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Abstract

The Human Genome Project (HGP) provided the initial draft of mankind’s DNA sequence 
in 2001. The HGP was produced by 23 collaborating laboratories using Sanger sequencing 
of mapped regions as well as shotgun sequencing techniques in a process that occupied 
13 years at a cost of ~$3 billion. Today, Next Generation Sequencing (NGS) techniques 
represent the next phase in the evolution of DNA sequencing technology at dramatically 
reduced cost compared to traditional Sanger sequencing. A single laboratory today can 
sequence the entire human genome in a few days for a few thousand dollars in reagents 
and staff time. Routine whole exome or even whole genome sequencing of clinical patients 
is well within the realm of affordability for many academic institutions across the country. 
This paper reviews current sequencing technology methods and upcoming advancements 
in sequencing technology as well as challenges associated with data generation, data 
manipulation and data storage. Implementation of routine NGS data in cancer genomics is 
discussed along with potential pitfalls in the interpretation of the NGS data. The overarching 
importance of bioinformatics in the clinical implementation of NGS is emphasized.[7] We 
also review the issue of physician education which also is an important consideration 
for the successful implementation of NGS in the clinical workplace. NGS technologies 
represent a golden opportunity for the next generation of pathologists to be at the leading 
edge of the personalized medicine approaches coming our way. Often under-emphasized 
issues of data access and control as well as potential ethical implications of whole genome 
NGS sequencing are also discussed. Despite some challenges, it’s hard not to be optimistic 
about the future of personalized genome sequencing and its potential impact on patient 
care and the advancement of knowledge of human biology and disease in the near future.
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pioneering work of Walter Gilbert[1] and Frederick Sanger.[2] 
Continuous technological improvements in DNA sequencing 
instrumentation ever since has created an environment 
in which the Human Genome Project (HGP) [3] could be 
finally realized in the year 2001 after a decade of work. The 
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INTRODUCTION

DNA sequencing techniques have revolutionized our 
understanding of human biology over the last forty years. DNA 
sequencing techniques originated in the early 70s due to the 
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HGP was expected to provide mankind with a dramatic 
advance in our understanding of human health and spawn 
a revolution in personalized healthcare approaches. While 
the pace of progress related to personalized healthcare has 
been frustrating for some, there is much cause for optimism. 
The HGP catalysed significant developments within both 
the academic as well as the commercial biotechnology 
industry. The emergence of Direct-to-Consumer (DTC) 
genomic industry can be traced back directly to the wealth of 
information provided by the HGP project. DTC companies 
such as 23andMe (23andme.com), and Navigenics (http://
www.navigenics.com) provide a broad interrogation of an 
individual’s genome using microarray technology. The 
customer is then provided a wealth of genomic information 
such as susceptibility to various inherited diseases and past 
ancestry. The ability to review this data over the internet in an 
interactive fashion has been cleverly described as “recreational 
genomics”. The customer can then use this information as 
a basis for a discussion with their physicians to assess their 
disease risk and modification of lifestyle patterns. DTC 
services have the financial backing from large technology 
companies such as Google and the venture capitalists in 
Silicon Valley, a strong indication of the potential to monetize 
knowledge that resides in the human genome. While our 
current understanding of many fundamental mechanisms of 
cellular function remains unclear, there is strong interest in 
areas of practical application such as pharmacogenomics to 
deliver improved patient outcomes compared to the “trial-
and-error” approaches of traditional pharmacology.

NEXT GENERATION SEQUENCING

Sequencing technology has evolved at a fast pace over the 
past decade, with simultaneous advantages in declining 
costs-per-base sequenced. The genome that cost around 
3 billion dollars for the HGP a decade ago can be now 
sequenced for a few thousand dollars.[4,5] Several NGS 
technologies have been developed using diverse approaches 
since 2001, each with its own distinctive strengths and 
weaknesses. The major commercial entities which came 
into existence after the success of the HGP include[6] 
454 sequencing (http://www.my454.com/), Solexa/
Illumina (http://www.illumina.com), SOLiD (http://www.
appliedbiosystems.com), and Polonator (http://www.
polonator.org/). Intense competition among these so called 
“second generation” DNA sequencing entities has driven 
down the cost per Mb of sequence produced. A common 
feature of the “second generation” DNA sequencing 
technologies involves the isolation of DNA followed by the 
creation of single stranded DNA libraries. The libraries are 
created by the fragmentation of the sample DNA using 
various techniques. The key differentiating features specific 
to each commercial platform are in the subsequent steps. 
The DNA fragments are modified with the ligation of an 
adapter and amplified using a unique adapter chemistry 
proprietary to each individual commercial platform. 

These modified DNA library molecules are then amplified 
either on a bead (Emulsion based PCR method - 454 and 
SOLiD) or a glass slide (Bridge amplification -Illumina). 
The amplified single DNA strands on the bead or 
glass slide are then paired with complementary DNA 
nucleotides in individual flow cycles of ATGC templates. 
A complementary match unique to the DNA template 
strand results in the release of a signal detected by the 
sequencing instrumentation.

The original instrumentation developed for the purpose 
of DNA sequencing had a research focus primarily. This 
resulted in the development of instrumentation such as the 
454 GS FLX from Roche, SOLiD from Life Technologies 
and the HiSeq series from Illumina. These instruments are 
capable of extraordinary amount of DNA sequence output 
per single run [Table 1]. However, due to the large amount 
of throughput, a single run of this instrumentation is 
approximately 10 days per instrument (SOLiD and HiSeq). 
The long duration of runs are clearly incompatible with 
a rapid turnaround scenario such as clinical sequencing. 
In addition, the cost of these instruments represents a 
considerable investment sum for a mid-sized academic 
institution. In response to these concerns, companies have 
introduced “bench-top” DNA sequencing instrumentation 
such as 454 FLX Jr from Roche, MiSeq from Illumina 
and IonTorrent from Life technologies. The Roche and 
Illumina sequencers are smaller sized versions of the 
larger instruments based on the same DNA sequencing 
technology. IonTorrent from Life Technologies is based on 
a completely different sequencing methodology which uses 
a hydrogen ion sensing semiconductor chip. There is much 
excitement among clinicians and laboratorians regarding 
this technology due to (1) The relatively low cost of the 
technology and (2) The rapid turnaround time. IonTorrent 
and MiSeq instruments can complete the runs within a few 
hours instead of the 10 days required by bigger instruments 
[Table 1]. With the low cost and fast turnaround time, it 
is now feasible to introduce next generation sequencing 
technology into the clinical workplace to provide clinical 
care of the patients. The sequencing throughput of 
benchtop instrumentation is far less compared to the bigger 
instruments. However, for targeted clinical DNA sequence 
applications this is unlikely to be a major impediment. Also, 
the throughput of these instruments is increasing every few 
months, making the issue of DNA throughput redundant 
for clinical applications.

Beyond the 2nd generation and benchtop sequencing 
instrumentation, the “third generation” sequencers Helicos 
Heliscope (http://www.helicosbio.com), Pacific Biosciences 
SMRT (http://www.pacificbiosciences.com) and Oxford 
Nanopore (http://www.nanoporetech.com) are being 
actively developed. The 3rd generation instruments differ 
from the 2nd generation instruments in that the initial 
DNA amplification step is unnecessary. The sample DNA 
strands are sequenced directly at the single-molecule level 
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using engineered protein polymerases. The advantage of 
these methods is the avoidance of PCR amplification 
bias. However, it is important to note that none of the 
3rd generation technologies are currently in mass use for 
DNA sequencing. The potential of these technologies 
remains unproven as of current date. The reader is referred 
to exhaustive reviews of the next generation technology 
platforms and their unique distinguishing characteristics[6-8] 
for more details [Table 1].

