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1 | INTRODUCTION

The promise of urinary extracellular vesicles (uEVs) in biomarker discovery is
emerging. However, the characteristics and compositions of different uEV sub-
populations across normal physiological and pathological states require rigorous
explication. We recently reported proteomic signatures of small (s)-uEVs (<200 nm
membranous nanoparticles) and described putative biomarkers corresponding to
the diagnosis, tumour burden and recurrence of the lethal adult primary brain
tumour, glioblastoma. Here, we comprehensively characterise uEV populations with
significantly different mean and mode particle sizes obtained by differential cen-
trifugation at 100,000 X g (100K-uEVs; smaller) and 17,000 X g (17K-uEVs; larger)
using Fourier-transform infrared spectroscopy and quantitative data-independent
acquisition mass spectrometry. We show distinct differences in protein and lipid con-
tent, prominent protein secondary structures, and proteome distributions between
uEV populations that can distinguish glioblastoma patients from healthy controls
and correspond to clinically relevant tumour changes (i.e., recurrence and treat-
ment resistance). Among the key findings is a putative seven-protein biomarker
panel associated with 17K-uEVs that could distinguish all glioblastoma patients from
healthy controls and accurately classify 98.2% of glioblastoma samples. These novel,
significant findings demonstrate that both uEV populations offer individual and
combined biomarker potential. Further research is warranted to elucidate the com-
plete diagnostic, prognostic, and predictive capabilities of often-neglected 17K-uEV
populations.
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Glioblastoma IDH-wildtype CNS WHO grade 4 (GBM) is the most common adult primary malignant brain tumour. Newly diag-
nosed patients are managed proactively, with a standard protocol of maximal surgical resection followed by radiotherapy with
concurrent and adjuvant temozolomide chemotherapy. However, residual GBM tumour cells persist within the brain parenchyma
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post-therapy, which leads to inevitable relapse with treatment-resistant GBM recurrence (Davis, 2016). There are limited treat-
ment options for these highly heterogeneous and diffusely invasive tumours, particularly in the recurrent setting, and patients
encounter a myriad of clinical challenges that contribute to the dismal 14-month median overall survival (Davis, 2016).

Radiological monitoring is the mainstay approach for assessing treatment response and recurrence in GBM patients. How-
ever, in approximately 30% of GBM patients undergoing standard treatment, neuroimaging cannot reliably distinguish tumour
progression from radiological artefacts caused by treatment effects on the brain (i.e., pseudo progression and radiation necrosis),
despite adjunctive modalities such as PET imaging and updated treatment response criteria such as RANO 2.0 (Abbasi et al.,
2018; Zikou et al., 2018). In such cases, a definitive diagnosis is only possible through pathological assessment of biopsied tissues
obtained via neurosurgical intervention, a clearly impractical and risky approach for routine tumour monitoring. Small biopsy
specimens are also prone to sampling bias, an issue exacerbated by the intratumoural heterogeneity of GBM, meaning that the
extent of a GBM recurrence can be difficult to determine (Sottoriva et al., 2013). Together, these factors hamper accurate early
detection of GBM tumour recurrences and delays effective, timely clinical management that would otherwise improve patient
outcomes.

In the search for a minimally invasive approach to accurately diagnose and monitor GBM tumours, extracellular vesicles (EV's;
small membranous nanoparticles) have shown enormous potential as valuable biomarker reservoirs for liquid biopsy develop-
ment. The field of EV research is rapidly evolving, and many EV subtypes have been described in the literature over the last
decade (Di Vizio et al.,, 2012; Ma et al., 2015; Melentijevic et al., 2017; Vagner et al., 2018); the most investigated subtypes to
date, within the 30-1000 nm size range, encompass three main classes of secreted vesicles: endosome-derived ‘exosomes), plasma
membrane-derived ‘microparticles’ and ‘ectosomes, and apoptotic cell-derived apoptotic bodies (Akers et al., 2013; Pavlyukov
et al,, 2018). While there is currently no standardised classification system or universal molecular markers for the different EV
subtypes, researchers are encouraged to meet the minimal information for EV studies reached by international consensus, and
operational terms are recommended to describe the physical (i.e., size and density), biochemical (e.g., surface protein and lipid
composition) and cell-of-origin properties/cellular processes of the EV populations studied (Théry et al., 2018; Welsh et al., 2024).

EVs released by GBM cells contain selectively packaged tumour molecules, including proteins, lipids, DNA, RNA and gly-
cans (Del Bene et al,, 2022; Quezada et al., 2018) that are protected from degradation by a lipid bilayer. They can also traverse
physiological membranes (i.e., the blood-brain barrier) into the circulation (Bao et al., 2021; Xavier et al., 2020), where they
are stable and can be readily captured. Indeed, GBM-released EVs are critical mediators of intercellular communication in the
tumour microenvironment, exerting functional influence on recipient cells to promote tumour heterogeneity, invasive spread,
chemoresistance, and immune evasion (Quezada et al., 2018). Thus, resolving the complex molecular cargo of EV's in the periph-
ery can be used to detect dynamic GBM tumour changes for real-time patient monitoring (Ebrahimkhani et al., 2018; Hallal,
Azimi et al., 2020; Hallal, Ebrahim Khani et al., 2020; Hallal et al., 2024). In the circulation, EVs are remarkably diverse in size,
morphology, cargo, and origin, with EV populations arising from all cell types in the body (Welsh et al., 2024). Despite this
diversity, we and others have explored EVs for GBM biomarkers in clinical biofluids (Ebrahimkhani et al., 2018; Hallal, Azimi
et al., 2020; Hallal, Ebrahimkhani et al., 2019; Hallal, Russell et al., 2019; Hallal, Ebrahim Khani et al., 2020) and identified robust
GBM biomarker signatures in EVs captured from neurosurgical aspirates (Hallal, Russell et al., 2019; Hallal, Ebrahim Khani et al.,
2020), cerebrospinal fluid (Akers et al., 2013; Street et al., 2012), peripheral blood (Hallal, Azimi et al., 2020; Hallal, Ebrahim Khani
etal., 2020) and most recently, the urine (Hallal et al., 2024). EV-associated biomarkers have shown promise for diagnosing dif-
fuse glioma tumour subtypes and detecting changes associated with increased tumour aggression (Hallal, Azimi et al., 2020;
Ebrahimkhani et al., 2018). In a recent feasibility study, we recovered urinary EVs (uEVs) from GBM patients before and after
primary tumour resections and at confirmed tumour recurrences and identified robust protein signatures within small uEVs
(<200 nm) corresponding to GBM tumour burden and recurrence (Hallal et al., 2024).

