den-
sity of these multiple genes are shown in each panel of
Fig. 2. Among these genes, only a few were identified by
the cluster analysis of the Hi-C data (12) to localize around
the nucleolus. Therefore, the attractive interactions between
tRNA and 5S rRNA genes were assumed in the model only
for those small number of genes. The ratio of the number of
genes attracted to 5S rRNA genes to the number of copies of
genes in the genome is 2/10, 3/14, 2/16, 2/9, and 4/14 for
Fig. 2, b–f, respectively. Therefore, the major portion of
the density was not attracted to the region near the nucleolus
but concentrated around the center of the nucleus or around
the region centromeres are gathered. It would be interesting
to see whether the localized density around the nucleolus in-
creases when a larger number of tRNA genes would have the
attractive interactions; however, we use the assumption
derived from the clustering analysis of the Hi-C data in a
straightforward way. Thus, the study of various attractive in-
teractions is not addressed in this article.

The simulated localization of the tRNA genes around
either the nucleolus or the center of the nucleus is weakened
when the attractive interactions between tRNA genes and
5S rRNA genes are turned off by setting UtRNAðrm12ij Þ ¼ 0

in Eq. 7; however, the density around the center of nucleus
remains (Fig. S9), which is in clear contrast to the results of
the model in which the Hi-C based potential is not used (27);
in the latter model, the tRNA genes strongly concentrate
around the region where the centromeres are gathered.
Thus, the interactions between chromosome loci in the
model do not affect the distributions of telomeres but
considerably affect the distribution of genes.

Probability density maps of the highly expressed genes
(top 200 genes) and the lowly expressed genes (bottom 200
genes) were calculated in the WT by extracting those genes
from the microarray data deposited in ArrayExpress
(E-TABM-630) (31,35). Notably, five upregulated and one
downregulated genes were lowly expressed in the WT, and
two upregulated and four downregulated genes were lowly
expressed in the yku70 esc1 mutant; these genes were
removed from the list of the above bottom 200 genes, so
that there is no overlap of the gene names between the misre-
gulated genes and the top 200 or bottom 200 genes. Lists of
the top 200 genes and bottom 200 genes derived in this way
are shown in Table S3 for both the WT and the mutant.
Fig. 3 shows maps of differential probability density for the
top 200 genes and bottom 200 genes,DP¼ (probability den-
sity of the genes)� (probability density of randomly selected
Biophysical Journal 112, 491–504, February 7, 2017 497



FIGURE 4 A snapshot of the simulated genome structure of the yku70

esc1 mutant yeast. Sixty misregulated genes in the mutant are shown

with spheres; 32 upregulated genes (red) and 28 downregulated genes

(blue). This image was constructed with Visual Molecular Dynamics soft-

ware (University of Illinois at Urbana-Champaign, Champaign, IL). To see

Tokuda and Sasai
sites). Here, the density of randomly selected sites was
generated by selecting 100 beads randomly from every 104

structures; therefore, the density of randomly selected
sites represents the density of chromatins in nucleus. In
Fig. S10, the probability density maps before this subtraction
are shown together with the density map of random sites. As
shown in Fig. 3, highly expressed genes showa higher density
in the inner regions of the nucleus and the lowly expressed
genes show a higher density at the nuclear periphery. This
is similar to the simulation results of Gong et al. (27), and
is consistent with the localization of repressive factors such
as SIR proteins near the nuclear envelope. It should be noted
that 67 of the top 200 genes are ribosomal protein genes,
which may be regulated in a different way from remaining
133 genes; many of the latter genes are related to basic meta-
bolism.As evident in Fig. 3, it is interesting that the ribosomal
protein genes are localized around the center of nucleus,
whereas the other highly expressed genes are more localized
around the region near the nucleolus and the outside part of
the region where the centromeres are gathered with some
additional population around the center of nucleus. This
result suggests the existence of a mechanism of gene regula-
tion that depends on the spatial position of genes.
this figure in color, go online.
Spatial distributions of transcriptional activities
in the yku70 esc1 mutant

The yku70 esc1 mutant was simulated by setting y ¼ 0

and c1 ¼ 0 in Eq. 10 to turn off the attractive interactions
between telomeres or subtelomeric regions and the nu-
clear envelope. The validity of this calculation can be
confirmed by comparing the simulated and observed
radial distributions of telomere positions. In Hediger
et al. (10) and Taddei et al. (55), the peripheral-most
zone with 0.82 mm < R < 1 mm was defined as zone I,
where R is the radial distance from the center of the nu-
cleus as defined in Fig. 1 a. The probability to find the
left telomere of chromosome XIV in zone I in the mutant
is 40% in cells observed in the G1 phase (55) and 19% in
the simulated data, and probability to find the right telo-
mere of chromosome VI in zone I in the mutant is 38%
in the observed data (55) and 44% in the simulated
data. Therefore, the model has the ability to reasonably
reproduce the observed radial distributions of telomeres
in the mutant. Further discussion on the telomere resi-
dence probability in zone I is given in the Supporting
Material.