With the availability of a multitude of platforms and 
dramatically lower costs of sequencing, NGS technologies 
are expected to have a major impact on the way we practice 
medicine in the near future; the $1,000-dollar genome is 
expected to popularize whole-genome sequencing and is 
very likely be used in routine clinical diagnostics.[9] Whole-
genome sequencing will form the basis of the new field of 
personalized ‘genomic medicine’[10,11] that aims to integrate 
the clinical symptoms, personal and family history and the 
patient’s genomic DNA sequence to provide healthcare 
that is personalized and unique.[12,13]

CANCER AND NEXT GENERATION 
SEQUENCING

Cancer is a major cause of mortality in the United States, 
second only to cardiovascular disease. The genomic profile 
of alterations associated with cancer are complex in nature. 
Multiple alterations occurring in different types of cancer 
include mutations, translocations, copy number alterations 
in the form of gains and losses,[14-17] complex karyotypic 
rearrangements and epigenetic changes. Using NGS to 
identify the complete DNA sequence of cancer genomes 
has the potential to provide major breakthroughs in our 
understanding of the origin and evolution of cancer. [18] 

Earlier studies using karyotyping and microarrays provided 
important insights into structural genomic alterations 
associated with multiple cancer subtypes. Our knowledge 
of the molecular mechanisms of cancer began with 
population based studies of family cohorts susceptible to 
cancer. Previous epidemiological studies of family cohorts 
with an increased inherited susceptibility to breast cancer 
revealed presence of mutations in the BRCA1 and BRCA2 
genes. [19] Other similar studies have shown that mutations 
in the MLH1 and MSH2 genes are associated with a higher 
risk of colon cancer.[20] The number of genetic mutations 
associated with cancer is an ever growing list. While 
useful, epidemiological studies which provide a molecular 
basis of cancer[21] are limited by the extent of information 
obtainable from such a study. Traditionally, most of cancer 
research has focused on single gene and single pathway 
analysis whereas cancer is well known to be a far more 
complex entity involving multiple cell signalling pathways. 
There is a sore need to understand the global levels of gene 
expression and multiple cellular signalling pathways in the 
context of cancer. The ability of NGS technology to deliver 
information on whole genome sequences of different 
cancers will be an invaluable tool to the future pathologist 
and clinician. The data obtained from NGS can provide 
a comprehensive assessment of the genomic landscape 
associated with the genesis and evolution of different 
cancers.[14,18,22-24] Large consortia such as the Cancer 
Genome Atlas (TCGA) and the International Cancer 
Genome Consortium have been formed to sequence 
thousands of cancers and generate a freely available dataset 
of DNA sequence changes in different cancer subtypes.

In order to make sense of the large datasets generated 
by NGS, there is a crucial need for computational 
algorithms and software capable of performing large scale 

Table 1: Popular NGS platforms currently available in the market. The table shows the characteristic 
features of the high‑end sequencing platforms and the recent “bench‑top” platforms

High‑end 
sequencing‑ Platform†

Sequencing 
chemistry

Read lengths/
through put

Run time Template 
prep

Application

Roche 454 -Titanium FLX Pyrosequencing 400 bp 400 Mb/run 10 hours Emulsion 
PCR

Denovo WGS of microbes, 
pathogen discovery, Exome seq

Illumina/Solexa -HiSeq 
2000

Reversible terminator 
chemistry

2×100bp 600 GB/
run (dual cell)

11.5 days Solid-phase Human WGS, exome seq, 
RNA-seq, Methylation

ABI/LifeTechnology-SOLiD 
5550XL

Sequencing by 
ligation

2×60bp 15 GB/day 8 days Emulsion 
PCR

Human WGS, exome seq, 
RNA-seq, Methylation

HelicosBiotechnologies Reversible Terminator 
chemistry

25-55 bp 28 GB/run 
(avg)

>1 GB/hour Single 
molecule

Human WGS, exome seq, 
RNA-seq, Methylation

Roche 454- GS Junior Pyrosequencing 400 bp 50 Mb/run 10 hours Emulsion 
PCR

Denovo WGS of microbes, 
pathogen discovery, Exome seq

Illumina/Solexa- MiSeq Reversible terminator 
chemistry

2×150bp 1.0-1.4 Gb 26 hours Solid-phase Microbial discovery, Exome 
seq, Targeted capture 

ABI/
Lifetechnology- Iontorrent

H+ Ion sensitive 
transistor

320 Mb/run 8 hours* Emulsion 
PCR

Microbial discovery, Exome 
seq, Targeted capture

*Sample preparation – 6 hours, sequencing time – 2 hours, †Data	shown	here	represent	the	highest	figures	currently	available	on	the	company	website	and	is	highly	likely	to	
change by the time this article is published
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informational integration. Cross disciplinary tools such 
as pathway network analysis and graph theory (from 
computer science and pure mathematics) will be useful 
to model regulatory networks and interactions associated 
with cancer tumors.[11,25] Several groups have used 
principles of network theory to develop software tools 
and databases capable of displaying complex biological 
interactions such as (KEGG,[26] Cytoscape,[27] IPA (http://
www.ingenuity.com), STRING,[28] GALAXY[25,29]). These 
interactions are modeled based on data gathered from 
extensive review of experimental biological data and 
current scientific literature which are constantly updated 
to reflect the advancements in the knowledge database. In 
one such interesting proposal, Friend and Ideker propose 
a personalized health model based on the integration of 
multiple sources of data, including clinical, molecular, 
environmental and social data which are then integrated 
using tools of graph networks in a personalized healthcare 
setting.[30] In their model, future clinicians will use multiple 
data networks to infer a patient’s medical condition 
and choose a personalized treatment approach.[30]  
Friend and Ideker envision a future visit to the clinic 
will be based on a seamless integration of biological 
knowledge obtained from a network analysis of multitude 
“omics” sources personalized to each patient. The ability 
of next generation sequencing to provide data regarding 
the genomic, transcriptomic and epigenetic makeup of 
a patient in near real time provides the most promising 
window into such a personalized healthcare future.[30]

Till date, global analysis of cancers using techniques of 
NGS has revealed the occurrence of hundreds of genomic 
variants in each different type of cancer.[15-17,24,31-33] Our 
current understanding of the biological significance of 
each of these mutational findings is limited. However, 
we already possess an expanding choice of investigational 
therapies capable of targeting a particular cell signalling 
pathway mutation. Such treatments have on occasion been 
associated with dramatic clinical responses.[34] However, not 
all mutations are causative and targetable for treatments. 
Understanding the nature of these “passenger” versus 
“driver” mutations in specific signaling pathways is an 
active area of research in cancer genomic biology. NGS is 
well suited to assess global driver gene expression patterns 
in tumors by sequencing cDNA and has the potential to 
provide an enhanced understanding of tumor biology at 
an individual level. With increasing knowledge of the 
mechanisms of these driver mutations, clinicians should be 
able to provide tailored therapeutic choices on a patient by 
patient basis in the near future.