The urine is recognised as a rich, dynamic and heterogeneous source of EV populations, originating from various parts of the
urogenital tract, including the kidney, bladder, prostate and uterovaginal tract, as well as from resident immune cells, bacteria
and yeast (Erdbrigger et al., 2021). The clinical relevance of capturing uEVs for detecting genitourinary disease biomarkers
is well established (Abbastabar et al., 2020; Cricri et al., 2021; Erdbriigger & Le, 2016; Erdbriigger et al., 2021; Karpman et al,,
2017; Sonoda et al., 2019). Emerging reports, however, suggest that urine is also a valuable source of EV-associated biomarkers
for conditions extending beyond the urogenital tract (Fraser et al., 2016; Street et al., 2012; Sun et al., 2019; Wang et al., 2019).
Several studies show striking enrichments of EV-cargo biomarkers in the urine associated with neurological disorders, including
Parkinson’s, Alzheimer’s and Huntington’s disease (Fraser et al., 2016; Street et al., 2012; Sun et al., 2019; Wang et al., 2019), as well
as in oncology, including lung (Li et al., 2011) and breast cancers (Hirschfeld et al., 2020; Sun et al., 2019). Theoretically, urine is
an ideal biofluid for routine non-invasive tumour assessments as large volumes can be regularly and non-invasively sampled to
capture highly stable uEV particles (Erdbriigger et al., 2021).

As the urinary system is a potential route of EV clearance from the body, EVs from the circulation must pass through the kid-
ney’s glomerular filtration barrier to enter the urine. It is possible that smaller EVs simply traverse the 50-100 nm fenestrations
of the capillary endothelium (Ndisang, 2018), however, the pore sizes of the slit diaphragm (approximately 6-8 nm in healthy
conditions) likely restrict the direct passage of EVs into the urine (Erdbriigger et al., 2021; Patrakka et al., 2002). Pathological con-
ditions, such as minimal change nephrotic syndrome (Patrakka et al., 2002) and diabetes (Ndisang, 2018), are proposed to enlarge
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TABLE 1  Overview of the urinary-EV experimental cohorts.

Experimental Cohort Description Sample n Gender Female:Male Mean age (years) + SD
GBM PreOP Pre-operative primary GBM 13 4F9M 62.1+14.1

GBM PostOP Post-operative primary GBM 7 4F3M 62.9 +13.6

GBM REC Pre-operative GBM recurrence 6 4F2M 60.3 +19.3

HC Healthy control 14 7F7M 69.4 +3.7

the slit diaphragm’s pore sizes to 70 nm, potentially enhancing the passage of smaller EVs from the circulation into the urine
(Erdbriigger et al., 2021; Patrakka et al., 2002). Alternatively, EVs may enter the urine via transcytosis, a process where circulating
EVs and non-vesicular proteins are endocytosed by renal tubular cells or podocytes, then packaged into EVs and secreted into
the urinary space. The transcytosis route is supported by observations of circulatory albumin associated with uEVs (Kerjaschki
etal., 1989; Londono & Bendayan, 2005; Musante et al., 2020), and the relative under-representation of urogenital tract resident
proteins in the protein cargo of uEVs (Wang et al., 2019). Nonetheless, the exact mechanisms by which small and large sized EV's
pass from the circulation into the urine remain unclear (Erdbriigger et al., 2021).

We identified only one investigation that explored the molecular profiles of small (s-) and large (I-) uEVs in genitourinary
disorders (Bruschi et al., 2019), and we note the absence of any study examining different uEV subpopulations in oncology.
Previously, we demonstrated the feasibility of using protein biomarkers associated with smaller (<300 nm) uEV populations iso-
lated at 100,000 X g (100K-uEVs) for a GBM ‘liquid gold’ biopsy (Hallal et al., 2024). Here, we extend this work by investigating
the compositional variances between 100K-uEVs with overall larger uEVs populations pelleted at the interim differential cen-
trifugation method step (17,000 X g; 17K-uEVs). We evaluated the biomolecular variations of the two uEV populations in GBM
and healthy controls using Fourier-transform infrared spectroscopy (FT-IR) and data-independent acquisition mass spectrom-
etry (DIA-MS) (Gillet et al., 2012). Additionally, we investigate the proteomes of 17K-uEVs and test their feasibility as potential
biomarkers for GBM. Our findings reveal significant differences in uEV lipid composition and proteome distributions between
100K-uEVs and 17K-uEVs in GBM patients relative to healthy controls, and at key GBM clinical stages. Thus, we argue that
17K-uEVs represent an untapped EV compartment rich with biomarker potential.

2 | MATERIALS AND METHODS
2.1 | Cohort information and urine collection

Urine specimens were collected from catheterised GBM patients and stored at —80°C by the Sydney Brain Tumour Bank (SLHD
HREC X19-0010). This biomarker discovery study was performed under the approved human ethics protocol, USYD HREC
2019/705. Urine (20-100 mL) was collected from participants diagnosed with glioblastoma, IDH-wildtype, CNS WHO2021 Grade
4 (Classification of Tumours Editorial Board, 2023), at three distinct clinical time points, that is, before (PreOP; n = 9) and after
surgical removal of primary tumours (PostOP; n = 7), and prior to the surgical removal of a GBM recurrence (REC; n = 6).
All PreOP urine specimens were collected immediately prior to surgery and PostOP samples were collected the day following a
gross total resection (average 18.3 h post-surgery). GBM urine samples were compared to urine from age- and gender-matched
healthy controls, collected as mid-stream, first morning pass urine specimens (HC; n =13). A summary of experimental cohorts
is provided in Table 1; refer to Table S1 for additional demographic and clinical details, as well as GBM patient blood and urine
biochemistry (includes creatinine and protein concentration).

2.2 | Isolation and characterisation of urinary extracellular vesicles

To isolate the uEV populations, thawed urine samples (20-100 mL) were subjected to a differential ultracentrifugation protocol,
described before (Hallal et al., 2024). Briefly, an initial 3000 X g centrifugation step was used to deplete cell debris and larger
particles, followed by 17,000 X gv for 30 min at 4°C to pellet 17K-uEVs; the supernatant was kept for further processing. The
3000 X g pellet was treated with a reducing mixture at a final concentration of 5 mM (tris(2-carboxyethyl)phosphine hydrochlo-
ride) TCEP-HCI/50 mM Tris-HCl/25 mM sucrose (15 min at RT) to release uEVs entrapped within lattice-like uromodulin
polymer networks that form during low-speed centrifugations (Fernandez-Llama et al., 2010; Welsh et al., 2024). The reducing
mixture was then diluted seven-times with 4 mM TCEP-HCI/10 mM Tris/HCI, followed by a 17,000 X g (30 min, 4°C) spin.
The initial and treated 17,000 X g supernatants were then combined and ultracentrifuged (100,000 X g, 2 h, 4°C in 38 X 102 mm
Beckman Coulter polycarbonate bottles; fixed angle rotor F-37L-8 8 X 100 mL, THERMO WX 100; 100K-uEVs). The workflow
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to isolate the 17K-uEVs and 100K-uEVss is outlined in Figure la. A portion of 100K-uEV specimens used in this study overlap
with those used in our pilot study on s-uEVs for a ‘liquid gold” GBM biopsy (Hallal et al., 2024); these overlapping samples are
marked with an asterisk in Tables S2-4.