Fig. 4 is a snapshot of the simulated genome structure
in the yku70 esc1 mutant, and the misregulated genes are
drawn as spheres. We get the impression that the downregu-
lated 28 genes (blue spheres) and the 32 upregulated genes
(red spheres) do not appear to be homogeneously mixed,
rather each group of genes shows some clustered features
with heterogeneous density distributions. These misregu-
lated genes are listed in Table S4. An example of the simu-
498 Biophysical Journal 112, 491–504, February 7, 2017
lated movement of the genome structure in the yku70 esc1
mutant is shown in Movie S2. In this motion, the misregu-
lated genes fluctuate largely based on their characteristic
distributions.

The tendency of the distributions found in the snapshot
and the movie is confirmed by plotting the probability
density maps obtained from the average of 104 structures.
In Fig. 5, the differential probability density maps are
shown for upregulated (Fig. 5 a) and downregulated
(Fig. 5 b) genes, which are compared with the density
maps of the top 200 (Fig. 5 c) and the bottom 200
(Fig. 5 d) genes. Notably, 93 of the top 200 genes are ri-
bosomal protein genes in the mutant. In Fig. 5 e, we show
the differential probability density map of highly ex-
pressed genes by subtracting ribosomal protein genes
from the top 200 genes. From Fig. 5, we get the impres-
sion that the distribution of downregulated genes is
similar to the distribution of the lowly expressed genes
in the mutant.

The similarity or difference between spatial distribu-
tions can be quantified by calculating the overlap of 3D
distributions of genes in different groups. We calculate
the following degree of overlap between the spatial distribu-
tions of the bottom 200 genes and the 28 downregulated
genes as

Ibottom�down
k ¼ 1

Nbottom

1

Ndown

X
i

NbottomX
j

Ndown

exp

 
�

���rki � rkj

��� 2
2d2

!
;

(12)



FIGURE 5 Simulated differential probability density maps,DP, of misre-

gulated, highly expressed, and lowly expressed genes in the yku70 esc1

mutant yeast nucleus. Differential probability density maps of (a) 32 upre-

gulated genes, (b) 28 downregulated genes, (c) highly expressed genes (the

top 200 genes in the transcription level), (d) lowly expressed genes (the bot-

tom 200 genes), and (e) highly expressed genes excluding the ribosomal

protein genes from the top 200 genes. The top 200 and bottom 200 genes

were extracted from the microarray data deposited in ArrayExpress

(E-TABM-630) (31,35). Probability density maps of the corresponding

genes before the subtraction of the probability density of random sites

are shown in Fig. S11. To see this figure in color, go online.

Heterogeneous Distribution in Yeast Nuclei
where Nbottom ¼ 200, Ndown ¼ 28, and d ¼ 100 nm; rki is the
position of the ith bead of the bottom 200 genes in the kth
structure sampled from simulations; and rkj is the position
of the jth bead of the downregulated genes in the kth struc-
ture. The term Ibottom�down

k is calculated for each of 104
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genes and the upregulated genes (orange), f bottom�upðIÞ between the bottom

the randomly selected 1000 sites and the upregulated genes (blue). To see this
structures with k ¼ 1–104. In Fig. 6 a, the distribution of
the calculated 104 values of Ibottom�down

k is shown by plotting
the fraction, f bottom�downðIÞ, which is the probability to find a
structure k in the range I � DI=2< Ibottom�down

k < I þ DI=2
with a suitable bin size DI. In addition, similar quantities,
f top�downðIÞ and f random�downðIÞ, are plotted together. Fig. 6
a shows that the overlap between the lowly expressed
genes and the downregulated genes in the mutant are
distinctly larger than the overlap between the random
sites and the downregulated genes (p value < 10�4) and
that the overlap between the highly expressed genes and
the downregulated genes tends to be slightly smaller than
the overlap between the random sites and the downregu-
lated genes (p-value < 10�4), where the p values were
calculated with the Wilcoxon signed-rank test. A similar
argument holds for the 32 upregulated genes. In Fig. 6 b,
distributions, f top�upðIÞ, f topðex:rib:Þ�upðIÞ, f bottom�upðIÞ, and
f rand�upðIÞ, are plotted. Fig. 6 b shows that the upregulated
genes in the mutant tend to have a larger overlap with the
highly expressed genes than with the random sites
(p value < 10�4), and they tend to have a smaller overlap
with the lowly expressed genes than with the random sites
(p value < 10�4).