At the current time, useful but still limited multi-gene 
biomarker panels such as the 21-gene, OncotypeDX from 
Genomic Health and the 70 gene, Mammaprint gene 
expression array from Agendia are available commercially. 
These panels are used to assess risk for recurrence of 
cancer and make treatment decisions whether to deliver 

adjunct chemotherapy in breast cancer patients or not 
(http://www.agendia.com/pages/mammaprint/21. php). 
In contrast, data from NGS platforms can provide 
gene expression information from several thousands of 
genes simultaneously, increasing the power of prediction 
exponentially compared to limited gene panel expression 
assays such as Oncotype DX and Mammaprint. With 
suitable computational algorithms and computing power, 
there is the very real chance that NGS will replace many of 
the current, limited cancer biomarker test panels such as 
OncotypeDX and Mammaprint in the foreseeable future.

NGS DATA ANALYSIS WORKFLOW

Once the raw sequence data is obtained from the NGS 
instrument, the computationally intensive step of read 
mapping is performed. The raw data is usually in the 
form of a text file which contains “reads” which are short 
sequences of DNA letters corresponding to the nucleotides 
incorporated during the process of sequencing. Each 
data output file contains millions of these “reads” in 
each data file. The mapping software then attempts to 
“map” the individual sequence NGS “reads” onto a 
reference genome sequence available from online genome 
databases. This process is known as reference mapping. 
Alternatively, when the reference genome is unknown 
apriori, the individual “read” fragments are linked to each 
other by overlapping the common sequences at the ends 
of each read to form a longer, much complete version 
of the genome under study. This is known as denovo 
mapping of DNA sequence. For the purposes of clinical 
sequencing, reference mapping is performed most of the 
time due to our pre-existing knowledge of the human 
reference genome sequence.

The latest version (GRCh37) of the human reference 
genome is provided by the Genome Reference 
Consortium (see http://www.ncbi.nlm.nih.gov/projects/
genome/assembly/grc/index.shtml for details). An 
important factor in the processing and analysis of any 
large dataset, such as next generation sequencing data, 
is the presence or absence of inherent parallelism of the 
data. Data parallelism is a concept that alludes to the 
self-similar nature of the individual components of the 
dataset under study. Next generation sequencing data is 
usually a text (or binary) file in the FASTQ format.[35] 
Since all of the raw NGS data is a collection of similar 
FASTQ lines of text in each individual read, we may 
consider NGS data to be inherently self-similar. It is then 
possible to use a computing solution to map the NGS 
reads onto the reference sequence by allocating separate 
computational processors to deal with different chunks of 
the self-similar NGS read data. Once the data is mapped 
onto the reference genome by different processors, the 
mapped read data is then aggregated by a head computing 
node to provide the final, mapped genomic sequence 
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desired. The computer processing time required for the 
read mapping of the data varies depending on the size of 
the genome that needs to be mapped. More importantly, 
the computational power required for the mapping varies 
depending on the type of the mapping performed. In the 
case of reference mapping, where a pre-existing reference 
genome sequence is already present, the computational 
power and time required for the mapping process is not 
huge. Data generated from a bench-top sequencer can 
be easily mapped using multicore processor. Most of 
the bench top sequencer data reads need a reasonably 
powerful desktop solution (8-12 multicore, 96-256 GB 
RAM) to perform the mapping of sequence data. The 
computational requirements for a whole genome are 
proportionately higher due to the larger size of the whole 
genome (3GB versus the 40-60 MB for the human exome 
and a few MB in the case of a routine clinical gene panel). 
In the case of the whole genome, a parallel processing 
solution composed of multiple nodes with larger RAM 
might be adequate to perform reference mapping.

In contrast, there is a vastly increased need for computing 
power in the case of denovo sequencing where the genomic 
sequence is unknown apriori. Denovo sequencing also 
requires longer read lengths and larger computational power 
to perform the overlapping process efficiently. Denovo read 
mapping is a much more computationally intensive process 
compared to the reference mapping process.

With the availability of increased computing power 
(a cheap commodity nowadays) it is possible to routinely 
implement NGS technology in a medium sized facility 
such as an academic centre if the DNA sequencing 
instrumentation is available. A potential schematic 
illustrating the NGS workflow process is shown in Figure 1. 
The goal of clinical NGS is the identification of point 
mutations and potentially larger structural changes such 
as translocations, rearrangements, inversions, deletions and 
duplications either in germline samples or in tumor samples 
paired with normal genomes for cancer diagnostics. While 
there are few NGS instruments lending to standardization 
of some sort, the same cannot be said for the software 
used to analyse the data. There is a vast ecosystem of 
bioinformatics software available for the purpose of analysis 
of DNA sequencing data (for e.g. see http://seqanswers.com/
wiki/Software/list). In order to make the implementation of 
clinical NGS possible, there is a need for standardization of 
bioinformatics NGS software in the clinical workplace. At 
present, an array of free and commercial software is used 
for the purpose of NGS data analysis which is described in 
the next section.

ALIGNMENT AND ASSEMBLY

The first step of NGS data processing is the alignment 
of reads obtained followed by assembly of the genome of 
the cancer sample. In cancer NGS, the raw NGS reads 

must be aligned to a specific location on the various 
chromosomes to recreate the structural variation within 
the cancer genome. Currently, there are multiple read 
mapping software tools available suited for this step. 
Some of the freely available versions include MAQ,[36] 
BWA,[37] Bowtie,[38] SOAP,[39] ZOOM,[40] SHRiMP[41] and 
Novoalign. Instrument vendors such as Illumina and 
SOLiD provide their own alignment software which may 
be used for the purpose of read mapping. Commercial, 
third party vendors such as CLC Genomics provide 
another avenue for software for the purpose of NGS 
read mapping. All the different sources have their 
inherent advantages and disadvantages. Open source 
software, while free, suffers from the lack of extensive 
documentation and necessitate the end-user to figure out 
the available options in the software. Open source tools 
are often written with the UNIX command line user in 
mind. Lack of UNIX command skills can be a particularly 
significant disadvantage in the use of open source NGS 
tools. Nevertheless, they can provide a significant return if 
sufficient time is invested in learning the *nix platforms. 
Commercial vendors provide proprietary algorithms 
which are optimized to map NGS data. However, the 
software may be expensive and out for reach for the mid-
level academic institutions. It is noteworthy that the 
open source software have much more frequent updates 
of algorithms compared to commercial solutions which 
is a potential advantage in a fast moving field such as 
NGS. Open source NGS tools such as BWA,[37] Bowtie[38] 
and SOAP,[39] which are based on the Burrows-Wheeler 
transformation (BWT) algorithm, perform the mapping 
process extremely fast which may be an advantage in a 
situation such as clinical NGS where turnaround time is 
critical. Softwares based on the BWT algorithm represent 
the next step in the evolution of the alignment algorithms 
and can map a human genome in a matter of hours 
instead of the several days required by other software 
tools such as MAQ[36] and Novoalign (see Bao et al. for a 
detailed comparison of mapping software speeds).[42]

An important additional consideration in the analysis of 
cancer genomes is the need to detect unique rearrangements 
and accurately map the chromosomal breakpoints within 
an individual’s cancer sample. Software which can perform 
de novo assembly of cancer genomes is likely to be a much 
more powerful tool although current algorithms used for 
de novo assembly are quite slow. These include software 
such as Velvet,[43,44] EULER-SR,[45] EDENA,[46] QSRA,[47] 
AbYSS,[48] AllPathsLG (http://www.broadinstitute.org/
software/allpaths-lg), Ray and SoapDeNovo (http://soap.
genomics.org.cn). However, it is important to remember 
that most of the software used for the purpose of mapping 
has its own advantages and disadvantages. The complexity 
of the assembly pipelines including proper metrics to 
perform quality assurance are a crucial element in setting 
up a clinical bioinformatics pipeline. Currently, it is up to 
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the implementing clinical lab to ensure adequate quality of 
the DNA sequence that is produced and analysed. National 
organizations such as the College of American Pathologists 
are in the process of formulating clinical guidelines for 
NGS, though it is a work in progress at the present moment 
(personal communication). With improving algorithms 
for analysis, improved NGS techniques such as paired end 
mapping and the implementation of strict QA criteria, there 
is hope for the routine detection of large scale complex 
structural variation in cancer in the clinical setting.