EV populations were characterised using orthogonal methods according to the latest guidelines of the International Society
for Extracellular Vesicles on the Minimal Information Required for Studies of Extracellular Vesicles (MISEV2023) (Welsh et al.,
2024). EV size distributions and concentrations were measured by nanoparticle tracking analysis software (NTA, version 3.0)
using the NanoSight LM10-HS (NanoSight Ltd., Amesbury, UK), configured with a 532 nm laser and a digital camera (CMOS
Trigger Camera). EVs were diluted in filtered PBS (viscosity 1.09 cP) to ensure that 20-100 particles were detected in the field of
view in the standard CCD camera of the microscope. The NTA video recordings (60 s) were captured in triplicate at 25 frames/s
with default minimal expected particle size, minimum track length, and blur setting, a camera level of 11 and a detection thresh-
old of 5. The temperature of the laser unit was controlled at 25°C. NTA software measured the size distribution (ranging from 10
to 1000 nm), concentration (particles/ml), mean (nm) and modal (nm) sizes of the nanoparticle populations by simultaneously
tracking Brownian motion and light scatter of individual laser-illuminated particles and calculating their diameter using statis-
tical methods (Dragovic et al,, 2011). The 17K-uEV and 100K-uEV samples were also imaged by cryogenic-transmission electron
microscopy (cryo-TEM), as previously described at Sydney Microscopy and Microanalysis, University of Sydney (Mastronarde,
2005). Briefly, the 100K-uEV and 17K-uEV samples were applied to copper 300-mesh lacey carbon grids and plunged frozen
into ethane using a Vitrobot IV (ThermoFisher). The grids were imaged using SerialEM (Mastronarde) on a ThermoFisher
Glacios (operated at 200 kV) equipped with a Falcon III camera (ThermoFisher) at 22,000X or 45,000X magnification. Image
scale bars were determined in ImageJ 1.53K software. Lastly, liquid chromatography-tandem mass spectrometry (LC-MS/MS)
was used to assess the purity of EVs from common contaminants, the intracellular origin of the EVs, and to identify the presence
of EV features through canonical EV markers and the presence of the top 100 EV-marker proteins as curated in Vesiclepedia, a
compendium of EV-associated molecules (the LC-MS/MS method is detailed below in Section 2.4).

2.3 | Fourier-transform infrared spectroscopy of urinary-EVs: data capture, analysis and
interpretation

Paired 100K-uEV and 17K-uEV pellets from the urine of four healthy individuals (50 mL urine; uEV pellets resuspended in 100 uL
de-ionised H,O) and four pre-operative GBM patients (10-25 mL; uEV pellets resuspended in 100 pL PBS) were characterised
by Fourier-transform infrared spectroscopy (FT-IR). FT-IR is a non-invasive, label-free, high-throughput method that utilises
the absorption of IR radiation to determine the vibrational modes of molecular functional groups. When applied to biological
samples, FT-IR reveals valuable information related to sample composition, structure and molecular interactions (Ami et al.,
2013; Amir et al., 2013). Each uEV sample (2-4 pL) was evenly spread onto a 96-well silicon plate and dried in ambient air for 3 h
prior to data collection. Infrared spectra were collected for the paired 100K-uEV and 17K-uEV specimens using a Bruker Tensor
27 FT-IR spectrometer coupled to a high-throughput sampling extension module (HTS-XT, Bruker Optics, Ettlingen, Germany).
The spectrometer is equipped with a KBr beam splitter and deuterated L-alanine doped triglycine sulphate (DLaTGS) detector,
and the humidity was controlled via two desiccant cartridges (one located within the spectrometer and the other within the HTS-
XT). Spectra were collected over the region of 400-4000 cm ! at a spectral resolution better than 0.9 cm ! with the co-addition
of 256 scans. Each sample was run in triplicate to ensure measurement reproducibility. A background reading was collected
from an empty well before each sample acquisition to minimise spectral variations caused by background noise. The FT-IR
spectral data were subject to atmospheric correction for CO,, H,O and aqueous solutions, followed by vector normalisation and
baseline correction (rubberband method) using OPUS 8.7.3.1 (Bruker Optics) software. The corrected, triplicate FT-IR spectra
for 100K-uEV and 17K-uEV specimens were further analysed and visualised with Orange Data Mining 3.35 software.

Spectral assessments of HC uEVs were performed for FT-IR peaks between 700-3800 cm ™. FT-IR spectral peak assessments
for GBM uEVs were restricted to 1300-3800 cm™! peaks due to the presence of PBS in the GBM uEV preparations which con-
tribute convoluted signals between 900 and 1300 cm™! from phosphate vibrations (Movasaghi et al., 2008). To visualise the
multidimensional 100K-uEV and 17K-uEV FT-IR spectra, we used t-distributed stochastic neighbour embedding (t-SNE), a
dimensionality reduction algorithm, and principal component analysis (PCA). The t-SNE was performed on 50 principal com-
ponents and optimised with a measure of perplexity value of 30. Spectral data for I00K-uEV and 17K-uEV samples were averaged,
and the most prominent peaks were identified and selected for further assessment.

For FT-IR data interpretation, we drew on observations reported in the literature for FT-IR peak profiles of nucleic acids, car-
bohydrates, phospholipids, proteins, peptides, lipids and fatty acids; corresponding FT-IR spectra are summarised in Figure S4.
To decipher overlapping peaks associated with protein secondary structure, the second derivative FT-IR spectra (which allows
increased resolution) were plotted using averaged 100K-uEV and 17K-uEV signals with a Savitzky-Golay filter: window, 5; poly-
nomial order, 3; derivative, 2. The relative second derivative peak heights were compared for 3-pleated sheets (1615-1638 cm™!)
to B-turns (1658-1688 cm™!). The relative proportions of lipid-to-protein content were estimated for 100K-uEVs and 17K-uEV's
using a pseudo-Voigt peak fitting model, a Voigt approximation from a weighted sum of Gaussian and Lorentzian functions
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(Boselt et al., 2023). The sum of the area under the peaks associated with CH,/CHj stretching (2700-3000 cm™') and amide I
region (1580-1720 cm™!) was used to estimate the average lipid and protein concentrations (a.u.) (Mih4ly et al., 2017).

2.4 | EV proteome preparation for data-independent acquisition mass spectrometry

uEV proteomes were extracted and prepared for LC-MS/MS analysis using established methods (Hallal et al., 2024). Briefly,
the EV pellets were resuspended in 0.2% (w/v) Rapigest SF™ (Waters, Milford, MA, USA) in 0.05 mol/L triethylammonium
bicarbonate (TEAB), incubated at 95°C for 5 min and sonicated twice with a step-tip probe at 30% intensity for 20 s to aid EV lysis
and protein resuspension. The protein content of the uEV pellets was estimated using the Qubit® Protein Assay Kit (Invitrogen,
Carlsbad, CA, USA) and 25-50 ug EV protein aliquots were digested by sequencing-grade trypsin (Promega, Madison, WI) in a
1:30 (w/w) trypsin: protein ratio and desalted by solid-phase extraction using 1cc HLB cartridges (Waters, MA, USA).