Comparisons among these degrees of overlap suggest that
there are spatial actively transcribing region and inactively
transcribing region in the yeast nucleus. The genes should
be downregulated when they show higher probability of re-
maining in the inactive region in the mutant than in the WT.
Similarly, the genes could be upregulated when they show
higher probability of remaining in the active region in the
mutant. This hypothesis, however, should be carefully
examined because the difference between f topðex:rib:Þ�upðIÞ
and f random�upðIÞ shown in Fig. 6 b is not large. The reason
for this small difference becomes evident when the 32 upre-
gulated genes are classified into the following three groups:
group 1, which comprises seven genes located within 20 kb
from any of the telomeres; group 2, which comprises
12 genes with a tendency to reside in the active region;
and group 3, which comprises 13 genes with a tendency to
1 0.015 0.02

top-up
top(ex.rib.)-up
bottom-up
rand-up

 overlap

FIGURE 6 Distributions f(I) of the degree of

3D overlap Ik between groups of genes in the

yku70 esc1 mutant yeast nucleus. Each distribution

was calculated by sampling 104 different struc-

tures, k ¼ 1–104, and plotted with the bin size

DI ¼ 2.5 � 10�4. (a) Distributions f top�downðIÞ
of the overlap between the top 200 genes and

the downregulated genes (red), f bottom�upðIÞ of the
overlap between the bottom 200 genes and the

downregulated genes (green), and f rand�downðIÞ of

the overlap between the randomly selected 1000

sites and the downregulated genes (blue). (b) Distri-

butions f top�upðIÞ between the top 200 genes and

the upregulated genes (red), f topðex:rib:Þ�upðIÞ be-

tween the highly expressed genes excluding the

ribosomal protein genes from the top 200

200 genes and the upregulated genes (green), and f rand�upðIÞ between

figure in color, go online.
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be outside of the active region in the mutant. Group 1
genes were first selected, and then the remaining 25
genes were classified into groups 2 and 3 according
to their average degree of overlap with the highly expressed
genes. The average degree of overlap between gene
i and the top 200 genes excluding the ribosomal genes

was calculated as I
topðex:rib:Þ�i ¼ ð1=NkÞ

PNk

k¼1I
topðex:rib:Þ�i
k ,

where Nk ¼ 104 is the number of sampled structures. The

average degree of overlap, I
rand�i

, was calculated in
a similar way. Then, the gene i was classified into group

2 when I
topðex:rib:Þ�i

=I
rand�i

> 1, and group 3 when

I
topðex:rib:Þ�i

=I
rand�i

%1. These groups of genes are listed
in Table S5. Distributions of degree of overlap between
the group-i genes and the top 200 genes except for the

ribosomal protein genes, f topðex:rib:Þ�upðiÞðIÞ with i ¼ 1–3,
are shown in Fig. 7. We find that group 2 genes largely over-
lap with the highly expressed genes, whereas group 1 and
group 3 genes show less overlap with the highly expressed
genes in the mutant. The distribution f topðex:rib:Þ�upðIÞ in
Fig. 6 b is obtained by averaging three distributions,
f topðex:rib:Þ�upðiÞðIÞ with i ¼ 1–3, each of which has the large
difference from f random�upðIÞ in opposite directions, result-
ing in the small difference between f topðex:rib:Þ�upðIÞ and
f random�upðIÞ.
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FIGURE 7 Distributions f(I) of the degree of 3D overlap Ik between the

highly expressed genes excluding the ribosomal protein genes from the top

200 genes and each of three groups, group 1, 2, and 3, of the upregulated

genes in the yku70 esc1 mutant yeast nucleus, f topðex:rib:Þ�upð1ÞðIÞ, (green);
f topðex:rib:Þ�upð2ÞðIÞ (red); and f topðex:rib:Þ�upð3ÞðIÞ (cyan), respectively. The

distributions f topðex:rib:Þ�up (orange) and f rand�up (blue), which are the

same as those drawn in Fig. 6 b, are shown for comparison. Each f(I)

was calculated by sampling 104 different structures, k ¼ 1–104, and

plotted with the bin size DI z 4.3 � 10�4. To see this figure in color,

go online.