VARIANT DETECTION

Once the alignment process is completed, downstream 
bioinformatics analysis is performed to detect the clinically 
relevant structural genomic alterations. Different software 
programs are designed to detect different kinds of structural 
variants. NGS methods can provide a diverse array of 
information regarding the cancer genome; the primary 
genomic alterations are described in detail below first 
followed by the software used for detecting these variants:

Single nucleotide polymorphisms (SNPs) and 
point mutation discovery
Molecular diagnostics assays for cancer typically have 
focused on the discovery of mutations in particular pre-
identified genes or small panels of genes (for e.g., Ion 
Ampliseq from IonTorrent). As an example, certain 
mutations in the epidermal growth factor receptor (EGFR) 
gene are associated with favorable responses in certain 
lung cancers treated with targeted therapies like gefitinib 
compared to lung cancers with wild type EGFR.[49]  
With NGS technologies, it is possible to scan the entire 
genome for the presence or absence of mutations in an 
unbiased fashion. Of all the structural variants associated 
with a cancer genome, SNPs are the most reliably detected 
variants in the genome and the most abundant. Additional 
genomic variants such as indels are equally important which 
are relatively difficult to identify. Variants such as indels 
need to be rigorously looked for in the context of clinical 
NGS. Another impediment to successful and reliable 
identification of somatic mutations in cancer is the presence 
of contaminating normal cells. A solution to circumvent 
this problem is to use laser capture microdissection to 
obtain DNA from a population highly enriched for cancer 
cells. Simultaneous analysis of a normal sample from a 
patient provides a baseline germline sequence to compare 
against the cancer genome and detect variations.

There are a variety of software tools which are used for 
the detection of single nucleotide variants in NGS data. 
Open source tools such as SAM tools,[50] use principles of 
Bayesian detection to detect the somatic SNP variants in 
the NGS data analyzed. It is important to remember that 
a majority of these programs are used for variant discovery 
in germline DNA and not cancer DNA. Efficient tools 

which are capable of detecting somatic variation in cancer 
genotypes are currently in various stages of development. 
Most of the software packages used for somatic variant 
detection are based on different statistical models of base 
calling. Examples of such software include SNVmix,[51] 
VarScan[52] and SomaticSniper (http://gmt.genome.wustl.
edu/somatic-sniper/current/).

Higher order variation in the cancer genome
Cancer genomes are highly unstable leading to diverse 
chromosomal abnormalities such as large insertions and 
deletions of chromosomal material. Karyotyping, which 
was for a long time the standard way to identify the 
presence of chromosomal abnormalities, suffers from the 
inability to identify structural abnormalities smaller than 
~5 megabases. SNP and oligonucleotide microarrays have 
revolutionized the field of cytogenetics by providing a 
high resolution (a few kb) capability to identify large and 
small copy number variants as well as areas of copy neutral 
loss of heterozygosity. NGS technologies also can identify 
structural variations in the genome, although routine 
alignment tools are ill-equipped to perform such analysis 
since they cannot identify more than a few nucleotide 
mismatches. Specialized software for analyzing indels from 
paired-end reads such as Pindel[53] are being developed 
which enables identification of structural variants by 
identifying the flanking end regions of the NGS read 
data. Another noteworthy tool used for this purpose is 
the GATK indel genotyper[54] from the Broad Institute, 
which employs heuristic cutoffs for indel calling. Even 
then, calling larger amplifications and deletions in cancer 
chromosomes remains a formidable challenge at the 
present time using NGS technology. Various algorithms 
are being developed to identify these larger variations. 
For example, the circular binary segmentation algorithm 
of arrays was adopted by Campbell et al.[55] The SegSeq 
algorithm uses a merging procedure to join localized SNP 
changes with whole chromosome changes to compare 
tumor to normal samples.[56] A number of other programs 
are also available to identify large scale structural variations 
in the genome, such as BreakDancer[57] which can identify 
candidate structural variants. While the experimental 
resolution of NGS technologies is in no doubt and has 
been successfully utilized to identify variations in different 
types of cancer such as lung cancer, melanomas and breast 
cancer at a single nucleotide level,[14,16,18,58,59] significant 
hurdles still remain in scaling these algorithms to the 
chromosomal level.

BEYOND SEQUENCING THE GENOME

The initial enthusiasm associated with sequencing the 
human genome in 2001 has not surprisingly become 
tempered with the realization that the underlying cell 
biology is not solely dependent on the genome sequence 
alone. The ENCODE project is one effort that is aimed 
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at understanding these multiple layers of biologic 
complexity. [60-63] In this context, NGS platforms offer 
additional versatility and application in transcriptomic 
profiling (as demonstrated by Mortazavi et al[64]), 
chromatin immunoprecipitation, small RNA’s and 
epigenomics studies (discussed below). Transcriptomics 
via NGS can also be employed to probe alternate 
splicing, the process by which multiple RNA isoforms 
(and hence proteins) can arise from a single gene. These 
isoforms contribute to the specificity of individual 
cell types and most likely play a significant role in the 
specificity of cancerous cell types. Identification of novel 
splicing variants is important for understanding biological 
specificity in the context of normal and abnormal cellular 
function. Software tools such as TOPHAT,[65] facilitate de 
novo discovery of splicing variants.

In recent years, the role played by small RNAs (18- 35 bp) in 
the regulation of gene expression has become increasingly 
recognized. Small RNAs play an important role in the 
regulation of expression and translation of mRNAs, and 
thus, the functionality of cells where they are expressed. 
NGS instruments can perform deep sequencing of small 
RNA species for discovery and analysis. There is a specific 
advantage to short read platforms such as Illumina and 
SOLiD in small RNA discovery due to the short nature 
of small RNAs. There are many small RNA databases 
along with bioinformatics tools such as MirCat[66] and 
mirDeep[67,68] which facilitate the identification and 
discovery of small RNAs. For a comprehensive listing of 
noncoding RNAs, the reader is referred to online database 
of NONCODE (http://www.noncode.org/NONCODERv3/).

Epigenomics deals with the chemical modifications 
(e.g., 5′ methylation) of DNA and RNA and the 
impacts of such changes on levels of gene expression. 
The epigenomic status of individual genes determines 
the overall tumor prognosis.[69] The traditional method 
of assessing methylation status of a gene is to use 
bisulfite treatment which converts unmethylated (but 
not methylated) cytosines to uracil which are then 
identified using methods such sequencing or restriction 
endonuclease analysis. A pitfall associated with these 
methods is the labor intensive process required to identify 
epigenetic changes on an individual gene basis. NGS 
offers the potential to explore broad changes in DNA 
methylation pattern across the entire genome as a part of 
a single experiment. It should thus be possible to capture 
epigenetic information from multiple genes at once and, 
in theory, provide enhanced information content in the 
prognostication of the tumor methylation status.