Desalted peptides (300 ng) were analysed using a Q-Exactive™ HFX hybrid quadrupole-orbitrap mass spectrometer (Thermo
Scientific, MA, USA). Peptide mixtures (0.1 pg/pL) resuspended in 3% (v/v) ACN/0.1% (v/v) FA were separated by nano-LC
using an Ultimate 3000 UHPLC and autosampler system (Dionex, Amsterdam, Netherlands). Reverse-phase mobile buffers
were composed of A: 0.1% (v/v) FA (Thermo Scientific, MA, US, Cat No. 34851-4), and B: 80% (v/v) ACN (Thermo OPTIMA
LC-MS grade, Cat No. 34851-4)/0.1% FA. Peptides were eluted using a linear gradient of 5% B to 42% B across 140 min with a
constant flow rate of 250 nL min~!. High voltage (2000 V) was applied to a low-volume tee (Valco, Houston, TX, USA), and the
column tip was positioned approximately 0.5 cm from the heated capillary (T = 275°C) of the MS. Positive ions were generated
by electrospray, and the Orbitrap was operated in data-independent acquisition (DIA) mode. A total of 20 variably sized windows
(including 1.0 Da window overlap) were generated, covering a precursor mass range of 350-1650 m/z. The m/z ratios selected for
MS/MS were dynamically excluded for 20 s. An LC-MS/MS standard consisting of 30 fmol pre-digested BSA (GeneSearch, QLD,
Australia, Cat No. P8108S, 500 pmol) ensured the instrument was performing optimally. The LC-MS/MS standard injection
was repeated throughout the analysis along with one patient sample to ensure that the technical reliability and sensitivity of the
instrument were maintained.

2.5 | Analysis of DIA-MS data

A comprehensive GBM spectral library previously generated from primary patient-derived GBM cells, GBM-EVs enriched
from surgical fluids and GBM tumour tissues (Hallal, Azimi et al., 2020) was used for targeted DIA-MS data extraction of
uEV proteomes. The library contained spectral data for 8651 protein groups and 186,037 precursors. The DIA-MS data was
aligned and searched against the spectral library using data independent neural network (DIA-NN™) with the following param-
eters: trypsin, two missed cleavages; maximum number of variable modifications, 2; variable peptide modifications, M excision,
carbamidomethylation and oxidation; peptide length range, 7-30; precursor m/z range, 300-1800; fragment ion m/z range, 100-
2000; precursor false discovery rate, 1%; quantification strategy, robust LC (high accuracy). The mass accuracy was optimised by
DIA-NN, and scan windows were inferred separately for each data sample.

After removing low-confidence identifications and interfering precursors, DIA-NN allowed a MaxLFQ-based protein quan-
tification of the proteins identified at a 1% false discovery rate (FDR). The MaxLFQ abundance values for identified proteins were
output into quantities matrices. The repeatability and reproducibility of the DIA-MS approach were assessed by correlating the
abundances of replicate MS injections of the same uEV sample (UH10 100K-uEV, Int Ctrl) captured at four time points during
the data acquisition (Int Ctrl 1, 2, 3, and 4). Int Ctrl 1 and 2 were analysed during the DIA-MS acquisition of 100K-uEV sam-
ples (n = 35), and Int Ctrl 3 and 4 were analysed during the subsequent acquisition of 17K-uEV (n = 35) peptide samples. The
goodness-of-fit measure for linear regression (coefficient of determination, R?) found high reproducibility and repeatability of
the replicate injections; R? > 0.9585 and stable protein identifications (Figure SI).

2.6 | DIA-MS data filtering, normalisation, statistics, and visualisation

We adopted a global absolute normalisation method, conducting DIA-MS analyses on equal amounts of total uEV proteins
(300 ng). The DIA-MS uEV data was filtered, processed and normalised with Perseus 1.6.5.0 (Tyanova et al., 2016). Protein
abundance levels were processed by a log2 transformation, followed by imputation of missing values from the normal distribution
and quantile normalisation to adjust for differences in sample size and measurement bias. Proteins identified in 100% of samples
were selected for comparative analysis between 100K-uEVs and 17K-uEVs. Comparative analyses between 17K-uEV cohorts were
performed on proteins present in at least 80% of samples in each cohort (HC, GBM PreOP, GBM PostOP and GBM REC). The
proteomes of each cohort were annotated to Vesiclepedia, and sites of expression and cellular components were characterised
using FunRich 3.1.3 (Pathan et al., 2015).
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Normalised data were used to calculate fold changes, and Student’s t-tests (assuming equal variance) were performed to deter-
mine the statistical difference between sample cohorts. Differentially abundant proteins were visualised with volcano plots using
OriginPro. Orange Data Mining 3.35 software was used to generate Euclidean distance maps and PCA plots to observe the
clustering patterns of sample groups. Significant 17K-uEV proteins corresponding to a GBM diagnosis (PreOP GBM vs. HC;
p-value < 0.05) were assessed using a logistic regression model with L2 Regularisation (C =1) in a supervised learning approach.
The model ranked the proteins by importance for classifying GBM based on the magnitude of their coefficients (). A step-
wise selection method was applied to the top-ranking proteins to determine protein combinations that had the best collective
performance under a L2-regularised logistic regression model (C = 1). A multivariate logistic regression model was trained
and tested 100 times with a data split of 75%-training and 25%-testing. Performance metrics included average Area Under the
Curve (AUQ), classification accuracy (CA), Fl score, precision, recall, specificity and log loss metrics. Using GraphPad Prism
10, the best-performing proteins were individually assessed with a receiver operating characteristic (ROC) curve, and the AUC
summarised their overall performance in terms of sensitivity and specificity. Box plots were created using GraphPad Prism 10.

2.7 | Functional annotations of identified proteins

Pathway analysis was performed using Ingenuity® software (Ingenuity Systems, USA; http://analysis.ingenuity.com) to assess
functional associations (biological and canonical pathways) of differentially abundant proteins (p < 0.05) by performing core
expression analyses using default criteria. The Database for Annotation, Visualisation and Integrated Discovery (DAVID) was
used to generate functional annotation charts for protein lists that are exclusive to 100K-uEVs and 17K-uEVs, and for protein lists
with significant differential abundance between 100K-uEVs and 17K-uEV’s, using default annotation settings. Listed annotations
had a fold-enrichment > 2 and FDR < 0.01.

2.8 | Data availability

The GBM spectral library is available in PeptideAtlas with the identifier PASS01487. The MaxLFQ data generated by DIA-NN
used for this study is provided in Table S2. The RAW LC-MS/MS proteomics data has been deposited to the ProteomeXchange
Consortium via the PRIDE partner repository with the dataset identifier PXD051553 (Perez-Riverol et al., 2022).

3 | RESULTS
3.1 | Characterisation of small and large urinary-EV populations

uEV populations were isolated from urine by differential ultracentrifugation; 17K-uEVs were recovered by 17,000 X g centrifu-
gation, and 100K-uEVs were pelleted by 100,000 X g ultracentrifugation (Figure la). Cryo-TEM images for 100K-uEVs and
17K-uEVs reveal rich polydisperse vesicular structures devoid of surrounding lattice-like networks, indicating no apparent con-
tamination with uromodulin polymers. The 100K-uEV's are comprised of vesicular populations, ranging from 50 to 200 nm, that
have well-defined round-circular morphologies with single, double, or quadruple membranes (Figure 1b-1). The 17K-uEV par-
ticles exhibited a greater diversity in size and morphology; 17K-uEV diameters ranged from 70 to 600 nm and showed rounded
and complex ellipsoid-shaped vesicles with both singular and multiple membranes (Figure 1b-2). NTA corroborates the micro-
graph observations, which show that 17K-uEV's are comprised of heterogeneous particle populations with larger size distributions
(80-600 nm; n = 9) relative to 100K-uEVs (80-400 nm; n = 9). Specifically, 100K-uEV fractions include a major population of
117.5 nm-sized particles and a minor population of 282.5 nm-sized particles. In comparison, the most prominent 17K-uEV pop-
ulation is measured at 147.5 nm with smaller populations at 102, 122.5, 197.5, 272.5 and 377.5 nm (Figure 1c). Overall, 17K-uEV's
had greater mean and modal sizes (mean, 215.1 & 3.3 nm; mode, 151.0 + 18.9 nm) than 100K-uEVs (mean, 160.2 + 3.3 nm; mode,
116.1 & 7.6 nm, Figure S2A).