500 Biophysical Journal 112, 491–504, February 7, 2017
The difference among three groups of upregulated genes
is visualized with 2D maps of differential probability den-
sities (Fig. 8). In the WT, the group 1 genes, which are
located near telomeres, are strongly localized near the nu-
clear envelope, particularly around the SPB. Group 3 genes
are also localized at the region near the nuclear envelope,
whereas the group 2 genes are in various locations in the nu-
cleus. In the mutant, group 1 and group 3 genes largely
remain near the nuclear envelope. Therefore, the activity
of group 1 and group 3 genes may be repressed in the WT
due to their interactions with SIR proteins or other factors
localized on the nuclear envelope, and the resolution of
SIR complexes or loss of interactions with other repressive
factors in the mutant should upregulate group 1 and group 3
genes. Group 2 genes do not show extensive interactions
with the nuclear envelope in the WT, and largely shift to-
ward the active region in the inside of the nucleus in the
mutant, leading to their upregulation.

Such effects of spatial distributions can be further
analyzed by examining changes in the overlap induced in
the mutant. In Fig. 9, distributions of the degree of overlap
in the WT and in the mutant are compared. Fig. 9, a–c,
shows that the overlap between the downregulated genes
and the inactive region is distinctly larger in the mutant
than in the WT (Fig. 9 b), whereas the overlap between
the downregulated genes and the active region is smaller
FIGURE 8 (a–f) Simulated differential probability density maps, DP, of

three groups of upregulated genes, i.e., group 1 (top), group 2 (middle), and

group 3 (bottom), in the WT (left column) and the yku70 esc1mutant (right

column) yeast nucleus. To see this figure in color, go online.



FIGURE 9 Comparisons between the distribu-

tion f(I) of the degree of 3D overlap Ik in the WT

(red) and that in the yku70 esc1 mutant (blue). Dis-

tributions (a) f top�down, (b) f bottom�down, (c)

f rand�down, (d) f topðex:rib:Þ�upð1Þ, (e) f bottom�upð1Þ, (f)
f rand�upð1Þ, (g) f topðex:rib:Þ�upð2Þ, (h) f bottom�upð2Þ, (i)
f rand�upð2Þ, (j) f topðex:rib:Þ�upð3Þ, (k) f bottom�upð3Þ, and
(l) f rand�upð3Þ are compared between the WT and

the mutant. Each f(I) was calculated by sampling

104 different structures, k ¼ 1–104, and plotted

with the bin size DI z 4.3 � 10�4. The p value

for the Mann-Whitney U test is 0.277 in (e), and

<10�4 in all other panels, (a–d) and (f–l). To see

this figure in color, go online.

Heterogeneous Distribution in Yeast Nuclei
in the mutant than in the WT (Fig. 9 a). This result indicates
that the spatial distribution of downregulated genes shifts
toward the inactive region in the mutant.

Fig. 9, d–l, shows the shift of upregulated genes. Group 1
genes, which are located near telomeres, show a small shift
toward the active region (Fig. 9 d) but not the inactive region
(Fig. 9 e). The overlap between group 1 genes and the random
sites is somewhat increased (Fig. 9 f) because of the shift of
group 1 genes from the nuclear periphery in the WT toward
the inner region in the mutant due to the loss of telomere
anchoring by the mutation. The transcriptionally repressive
SIR complexes are formed near telomeres in the WT; thus
the release of group 1 genes from the SIR complexes in the
mutant can be sufficient for the upregulation as suggested
by Taddei et al. (31). Group 2 genes, on the other hand,
show a distinct shift toward the active region (Fig. 9 g) and
a shift away from the inactive region (Fig. 9 h). Therefore,
we hypothesize that these genes are upregulated because of
their spatial shift toward the active region. Group 3 genes
show a different behavior; they shift away from both the
active (Fig. 9 j) and inactive (Fig. 9 k) regions. As shown in
Fig. 8, group 3 genes are kept localized around the region
near the nuclear envelope in the mutant, which separates
these genes from both the active and inactive regions. The
release of SIR proteins or other factors from the envelope
in the mutant may explain the upregulation of these genes,
but further examination is necessary to identify the interac-
tions responsible for the upregulation of group 3 genes.