The versatility in NGS platforms to examine a variety of 
cellular properties coupled with its rapidly falling costs, 
thus offers an integrated and efficient platform beyond 
determination of genomic sequence alone.

INSTITUTIONAL LEVEL CHALLENGES FOR 
THE IMPLEMENTATION OF CLINICAL NGS 
SEQUENCING

At the present, there are multiple commercial NGS 
operations in existence which perform clinical NGS as a 
service, such as Illumina clinical genome service, Complete 
Genomics, Seqwright and Beijing Genomics Institute to 
name a few. In addition, there is a fast developing interest 
in academic centres to establish NGS facilities for clinical 
next generation sequencing. However, establishing a clinical 
NGS facility at a mid-sized academic centre is not a 
trivial undertaking. Some of the main challenges involved 
include: (i) NGS technology overhead - space, power, 
tools, infrastructure for NGS. (ii) Need for computational 
architecture for data analysis. (iii) Data archival and retrieval 
facilities. This is an important issue for clinical NGS due 
to the turnaround of the number of patients and samples 
involved. (iv) Computational tools for data processing and 
management, (v) Identification and training of technical 
and bioinformatics personnel, and vi) Building a pipeline for 
acquisition and management of properly consented samples.

Bioinformatics is the single largest bottleneck in the 
routine implementation of next generation sequencing in 
clinical practice at the current time. A general guideline 
is that every dollar spent on sequencing hardware must be 
matched by a comparable investment in informatics. [70] 
Some of the considerations in implementing a clinical 
NGS facility from scratch are described below in detail.

1. NGS hardware implementation requires substantial in-
house investment for the necessary infrastructure, or 
alternatively can be outsourced to a third party vendor. 
However, this is an issue which is becoming less crucial 
with the advent of bench top NGS instrumentation. 
A mid-sized hospital can obtain a Illumina MiSeq for 
$125,000 or an IonTorrent for $50,000 at the present 
time. One advantage of having an in-house clinical NGS 
sequencing capability is that it enables greater control 
over the nature of data generated. This is critical for 
applications such as clinical sequencing, where process 
quality control is the utmost priority for medico-legal 
reasons. Outsourcing to a commercial vendor can make 
it more difficult to understand the data produced.

2. Availability of computational resources required 
for NGS data analysis- Availability of in-house, 
institutional computer clusters in a university centre 
greatly facilitates the NGS data analysis step. While 
the availability of such resources is crucial for purposes 
of whole genome sequencing in the context of research, 
they are not as critical for facilities using a bench-
top sequencer for purposes of clinical NGS. Most of 
the data generated from a bench-top sequencer can 
be easily analyzed with a high end desktop server. 
Institutional computer clusters have the advantage of 
scheduled maintenance, professional back-up facilities, 
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and dedicated and shared nodes for research. However, 
the use of such facilities for the purpose of clinical 
NGS where there are issues of HIPAA violation of 
patient information, it is preferable to use an in-house 
computing facility. Most academic centres have existing 
centralized computing resources which can be readily 
leveraged for the purpose of in-house NGS analysis. 
Figure 1 shows a schematic of a routine bioinformatics 
workflow required for analysis of NGS data.

3. Long-term storage of clinical NGS data – The 
rate of growth of the sequencing data generation 
has outstripped the commonly used Moore’s law 
paradigm for measuring the rate of growth of 
computational hardware speed [Figure 2]. Moore’s 
law states that the rate of growth of computers 
doubles every 18 months which is particularly relevant 
to the field of NGS due to needs for computational 
power to collect, analyze and manage NGS data.

 The amount of data generated by NGS for purposes of 
whole genome sequencing for research is normally in the 
range of terabytes,[71] and is dependent on the scientific 
workflow. In a research setting, it is not unreasonable to 
imagine a core facility producing many terabytes and 
potentially a petabyte of data over the course of a year 
at a national level centre. However, the cost per MB 
of hard drive space has been falling dramatically over 
the last decade, providing cheap storage options for 
long-term storage of DNA sequencing data [Figure 3]. 
Data management of this magnitude requires a well-
defined policy of efficient NGS data management. 
Assessment of data storage needs is complicated by 
variability of data formats and the lack of industry wide 
standardization for data output from different NGS 
platforms. Multiple groups have attempted to come 
up with unified solutions such as the SAM and BAM 

Figure 1: Cancer genome analysis workflow. Various aspects of the 
workflow start from obtaining the clinical sample to examining the 
reads for possible variants in the genome

Figure 2: Cost per megabase of DNA sequenced in the last decade. 
The semi‑log plot shows a dramatic reduction in the cost per 
megabase of DNA sequenced in the last decade. Also shown are the 
approximate dates of introduction of different NGS instruments 
by commercial vendors into the market. The costs have fallen 
dramatically since 2007 due to competition from multiple vendors. 
Data source – http://www.genome.gov/sequencingcosts/

Figure 3: Storage and computational processor trends over time. Note the semi‑log scale on the y‑axis. The linearity of the semi‑log plot 
is in concordance with the Moore’s law over time. This is in contrast to the costs of DNA sequencing showing a dramatic reduction in 
costs [Figure 1]



J Pathol Inform 2012, 3:40 http://www.jpathinformatics.org/content/3/1/40

data formats.[50] SAM stands for Sequence Alignment/
Map format, which is a text format for storing sequence 
data in a series of tab delimited ASCII columns. SAM 
is typically generated as a human readable version of 
the BAM (binary alignment map) format, which stores 
the same data in a compressed, indexed, binary form. 
The BAM data file format (binary text based format) is 
reasonably efficient for storage.

 For clinical genomic data using NGS, the issues of 
data storage and management are not as acute due 
to the small size of data generated using bench-top 
sequencers. However, with the ever lowering costs of 
generating NGS data, it is not unrealistic to reach 
point where a bench-top sequencer may produce 
data sufficient for whole genomic analysis in the 
future. Clinical NGS facilities need to plan for such 
a development and be nimble enough to implement 
a data storage solution for those needs. One may also 
foresee a time in the future when it is much cheaper 
to resequence the patient DNA “on-demand” and 
circumvent the need for long-term storage. An 
additional concern related to clinical NGS is that 
privacy concerns must be addressed to ensure proper 
storage of NGS data in a HIPAA-compliant manner. 
In addition, sustained operation of a clinical NGS 
facility over the long-term requires regular attention 
to service contracts, equipment turnover, data 
storage contracts, continuing grant support, as well 
as potential institutional or charitable support.