Paired 100K-uEV and 17K-uEV samples isolated from 35 urine specimens (GBM and HC; Table S1) were characterised using
our established DIA-MS workflow (Hallal et al., 2024). Overall, a total of 6834 proteins were confidently identified across all 100K-
uEV and 17K-uEV specimens (q-value < 0.01; Table S2). A total of 2294 and 928 proteins were identified in 100K-uEVs and 17K-
uEVs, respectively, in at least 80% of urine specimens (28/35) and were well represented by the top-100 EV proteins, as reported by
Vesiclepedia [I100K-uEV (91/100); 17K-uEV (83/100); Table S3]. More stringently, 683 and 205 proteins were confidently identified
in all 100K-uEV and 17K-uEV samples, respectively, with 199 proteins sequenced in both uEV populations (Figure 1d, Tables S3
and S4). Functional enrichment analysis showed that the proteomes of both uEV fractions are largely annotated to exosomes, as
well as other membrane compartments of the cell (Figure le-1), and proteins are expressed in relevant sites, including the brain
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Characterisation of 100K and 17K urinary extracellular vesicle pellets. (a) The differential centrifugation workflow included the isolation of

urinary-EVs at 17,000 X g (17K-uEVs) and at 100,000 X g (100K-uEV) from urine. Cryo-transmission electron microscopy imaged (b-1) 100K-uEVs at 45,000X
magnification and (b-2) 17K-uEVs at 22,000X magnification. (c) The average particle size distribution of paired 100K-uEVs (red) and 17K-uEVs (blue)
populations determined by nanoparticle tracking analysis (NTA, n = 9). (d) A data-independent mass spectrometry (DIA-MS) analysis of paired 100K-uEV's
and 17K-uEVs (n = 35) identified a total of 683 and 205 proteins, respectively, with a substantial overlap of 199 protein species. The uEV protein profiles had
significant functional annotations to (e-1) membrane compartments of the cell and (e-2) sites of expression including the brain, plasma and urine. (f) A
volcano plot shows proteins with significant differential abundance between 100K-uEVs and 17K-uEVs; red proteins have higher levels (FC > 2, adjusted
p-value < 0.05) and blue proteins have lower levels (FC < 2, adjusted p-value < 0.05) in 100K-uEVs relative to 17K-uEVs.
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(81.2%-85.5%), plasma (93.2%-97.0%) and urine (86.9%-98.5%). Interestingly, higher proportions of the 17K-uEV proteome
were annotated to the brain, plasma, and urinary compartments relative to 100K-uEVs (Figure le-2).

Six proteins (including ATP6AP1, KRT18, LAIRI, SERPINA3, VASN and KPNB1) were exclusively identified in all 17K-uEV
samples, whereas 484 proteins were specific to the 100K-uEV fraction (Figure 1d, Table S4). The 484 proteins restricted to 100K-
uEVs include canonical EV proteins (CD63, CD81, CD9, TSG101, ITGBL, FLOT1, LGALS3BP, RACL, YWHAG, VCP), different
chaperone classes (i.e., TRiC subunits—TCP1, CCT2, CCT3, CCT4, CCT5, CC6A, CCT8, and heat shock proteins—HSP90BI,
HSPAI2A and HSPA9), members of the Ras oncogene family (RAB10, RAB14, RABIB, RAB21, RAB23, RAB2A, RAB35, RAB5A,
RAB8A, RAB8B) and Rho family proteins (RHOA, RHOB, RHOC, RHOG). Using DAVID, the 100K-uEV restricted proteins
were annotated to functions frequently observed in EV studies, including membrane trafficking (fold-enrichment = 3.0, p-
value = 1.2 x 107'¢), signalling by Rho GTPases (fold = 2.6, p-value = 3.9 X 107"%), endosomal sorting complex required for
transport (ESCRT; fold = 11.3, p-value = 4.7 x 107'), signal transduction (fold = 1.4, p-value = 2.5 x 10~°), chaperonin-mediated
protein folding (fold = 3.4, p-value = 1.4 X 1073), and integrin signalling (fold = 5.4, p-value = 4.6 x 107%).

As above, a substantial overlap of 199 proteins was detected in all paired 100K-uEVs and 17K-uEVs samples (n = 35;
Figure 1d, Table S4). Proteins common to 17K-uEVs and 100K-uEVs were significantly annotated to the extracellular exo-
some (fold = 8.7, p-value = 4.1 X 107164) blood microparticle (fold = 25.4, p-value = 3.6 X 10739), extracellular space
(fold = 4.3, p-value = 6.4 X 10732), focal adhesion (fold = 10.6, p-value = 2.8 x 10~°'), vesicle-mediated transport (fold = 3.6,
p-value = 4.1 x 107'2), calcium-dependent protein binding (fold = 14.3, p-value = 4.12 X 107'?) and cell surface (fold = 4.1,
p-value = 4.2 x 1077). Interestingly, the abundance levels of these shared proteins were sufficient to separate 100K-uEV and
17K-uEV samples on a PCA plot (Figure S2B). Of the overlapping 199 proteins, 45 were significantly differentially abundant
between the uEV populations (absolute fold change, |FC| > 2; Benjamini-Hochberg adjusted p-value < 0.05; Figure 1f). Proteins
with higher levels in 100K-uEVs include those commonly associated with EVs and EV biogenesis, that is, ANXA7, ANXAII,
BROX, CHMP4B, EHD4, FLOTI1, GNGI2, MSN, GDI2, PDCD6IP, RAB5C, RAB7A, SDCBP, SLC44A2, as well as proteins
involved in glomerular filtration, such as IGHAI, JCHAIN and PODXL. Proteins with significantly higher abundances in the
17K-uEVs include serum proteins, that is, ALB, APOB, AZGP1, FGA, HBA], as well as collagens (COL1A1, COL1A2, COL3Al),
keratins (KRT1, KRT2, KRT5, KRT9, KRT10) and transmembrane proteins (TMEM256 and ATP6V1H; Figure 1f). A Euclidean
distance map based on the 45 significant differentially abundant proteins highlights the distinct protein profiles of 100K-uEV
from 17K-uEV populations (Figure S2C).