We showed that the simulated 28 downregulated genes
shifted toward the inactive region and 12 out of the 32 upre-
gulated genes shifted toward the active region in the yku70
esc1 mutant. Seven genes located near the telomeres were
strongly localized around the nuclear envelope, and 13 genes
were also localized near the envelope. These 20 genes did
not show a distinct shift toward either the active or the inac-
tive regions in the mutant; however, their localized distribu-
tions suggest that the loss of interactions with suppressive
factors on the envelope leads to upregulation. Combining
these simulation results, we hypothesize that the spatial
distribution of genes and its shift induced by the yku70
esc1 mutation explain the observed misregulation.
DISCUSSION

We developed a computational model of a dynamically
fluctuating genome structure for simulating the genome
Biophysical Journal 112, 491–504, February 7, 2017 501
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of the WT and the yky70 esc1 mutant of budding yeast.
With this model, we showed that the loss of the anchoring
of telomeres to the nuclear envelope changes the spatial
distribution pattern of genes. We calculated the distribution
of the genes misregulated by the mutation and the distribu-
tion of lowly (the bottom 200 genes in the transcriptome)
and highly (the top 200 genes) expressed genes in both
the mutant and the WT models and found that the downre-
gulated genes are localized around the nucleolus, and the
overlap of distributions of the downregulated genes and
the lowly expressed genes is larger in the mutant when
compared with the WT. We also found that the overlap of
distributions for 12 out of 32 upregulated genes and the
highly expressed genes is larger in the mutant when
compared with the WT. The remaining 20 upregulated
genes are localized near the nuclear envelope; therefore
they may be affected by the change of interactions with
factors on the nuclear envelope. These simulation results
suggest that the transcriptional activity of genes is regu-
lated by their spatial position in the nucleus. This mecha-
nism of regulation could arise from the localization of
RNA polymerases, transcription factors, or repressive fac-
tors such as SIR proteins in the nucleus. Further computa-
tional and experimental tests are required to verify this
hypothesis. Particularly, the genomewide test for the
generic genes is needed. This type of analysis is discussed
in the Supporting Material.

To develop efficient computational tests, it is important to
further improve the simulation model. In particular, a more
accurate treatment of interactions between chromatin loci is
important. As shown by previous computational models
(27,32,33), simulations that do not consider the specific
interactions between chromosome loci reproduce many as-
pects of the overall genome structure such as the distribution
of telomere positions. Indeed, those simulated features do
not differ significantly in this model, which explicitly con-
siders the specific chromosome interactions. However,
the distribution pattern of individual genes is more sensitive
to the interactions between chromosome loci, which can, for
example, be found in the simulated distribution of the tRNA
genes. Given the interactions between tRNA genes and 5S
rRNA genes in this model, tRNA genes tend to localize
around the nucleolus consistently with the observation
(12,21), and without these interactions, tRNA genes
distribute more around the center of the nucleus or the
centromere region. As shown in Fig. S12, the distribution
of other genes is also affected by these interactions; the dis-
tribution of the bottom 200 genes shifts, particularly in the
mutant, from the region near the nucleolus to the opposite
side of the nucleus if the interactions between tRNA genes
and 5S rRNA genes are turned off.

The results of our simulation showed that the budding
yeast genome fluctuates dynamically in the nucleus,
which determines the regions in which individual genes
are localized. An interesting finding is that the ribosomal
502 Biophysical Journal 112, 491–504, February 7, 2017
protein genes are highly expressed; however, their posi-
tion is localized in a region different from other highly
expressed genes. As shown in Fig. 3, the lowly expressed
genes show the smallest density around the region of
ribosomal protein gene accumulation, suggesting that
the repressive regulatory factors are excluded or RNA
polymerases are accumulated in this region. This result
is a significant feature of the position-dependent regu-
lation in the yeast nucleus, and should be examined
by monitoring the distribution and dynamics of these
genes and factors in the nucleus using fluorescent marker
techniques.

In this study, we used the yku70 esc1 mutant genome as a
perturbed genome from the WT. A similar analysis can be
used for other mutants or perturbed cells. In particular, an
artificial manipulation to chemically change the genome ar-
chitecture is important (56); such genome engineering
methods should provide a useful test platform to analyze
the effect of perturbations. We consider that computational
simulation models will play an important role in the elucida-
tion of genome organization and function as tools for
integrating results from different approaches, including a
biochemical approach like the Hi-C method, a biophysical
approach like the fluorescence monitoring of chromatin,
and the genetic and chemical methods used for the genome
organization.
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