4. Cloud computing solutions as an alternative to in-
house computational infrastructure - In the last 
3-4 years, online computer clusters have become 
available commercially for public use through the 
web. This “on-demand” access to supercomputing 
is referred to as a “cloud computing” solution. Large 
technology companies such as Amazon, Google 
and Microsoft have adopted centralization of 
supercomputing facilities made possible mainly by a 
technology known as virtualization of software.[72]

 Virtualization refers to the process where a user can 
access an “image” of the operating system (Linux or 
Windows) residing on a server of a company hosting 
the cloud. This interface image connects the user’s 
desktop with the company server. This OS “image” is 
indistinguishable from an ordinary desktop interface 
with the only difference being that the virtual operating 
system is hosted on a remote server [Figure 4] and not 
locally on the user’s desktop. The major advantage 
of using the cloud solution is the availability of 
supercomputing power without having to install and 
maintain expensive supercomputing hardware. The 
fee schedule for these elastic compute cloud services 
is competitive and affordable for an average user, 
with pay-as-you-go pricing. The National Science 
Foundation has initiated a recent program to provide 

Figure 4: A schematic illustrating the organization of a cloud 
computing solution for analysis of NGS data

funding and computing cloud access to individual 
research groups in collaboration with Microsoft. Private 
vendors such as Amazon S3 also provide long-term 
storage of datasets using networked storage facilities. 
This is a critically important given the scale of NGS 
datasets (often running into petabytes).

 There are some disadvantages with cloud services, a 
major one being, privacy of patient data. Cloud services 
also necessitate the transfer of patient data over an 
Internet network which is potentially vulnerable to 
hacking. Another disadvantage is the need for high 
capacity networking access. Genomic datasets are often 
large (in the range of terabytes), making efficient data 
transfer a challenge. A potential solution is the use of 
postal mail to send NGS data which is then uploaded 
to the server by the cloud service provider. For clinical 
genomic data, an unknown variable is the data policy 
of the companies running the compute cloud cluster. 
What happens to this data over the long-term? Would 
the company retain rights to such data indefinitely? 
Would it be possible to erase the data upon patient 
request? Currently, clear guidelines are lacking, though 
cloud services have begun to address these issues. Since 
most cloud computing services charge on the basis of 
data transmitted and computational time, these services 
may become expensive. This is the reason large centers 
prefer to develop their own computational clusters and 
storage facilities.

5. Analysis and interpretation of NGS data – Routine 
analysis of NGS data requires multidisciplinary 
teams of clinical and biomedical bioinformaticians, 
computational biologists, molecular pathologists, 
programmers, statisticians, biologists, as well as 
clinicians. Most facilities are unlikely to have 
the financial resources to recruit an experienced 
bioinformatician, so it is important to organically build 
a group of people trained in-house, including graduate 
students and postdocs from various backgrounds 
and with different levels of expertise. Particularly 
crucial personnel include specialists with core skills 
in computing systems, programming, biology, and 
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statistics to create an environment that encourages 
collaboration of ideas for data analysis.

6. Other Considerations - While there are several 
polished commercial solutions for NGS analysis, as well 
as several other not-so-polished open-source solutions, 
some research labs prefer to create custom-solutions 
for their requirements.[70] These data filters and file 
converters take information from one format, process 
it and generate an output in another format. They also 
guide raw sequence data through other processing steps 
such as data cleanup, collection of quality metrics, 
alignment to a reference genome, and others. The 
challenge with locally-developed solutions is the lack 
of compatibility with other NGS lab solutions. Also, in 
the case of clinical NGS, the lack of standardization of 
data analysis is a major hurdle in the implementation 
of the technique.

 As NGS technology is applied to a wider range of 
biological and clinical problems, it becomes critical 
to standardize the quality metrics for the NGS data 
generated.[7] These include validation and comparison 
among platforms, data reliability, robustness and 
reproducibility, and quality of assemblers. Guidelines 
for standardization of NGS protocols, along the 
lines of- efforts initiated by the FDA: the microarray 
quality control (MAQC) project[73] and the 
sequencing quality control (SEQC) project (http://
www.fda.gov/MicroArrayQC/), will be particularly 
important for NGS going forward.

IMPACT OF NGS IN PHARMACOGENOMICS

A frequent criticism of the use of NGS technology in 
the clinical workplace has been the lack of definitive 
evidence regarding the utility of NGS data to alter 
patient outcomes. Much work still needs to be done to 
establish NGS in a clinical diagnostic and prognostic 
role. However, one immediate area of application with 
the potential to alter clinical outcomes favourably 
would be Pharmacogenomics. The arsenal of potential 
therapeutic agents available to the clinician has been 
steadily increasing over the past fifteen years. In parallel, 
we now have a better understanding of the genes 
involved in the metabolism of drugs. Pharmacogenomics 
is the area of study that uses the knowledge of specific 
genetic variations to provide a “personalized” approach to 
treatment and dosing of patients with cancer and other 
clinical disorders. Previously, the main stay of cancer 
treatment was a combination of ‘one size fits all’ modality 
of surgery, chemotherapy and radiotherapy. We now 
know that different drugs are metabolized at different 
rates depending on the polymorphic genetic variation in 
individuals leading to uneven eradication of cancer cells. 
Chemotherapy has significant side effects due to the 
toxicity of the drugs, whose metabolism is influenced by 
the patient’s genetic differences. Cancer cells are prone 

to develop resistance to chemotherapy due to somatic 
mutations and could potentially benefit from a targeted 
therapeutic agent or regimen.

A paradigm of pharmacogenomics is in the treatment 
of breast cancer in women with a targeted molecular 
approach. A subset of breast cancers is known to 
overexpress a protein, Her2/Neu. Such patients respond 
favourably to Trastuzumab, a drug targeted towards the 
Her2/Neu receptor. Pharmacogenomic evaluation of 
Her2/ Neu status before treatment can stratify subsets 
of breast cancer patients who are likely to respond to 
Trastuzumab versus patients who are unlikely to do so. 
Other cancers for which targeted therapies are available 
based on genetic variations in the tumor or germline 
include chronic myeloid leukaemia (treated with Imatinib 
mesylate as well as second generation tyrosine kinase 
inhibitors), colorectal cancer (treated with an array of 
therapies including Irinotecan, Cetuximab, Panitumab) 
and lung cancer (treated with Erlotinib, which is directed 
towards EGFR over expression in a subset of lung cancers). 
Companion diagnostics to identify subsets of patients 
likely to respond to treatment are becoming commonplace.

There is great excitement over the prospect of using 
NGS technology to identify somatic variants to direct 
changes in therapy early on,  as resistant tumor clones 
begin to emerge. NGS also offers broad potential for 
pharmacogenetic use in a wide variety of non-neoplastic 
conditions. Warfarin is an important anticoagulant for 
patients at risk for venous thrombosis. It has long been 
known that patients can clinically respond differently to 
a standard dose of Warfarin. Patients who are sensitive 
to low doses of Warfarin due to genetic variation are at 
the risk of catastrophic bleeding which can lead to death. 
In contrast, there are patients with genetic variants who 
may be resistant to Warfarin and are at an increased risk 
of developing clots. The major component of sensitivity 
to Warfarin has been traced to genetic polymorphisms of 
the VKORC1 and CYP2C9 genes.[74] NGS technology has 
the potential to classify the patient’s sensitivity status to 
Warfarin and prevent catastrophic complications. These are 
just a few examples of the potential role NGS technology 
can play in the future during the implementation of the 
personalized medicine. A detailed list of different drugs 
and their associated genes for currently approved by FDA 
pharmacogenomic evaluation is provided in Appendix A.