3.2 | The biochemical properties of 100K-uEVs and 17K-uEVs determined by Fourier transform
infrared spectroscopy (FI-TR)

The overarching spectral properties of paired 100 and 17K-uEV samples isolated from HCs (n = 4) were evaluated between 700
and 3800 cm™! in technical triplicate. The FT-IR absorbance spectra for each of the four uEV paired specimens are provided
in Figure S3A; 14 prominent, distinguishable spectral peaks were observed for 100K-uEVs and 12 for 17K-uEVs (Figure 2a). A
comparative summary of the 100K-uEV and 17k-uEV peaks are provided in Figure S4, and includes their wavenumber (cm™),
corresponding functional group vibrations and key biological compounds. Although 100 and 17K uEVs display similar FT-IR
absorbance peaks (785, 942, 1162, 1238, 1630, 1669, 3215, 3343 and 3437 cm™!), inherent spectral differences between the pairs
of uEV populations were observed (Figure 2a), as depicted by a t-SNE plot (Figure S3B). Within 780-1270 cm™! regions, 100K
populations have more prominent signals associated with symmetric (1076 cm™') and asymmetric (1238 cm™) phosphate (PO,)
stretching of nucleic acids and phospholipids compared to 17K-uEVs (Figure 2a, Figure S4). Peak differences are also present in
regions associated with lipids/acyl chains (1458-1465 cm ™ and 2700-3000 cm™). Interestingly, while both 100K-uEVs and 17K-
UEVs exhibit clear signals associated with methyl (CH,/CH;) bending (1458-1465 cm™') (Movasaghi et al., 2008), differences
are observed in the region associated with methyl stretching (2700-3000 cm™!) where peaks for symmetric CH, (2852 cm™),
asymmetric CH, (2923 cm™!) and asymmetric CH; (2957 cm™!) stretching are present in 100K-uEVs but absent in 17K-uEVs
(Figure 2a) (Movasaghi et al., 2008); this observation was noted with no coinciding peak shifts (3000-3100 cm™!) in 17K-uEV's
that usually occur with unsaturated lipid components (Christy & Egeberg, 2006; Derenne et al., 2013; Lewis & McElhaney, 2013).

Across the mid-IR range, the most noticeable spectral peaks appear in the amide I region (1600-1700 cm™!), which is associated
with proteins and peptides (Figure 2a). Here, the 100K-uEVs and 17K-uEVs share two vibrational peaks that are characteristic of
protein secondary structures, including -pleated sheets (1630 cm™' peak) and $-turns (1669 cm™') (Naumann, 2001; Romano
etal., 2020). However, differences in the height and shape of these peaks suggest distinct protein structural confirmations between
the two uEV populations (Figure 2a). Calculating the second derivative of the amide I peaks enhanced their resolution and
allowed the comparison of their peak heights (Figure S3C). The 3-pleated sheets to 3-turn peak height ratios were 0.53 for 100K-
uEVs and 3.67 for 17K-uEVs, indicating 8-pleated sheet enrichment in 17K-uEV proteins and S-turn enrichment in 100K-uEV
proteins (Table 2).

FT-IR spectral differences in the 3200-3600 cm™! region reveal variations in carboxyl and amino groups between 100 and
17K-uEVs. Both populations exhibit carboxylic acid O-H stretching at 3215 cm ™! and primary amine stretches at 3343 cm™! and
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FIGURE 2  Evaluation of the Fourier Transform Infrared Spectroscopy (FT-IR) spectral differences between the 100K-uEVs and 17K-uEVs of
glioblastoma (GBM) patients compared to healthy controls (HC). Paired 100K-uEV and 17K-uEV specimens isolated from the urine of four healthy individuals
(urine-1, urine-2, urine-3, urine-4; Figure S3A) were analysed by FT-IR in triplicate within the mid-IR region (400-4000 cm™"). (a) An overlay of the average
FT-IR absorbance spectral profiles for uEVs isolated at 100K (red, n = 4) and 17K (blue, n = 4) shows 14 prominent peaks for 100K-uEVs and 12 prominent
peaks for 17K. Spectral variances are observed between 100 and 17K uEVs for functional group vibrational modes that are typically associated with nucleic acids,
carbohydrates, lipids/acyl chains, amide I, and amino acid side chains (carboxylic acids and Amide A). (b) Biochemical profiles of uEVs from GBM patients
and HCs were qualitatively assessed in regions associated with methyl bending (1400-1530 cm™"), amide I stretching (15201840 cm™"), methyl stretching
(2700-3100 cm™"), and carboxyl/primary amine/OH stretches (3000-3800 cm™). The average FT-IR peak profiles for 17K-uEVs (upper blue panel) are shown
for GBM (n = 4, red) and HC (n = 4, green) and average peak profiles for 100K-uEVs (bottom red panel) from GBM (n = 4, orange) and HC (n = 4, blue). (c)
A Principal Component Analysis (PCA) based on the FT-IR absorbances corresponding to regions for methyl bending, amide I stretching, methyl stretching
and carboxyl/amide A/O-H stretching, illustrates the clustering patterns for paired 100K-uEV and 17K-uEV specimens from GBM (n = 4) and HC (n = 4).
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TABLE 2  FT-IR spectral quantitative estimation of the relative proportions of protein secondary structures (5-pleated sheets and §-turns) and
lipid-to-protein content in 100K-uEVs and 17K-uEVs.

Relative quantitation method Biomolecular region Healthy controls (HC) Glioblastoma (GBM)
100K-uEVs 17K-uEVs 100K-uEVs  17K-uEVs

2nd derivative relative peak B-sheets (1615-1638 cm™!) —0.00013 —0.00100 —0.00025 —0.00021

heights B-turns (1658-1688 cm™) —0.00024 —0.00027 —0.00029 —0.00018
B-sheets: B-turn ratio 0.53 3.67 0.86 114

Sum area under the curve of peak Protein (amide I, 16001700 cm™") 19.21 20.34 19.63 29.20

il Lipid (methyl stretching, 2700-3000 cm™) 34.32 473 45.94 74.43
Lipid:Protein ratio 1.79 0.23 2.34 2.55

3437 cm™!. The 17K-uEVs have sharp primary amine peaks, indicating that the peaks are caused by distinct, well-defined primary
amine functional groups. In contrast, the 100K-uEVs show broader peaks, suggesting more complex molecular interactions
between the functional groups (Figure 2a). A pseudo-Voigt curve fitting method was used to estimate the protein and lipid
compositions of the EV populations, and showed that 100K-uEVs contain 1.79-fold more lipids than proteins, whereas 17K-uEVs
are 4.25-fold richer in proteins (Table 2).

3.3 | Biochemical compositional differences in uEV populations captured from GBM patients

We then analysed the biochemical differences between 100K-uEV and 17K-uEV's from GBM patients (PreOP samples) and HCs.
GBM 100K-uEVs shared nine prominent peaks with HC 100K-uEV peaks (1457, 1631, 1665, 2850, 2923, 2963, 3215, 3342 and
3435 cm™!; Figure 2b). GBM 17K-uEVs shared eight prominent peaks with HC 17K-uEVs (1463, 1627, 1669, 2852, 2917, 3220,
3347 and 3435 cm™!), with unique peaks at 2917 cm™! for GBM, and 3260 cm™! for HC (Figure 2b). The spectral differences
between GBM and HC were further analysed for the 17 and 100K-uEVs at spectral regions associated with methyl bending
(1400-1530 cm™), amide I stretching (1520-1840 cm™!), methyl stretching (2700-3100 cm™), and carboxyl/primary amine/OH
stretches (3000-3800 cm™'; Figure 2b). The 100K-uEV populations shared similar peak profiles across GBM and HC samples,
however differences were observed in the 17K-uEV spectra. GBM 17K-uEVs had distinct methyl stretching peaks (2852 and
2917 cm™!), which were absent in HC 17K-uEVs, and differences in the amide I peak intensities for 3-pleated sheets and 3-turns,
compared to HC 17K-uEVs (Figure 2b). Interestingly, GBM uEVs contained at least 2-fold higher lipid to protein content, while
HC17K-uEVs were 4-fold more plentiful in protein content than lipid (Table 2). A PCA of the FT-IR data effectively distinguished
GBM from HC uEV samples (Figure 2c).

3.4 | Proteome profiles and protein distributions across 100K-uEVs and 17K-uEVs can indicate a
pre-operative GBM diagnosis

The size distributions of 100K-uEV and 17K-uEV subpopulations, determined by NTA, showed significantly smaller mean pop-
ulation sizes in PreOP GBM patients relative to HCs (p < 0.02; Figure S6A). Using DIA-MS/MS, we compared the proteomic
content of 100K-uEVs and 17K-uEVs captured from GBM (PreOP, n = 9) and HC (n =13) urine specimens. After filtering protein
species to those identified in >80% of samples in each cohort, we detected 2499 and 2341 proteins in 100K-uEVs from PreOP
GBM and HC samples, respectively, while 17K-uEVs had a total of 988 proteins in PreOP GBM and 1245 proteins in HCs (includ-
ing top-100 EV proteins compiled in Vesiclepedia; Figure 3a). Pairwise comparisons between 100K-uEV and 17K-uEV proteomes
identified 120 and 27 significant differentially abundant proteins in HC and GBM PreOP urine specimens, respectively (FC>|2|,
adj p-value < 0.05; Table S5). Among these, 22 proteins had overlapping significance in both HC and GBM PreOP specimens, all
with the same direction of change (Figure 3b), that is, higher levels for 13 proteins (ANXA1l, CHMP4B, EPS8, GNGI2, GPRC5B,
IGHAI LGALS3BB, PDCD6IP, PODXL, RAB7A, RPS27A, SDCBP and SLC44A2) and reduced levels for nine proteins (APOB,
COLIAL KRT1, KRT2, KRT5, KRT9, KRT10, LRP1 and MYH]I0) in 100K-uEV's relative to 17K-uEVs. Five uEV proteins were exclu-
sively significant in GBM 100K-uEV:s relative to 17K-uEVs, including higher levels of ANXA7, CD2AP, RAB14 and SHTN], and
lower levels of THOC2 (Figure 3b).

Next, we analysed the protein distribution changes between 100K-uEVs and 17K-uEVs in GBM. Relative protein abundance
ratios were calculated for the 199 proteins shared between each pair of 100K-uEVs to 17K-uEVs (100K:17K, n = 35; Table S6).
A student’s t-test comparing 100K:17K ratios between PreOP GBM (n = 9) and HCs (n = 13), revealed 13 proteins (AMBE,
ANXAS5, APOAL APOB, APOD, BROX, CAT, CNP, KNGI, MARCKSLI, MASP2, SERPINA5 and TKT) with significantly altered
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FIGURE 3  Changes in proteins distributed between 100K and 17K uEVs isolated from glioblastoma (GBM) patient urine. (a) The number of proteins
identified by DIA-MS in more than 80% of 100K-uEVs and 17K-uEVs from GBM patients and healthy individuals (HCs), including top 100 EV marker proteins
as reported by Vesiclepedia. (b) A Venn diagram showing 22 overlapping significant proteins in 100K-uEVs, relative to 17K-uEVs, for HCs and preoperative
(PreOP) GBM patients; numbers of proteins with higher levels in red and lower levels in blue. (C-D) A stacked column plot illustrates the proportion of total
protein (as a percentage), measured by DIA-MS, associated with 100K-uEVs (% red) and 17K-uEVs (% blue) for proteins with significantly changing
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FIGURE 3 (Continued)

100K-uEV:17K-uEV protein abundance ratios between (c) GBM and HCs, and (d) across three GBM clinical timepoints [PreOP, post-operative (PostOP) and
recurrence (REC)]. Principal component analyses (PCA) reveal clustering patterns based on 100K-uEV:17K-uEV abundance ratios for proteins with significant
changes between (e¢) GBM and HC specimens (13 proteins), and (f) at the three GBM clinical timepoints (PreOP, PostOP and REC; 10 proteins). *’

p-value < 0.05; **" p < 0.01; ***" p < 0.001.

distribution (Table S6). These changes are visualised in a stacked column plot, which illustrates the percentage of each protein
associated with 100K-uEVs and 17K-uEVs in both HC and GBM states (Figure 3c). For example, compared to 17K-uEVs, the
100K-uEVs captured from HCs carry lower levels of AMBP (0.37-fold), while 100K-uEVs from GBM patients carry significantly
higher AMBP (1.45-fold). Interestingly, the distribution of these 13 proteins in 100 and 17K uEV samples can effectively distin-
guish GBM from HC specimens on PCA (Figure 3e). The corresponding average abundances values for these 13 proteins are also
presented in Figure S5A and C.

3.5 | uEV protein distribution in GBM patients changes at distinct clinical timepoints

We then investigated changes in the levels of proteins identified in 100K-uEVs and 17K-uEVs from GBM urine captured pre-
operatively (PreOP, n = 9), post-operatively (PostOP, n = 7) and at confirmed recurrence (REC, n = 6). Proteins confidently
identified by DIA-MS in >80% of 100K-uEV and 17K-uEV samples from PreOP, PostOP and REC cohorts are tabulated in
Figure 3a. Again, we interrogated the distribution of the 199 proteins common to all urine specimens by evaluating their abun-
dance ratios (100K:17K) at different GBM clinical time points (Table S6). The levels of ten proteins (APOB, APOD, BROX,
DYNCIHI, FTHI, HSP90AAIL KNGI, MYH9, PGLS and SPTBNI1) were found to be distributed differently in 100K-uEV's and
17K-uEVs at the different clinical time points (Figure 3d) and clearly separated GBM PreOP, PostOP and REC specimens on a
PCA plot (Figure 3f). Of note, four of these differently distributed 100K:17K proteins (APOB, APOD, BROX, KNG1) also shared
significant differences between GBM and HC samples (Figure 3c). The corresponding average abundances values for these ten
proteins are also presented in Figures 5B and D.

3.6 | Large urinary-EV putative biomarker proteins corresponding to a GBM diagnosis and
clinical changes

Next, we compared 17K-uEV proteomes captured from HC (n = 13) and GBM PreOP (n = 9) samples to identify differentially
abundant 17K-uEV proteins significantly associated with a new GBM diagnosis. A total of 38 17K-uEV proteins changed between
GBM PreOP and HC (FC>|2|, adjusted p-value < 0.05; Figure 4a; Table S7). Among these, 18 proteins overlapped with our
previous study of 100K-uEVs in GBM (Hallal et al., 2024), demonstrating the same trends in abundance changes between GBM
PreOP and HC samples. Functional analyses of the 38 17K-uEV proteins include positive associations for cancer, cellular stress
and injury, neurotransmitters and other neurosignalling pathways, and negative associations to cytokine signalling and cellular
immune response (Figure S6B).