TRAINING AND IMPLEMENTATION OF NGS 
IN THE CLINICAL WORKPLACE

The traditional model of clinical medicine has relied on 
bedside interaction of trainees with ‘tutor’ physicians 
and a hands-on approach to learning medicine. NGS 
technology is a quantum leap in our ability to provide a 
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comprehensive, molecular scale view of the human genome. 
These massive datasets contain vital clues that can explain 
the basis for human disease and provide useful tools for its 
prognostication. However, we are at the very beginning of 
obtaining clinical expertise and knowledge to curate and 
interpret NGS data on a routine basis in the hospital. Barriers 
hindering the routine implementation of NGS technology in 
the clinical workplace include lack of correlative data, a lack 
of physician-friendly computational data analysis tools, and 
structured training programs and curricula to train physicians 
in the use and interpretation of NGS and genomic data.

In the near term future, there is going to be a pressing need 
for such physicians skilled with the interpretation of NGS 
data. The pressure for such skillsets and training is bound 
to increase due to the availability of direct-to-consumer 
(DTC) genetic tests. Once could easily imagine a scenario 
where a patient walks into a clinic with a report from a DTC 
firm demanding an explanation of the findings. At present, 
medical school training is inadequate to deal with complex 
genomic issues due to the lack of a formal curriculum. 
The problem is even more acute in the practicing 
physician who has neither the time nor the resources to 
develop an understanding of genomics. At present, there 
are approximately 1,000 medical geneticists and 3,000 
genetic counsellors in the United States. These numbers 
are grossly inadequate to deal with the explosive growth of 
genomics testing. One feasible solution is to form strategic 
collaborations between disciplines to deal with genomics.[75] 
At the present time, there are over 17,000 pathologists in 
the United States. Pathologists are perfectly suited to take 
on the role of dealing with the complexities of genomic 
data interpretation due to their broad training in anatomic 
pathology and laboratory medicine and their ability to 
integrate knowledge of large datasets with clinical findings.[75]

The need to train pathologists in the use of 
computational analysis tools is necessary to manage large 
datasets such as those encountered in the NGS. There is 
a critical need to create a subspecialty of “Computational 
Pathology” to train pathologists with the ability to 
manage and interpret high-throughput biological data. 
Computational pathologists would not only understand 
the basis of molecular testing, but also possess skills for 
data manipulation, analysis and interpretation and create 
lab workflows suitable for NGS data analysis. Skills to 
manage and explore large datasets would be invaluable 
not only in genomic analysis, but also in high throughput 
proteomic and metabolomics analysis.

REIMBURSEMENT ISSUES RELATED TO 
NGS IN THE CLINICAL LABORATORY

An important consideration in the widespread 
implementation of NGS in the clinical workplace is related 
to issues of reimbursement. Appropriate reimbursement 
will be necessary for the widespread adoption of clinical 

next generation sequencing, so it’s notable that the Centre 
for Medicare and Medicaid Services (CMS) Coverage and 
Analysis Officer commented in October 2011 “I hope people 
realize that whole genome sequencing itself is probably 
something that CMS would never cover. ”[76] CMS and 
other payers are increasingly looking for evidence of clinical 
utility for services which contribute to patient management 
and outcomes. The AMA CPT Editorial Panel also expects 
laboratory procedures seeking a category 1 CPT code to be 
performed widely and have publications supporting their 
importance in patient care. [77] Over the past two years 
the CPT Editorial Panel has been revising billing codes to 
make molecular pathology services more transparent; it’s 
interesting that next generation sequencing is mentioned 
in the description of service for one assay (Long QT 
Syndrome) which assesses a medium-sized panel of genes.

The charge for the clinical and laboratory community 
seems straightforward: demonstrate that next generation 
sequencing assays contribute meaningfully to patient 
care through diagnoses or improved therapeutic decisions 
that cannot currently be made and/or savings compared 
to existing test strategies to include the retirement of 
other tests no longer needed. Published next generation 
experiences till date have been impressive case reports, 
but series of consecutive patients in whom actionable 
variations can be consistently identified for specific 
indications will likely be needed to change the mind of 
the CMS Coverage and Analysis Officer.

An interesting concept is the use of whole genome or 
exome sequencing as a one-time ‘universal’ and ‘reusable’ 
laboratory test. A relevant subset of genomic information 
would be useful for an initial episode of care; other 
subsets could be interpreted for subsequent medical 
issues without again performing the technical portion 
of the assay. The interpretation of next generation 
sequence data is complex and requires a trained 
professional, the reason most professional organizations 
have recommended that CPT codes for next generation 
sequencing be placed on the Physician Fee Schedule.

OWNERSHIP AND PRIVACY CONCERNS 
RELATED TO NGS

An important issue related to the clinical implementation 
of NGS is ownership of genomic data. Questions include, 
does a patient exclusively own his/her digital data? Does 
the facility, either a hospital or a commercial lab, own 
this DNA data? If so, what rights do they possess over the 
data? Can a facility commercially “lease” the sequencing 
data to third-party data miners? Is it legally possible 
to expunge the sequencing data on concerns of abuse 
of genomic data? Would an institutional review board 
(IRB) kind of a model work to govern the proper usage 
of these data? What rights do physicians have regarding 
the exploration of such data? Is clinical data exploration 
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limited only to diseases and subsets for which the 
patient presents for evaluation and management? Is the 
pathologist obligated to report findings elsewhere in the 
genome unrelated to the current focus of investigation? 
Like many other areas of science, NGS technology is 
far ahead of the law. We need to carefully consider the 
social and societal implications of such a revolutionary 
technology in greater detail with proper oversight.

The Health Insurance Portability and Accountability Act 
(HIPAA) enacted by the U.S. Congress in 1996 deals with 
privacy concerns related to patient data. Title II explicitly 
deals with issues related to establishment of national standards 
of electronic health care for providers, insurance companies 
and employers. The “privacy rule” establishes guidelines 
and regulations for the use and disclosure of protected 
health information (PHI). In the context of genomics, all 
of the regulations of HIPAA apply to currently used Sanger 
sequencing. However, one could easily imagine practical 
HIPAA hurdles related to NGS data. Clinical NGS datasets 
are extremely large and may require transfer to sites beyond 
an institutional firewall into the cloud for further processing. 
The potential for misuse of NGS data by commercial 
entities is a real concern if adequate safeguards are not in 
place. Commercial vendors of computational services are 
cognizant of the ethical implications of patient sensitive 
data, and governmental guidelines regulating the storage and 
transfer of NGS data by commercial and academic users are 
sorely required. A temporary solution to ensure compliance 
with HIPAA regulations would be to anonymize NGS data 
using identifier numbers and remove all patient identifiers. 
However, this is a temporary fix, and permanent solutions 
need to be researched to solve this problem.

FUTURE OF PERSONALIZED GENOMIC 
MEDICINE

The future of genomic sequencing is very bright. The 
ability of NGS to integrate a diverse set of data analysis 
techniques into a single platform (i.e., DNA-seq, RNA-
seq, transcriptome analysis, methylation analysis) is a 
revolutionary development in the field of biology. As an 
analogy, electronic signal processing moved from the analog 
into the “digital” domain when the personal computer 
was invented. Digitization of signals obviated the need for 
specialized analog processing hardware for different kinds 
of instruments. The “brains” of the instrument moved 
to a single platform (i.e., personal computer) capable of 
controlling a variety of physical instruments. The current 
situation in biology and medicine is somewhat similar. 
Traditional biological research was and is mostly performed 
in a linear fashion. Techniques of molecular biology study 
cellular physiology on a gene-by-gene basis to understand 
cell signal transduction. With the advent of microarrays, 
studies of cell biology have become more parallelized, albeit 
still limited by the number and type of probes available 

on the array. NGS overcomes the limitations of microarray 
studies and represents the next step in the advancement of 
biological discovery which is “independent” of the hardware 
(molecular biology). NGS technology provides biological 
knowledge discovery in a digitized, massively parallel 
fashion. We are at the beginning of a revolution in high 
throughput, massively parallel biological data discovery.

The advent of large dataset biological data has 
necessitated the need for development of computational 
tools required to handle and understand this data. 
Progress is being slowly made on that front using 
techniques of systems biology. Our ability to mine this 
vast array of digitized biologic data and correlate it with 
the accumulated datasets of other individuals provides an 
enormous potential to create models of “personalized” 
genomic approaches to patient care and management. In 
the specific case of cancer, it is important to remember 
that the significance of genomic sequence data is only 
one component of the biologic behaviour of individual 
cancers. There is a need to create specific protocols to 
analyse correlations across individual cancer subtypes 
and across populations of cancer types to unlock the true 
potential of NGS technology approaches.

NGS presents a huge opportunity for interdisciplinary 
teams of scientists, physicians, computer scientists, 
statisticians, bioinformaticians, mathematicians, and 
biologists to formulate personalized approaches to the 
treatment of cancer and revolutionize the way we practice 
clinical medicine. Wet-bench biology provides the feedback 
loop to NGS data enabling predictive modeling and an 
understanding of the fundamental aspects of cancer. As 
bioinformatics tools become increasingly sophisticated and 
user friendly, computation assisted medicine is bound to 
become a reality for the future physician. In the near future 
(~ next 5-10 years) we will witness a dramatic revolution in 
our knowledge of biology due to NGS technologies and its’ 
impact on the way clinical medicine is practiced.
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APPENDIX A

Appendix A: List of drugs currently approved by the 
Food and Drug Administration (FDA) with associated 

pharmacogenomic information. Specific nucleic 
sequence variants (genetic polymorphisms) in genes 
lead to varying metabolism and/or distribution of 
individual drugs§.

Clinical specialty Drugs used Associated genes

Allergy Desloratadine and Pseudoephedrine CYP2D6
Analgesics Celecoxib, Codeine CYP2C9, CYP2D6

Tramadol and Acetaminophen CYP2D6
Antiarrhythmics Quinidine CYP2D6
Antifungals Terbinafine,	Voriconazole CYP2D6, CYP2C19
Anti-infectives Chloroquine, Rifampin, Isoniazid, and 

Pyrazinamide
G6PD, NAT1; NAT2

Antivirals Abacavir,	Boceprevir,	Maraviroc	Nelfinavir,	
Peginterferon alfa-2b, Telaprevir

HLA-B*5701, IL28B, CCR5, CYP2C19, IL28B 
IL28B

Cardiovascular Carvedilol, Clopidogrel, Isosorbide and 
Hydralazine, Metoprolol, Prasugrel, Pravastatin, 
Propafenone, Propranolol, Ticagrelor

CYP2D6, CYP2C19, NAT1; NAT2, CYP2D6
CYP2C19, Genotype E2/
E2 and Fredrickson Type III 
dysbetalipoproteinemia, CYP2D6
CYP2D6, CYP2C19

Dermatology and Dental Cevimeline, Dapsone, Fluorouracil, Tretinoin CYP2D6, G6PD, DPD
PML/RARa

Gastroenterology Dexlansoprazole (1)‡, Dexlansoprazole (2), 
Esomeprazole, Pantoprazole, Rabeprazole
Sodium Phenylacetate and Sodium Benzoate, 
Sodium Phenylbutyrate

CYP2C19, CYP1A2, CYP2C19, CYP2C19, 
CYP2C19, UCD (NAGS; CPS; ASS; OTC; ASL; 
ARG), UCD (NAGS; CPS; ASS; OTC; ASL; ARG)

Hematology Lenalidomide, Warfarin (1), Warfarin (2) 5q Chromosome, CYP2C9, VKORC1
Metabolic and 
Endocrinology

Atorvastatin LDL receptor

Musculoskeletal Carisoprodol, Mivacurium CYP2C9, Cholinesterase gene
Neurology Carbamazepine, Dextromethorphan and 

Quinidine, Galantamine, Tetrabenazine
HLA-B*1502, CYP2D6, CYP2D6, CYP2D6

Oncology Arsenic Trioxide, Brentuximab Vedotin, Busulfan, 
Capecitabine, Cetuximab (1), Cetuximab (2), 
Crizotinib, Dasatinib, Erlotinib
Fulvestrant,	Gefitinib	(1),	Gefitinib	(2),	Imatinib	
(1), Imatinib (2), Imatinib (3), Imatinib (4)
Irinotecan, Lapatinib, Mercaptopurine, Nilotinib 
(1), Nilotinib (2), Panitumumab (1), Panitumumab 
(2), Rasburicase, Tamoxifen, Thioguanine, 
Tositumomab, Trastuzumab, Vemurafenib

PML/RARa, CD30, Ph Chromosome, DPD
EGFR, KRAS, ALK, Ph Chromosome, EGFR
ER receptor, CYP2D6, EGFR, C-Kit, 
Ph Chromosome, PDGFR, FIP1L1-
PDGFRa, UGT1A1, Her2/neu, TPMT, Ph 
Chromosome, UGT1A1, EGFR, KRAS, 
G6PD, ER receptor, TPMT, CD20 antigen, 
Her2/neu, BRAF

Opththalmology Timolol CYP2D6
Psychiatry Aripiprazole, Atomoxetine, Chlordiazepoxide and 

Amitriptyline, Citalopram (1), Citalopram (2)
Clomipramine, Clozapine, Desipramine, 
Diazepam, Doxepin, Fluoxetine, Fluoxetine 
and Olanzapine, Fluvoxamine (1), Fluvoxamine 
(2), Fluvoxamine (3), Iloperidone, Imipramine, 
Modafinil	(1),	Modafinil	(2),	Nefazodone,	
Nortriptyline, Paroxetine, Perphenazine, 
Pimozide, Protriptyline, Risperidone, Thioridazine, 
Trimipramine, Valproic Acid, Venlafaxine

CYP2D6, CYP2D6, CYP2D6, CYP2C19, 
CYP2D6, CYP2D6, CYP2D6, CYP2D6, 
CYP2C19, CYP2D6, CYP2D6, CYP2D6, 
CYP2C9, CYP2C19, CYP2D6, CYP2D6, 
CYP2D6, CYP2C19, CYP2D6, CYP2D6, 
CYP2D6, CYP2D6, CYP2D6, CYP2D6, 
CYP2D6, CYP2D6, CYP2D6, CYP2D6, UCD 
(NAGS; CPS; ASS; OTC; ASL; ARG), CYP2D6

Pulmonary Tiotropium CYP2D6
Reproductive Drospirenone and Ethinyl Estradiol

Clomiphene, Tolterodine
CYP2C19, Rh genotype, CYP2D6

Rheumatology Azathioprine, Flurbiprofen TPMT, CYP2C9
§Data source - http://www.fda.gov/Drugs/ScienceResearch/ResearchAreas/Pharmacogenetics/ucm083378.htm, ‡Numbers in the brackets indicate that the drug is affected by 
multiple genetic polymorphisms
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