ROC analyses were performed for the 38 significant 17K-uEV proteins; the AUCs are tabulated in Figure 4a, and confidence
intervals are listed in Figure S6C. An L2-regularised logistic regression model was used to rank the importance of the 38 uEV
proteins for distinguishing PreOP GBM from HC samples, based on their logistic regression coefficients (8, Figure S4A). A
stepwise approach was then applied to the top-ranking proteins to identify the optimal combination of proteins for a multivariate
logistic regression model that accurately differentiates GBM PreOP samples (1 = 9) from HCs (n = 13). Across multiple stratified
train-test data splits (75%-25%, 60%-40% and 50%-50%), the top seven proteins (SERBP1, KRT19, AARS], LMAN2, KNG, HPX
and MYOF) consistently outperformed the full set of 38 significant proteins, and demonstrated superior performance across all
metrics including AUC, classification accuracy, F1, precision, recall and specificity, and lower log loss values (Figure S7A-C).
Training and testing log loss curves for the three data splits demonstrate the optimal performance of the models for both 38
proteins (Figure S8A) and the top seven protein set (Figure S8B), the latter showing lower training loss values.

The individual performances of the top seven proteins are visualised as ROC curves, showing high sensitivity and specificity
(AUC > 0.77; Figure 4c), and their abundances in HC and PreOP GBM cohorts shown as boxplots (Figure 4d). The highest
collective performance of the top seven 17K-uEV proteins was observed in the 75%-25% train-test split, achieving near-perfect
classification accuracy of 98.2% (Figure 4b). Furthermore, the model’s generalisability was evaluated on an independent blinded
hold-out set of four GBM PreOP and four HC specimens (Figure 4c). The model had a high classification accuracy of 87.5%
(Figure 4c-1) and could correctly predict 75% of GBM (3/4) samples and 100% of HCs (4/4). A PCA based on the abundance
levels of the top performing protein set shows distinct separation between GBM PreOP and HC samples (Figure 4f).
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FIGURE 4 Putative diagnostic biomarkers for Pre-Operative (PreOP) GBM in the 17K uEV pellet. (a) The table of 38 differentially abundant proteins in

the 17K-uEV fraction in PreOP GBM patients relative to HCs, including fold-changes (FC), p-values, L2-regularised logistic regression coefficients (LR-coeff )
ranked by order of importance, and the area under the Receiver Operating Characteristic (ROC) curve (AUC). Notably, 18 proteins were also significant
putative diagnostic GBM biomarkers associated with 100K-uEVs (Hallal et al., 2024), all of which exhibited the same direction of change. (b) A stepwise
approach using the top-ranked proteins scored by a logistic regression model, identified seven proteins that optimally classified PreOP GBM (n = 9) from HCs
(n=10). A multivariate L2-regularised logistic regression model (stratified 75%-train, 25%-test split, repeated 100 times) showed superior performance metrics
for the top seven proteins (SERBP1, AARS], LMAN2, KNGI, HPX, KRT19 and MYOF) with an AUC = 1.000; classification accuracy (CA) = 98.2%, F1 = 99.7%,

(Continues)



e | HISEV

FIGURE 4 (Continued)

Precision = 99.0%, Recall = 96.5%, Specificity = 99.3% and Log Loss = 0.114. These seven proteins were selected as the most important classifiers for
differentiating PreOP GBMs from HCs. The model’s predictive performance was further evaluated on an (c-1) independent blinded hold-out set of PreOP
GBM (n = 4) and HC (n = 4) samples, showing classification accuracy of 87.5% and recall of 75.0%. (c-2) A confusion matrix showed the percentage of
correctly classified GBM and HC samples by the seven-protein model. (d) ROCs for all seven proteins and their respective AUC values. (e) Box and whisker
plots of the seven panel proteins illustrate their expression distribution for PreOP GBM (n = 9) and HC (n = 13) specimens. The whiskers represent the full
range of the protein abundance (minimum-maximum), and the middle line represents the median. (f) The expression levels of the seven top performing
17K-uEV proteins show clear separation of PreOP GBM (n = 9) and HC samples (n = 13) on PCA analysis.

We further evaluated 17K-uEV proteome changes across samples collected at three GBM clinical timepoints (PreOP, PostOP
and REC; Table 1). Significant differentially abundant proteins identified in pair-wise comparisons (PreOP vs. PostOP, PostOP vs.
REC, PreOP vs. REC) are tabulated in Table S7. Significant 17K-uEV proteins corresponding to ‘GBM tumour burden’ (PreOP vs.
PostOP), included SMCI1A, SPTAL, MYH9, CNDP2, ADH5, PDIA3, MAT2A, YWHAG, TGM2, MYO6, HSP90AB1 and EFEMP1.
Interestingly, three proteins (CNDP2, HSP90ABI1 and MYH9) increased in PreOP samples, which were also significantly higher
in PreOP than in HC samples (Figure 5a, Table S7). We identified 36 significant 17K-uEV protein changes corresponding to ‘GBM
recurrence’ (PostOP vs. REC) and 24 17K-uEV proteins corresponding to ‘treatment resistance’ (PreOP vs. REC). We observed
overlapping proteins (MAT2A, SMCI1A and ADHS5) with significant changes in the ‘tumour burden’ and ‘GBM recurrence’ anal-
yses, with similar abundance levels in the urine of patients with a high tumour load (i.e., PreOP and REC; Figure 5b). Ten
overlapping significant proteins were also observed in the ‘GBM recurrence’ and ‘treatment resistance’ comparisons (AARSI,
ANXA4, ANXAS5, GPI, MARKCSL1, MYOF, AKAP13, HSP90AASI, PLCDI and PLEC), all following the same direction of change
with significantly altered levels at REC compared to PreOP and PostOP urine (Figure 5¢). Significantly changing proteins iden-
tified here in uEVs that were also previously described in the small-EV populations of other GBM body fluids are listed in
Table 3.

4 | DISCUSSION
4.1 | Classification and composition of small and large urinary EV populations

uEV isolates were separated by differential centrifugation at 17,000 X g (17K-uEVs) and 100,000 X g (100K-uEVs), and their size
ranges (80-600 nm and 80-400 nm, respectively) were measured by NTA (Figure 1c). Previously, large EVsisolated through high-
speed centrifugation (10,000-20,000 X g) were classified as plasma membrane-derived ‘microvesicles, while small EVs isolated
through ultracentrifugation (100,000-200,000 X g) were associated with endosomal-derived ‘exosomes’ However, recent research
has challenged this distinction, and EVs are now appreciated for their remarkable diversity in terms of size, morphology, and
cargo. This study explores the compositional differences between the uEV populations based on their physical size only, and no
assumptions have been made regarding their biogenic or cellular origin. Contradictory definitions have plagued EV classification,
particularly for subtypes such as exosomes and microvesicles, which can be both small (<200 nm) and large (200-1000 nm),
often co-purify with non-vesicular particles, and are influenced by their source cell types (Tkach et al., 2018; Zhang & Lyden,
2019; Zhang et al.,, 2021). In our study, while 17K-uEVs and 100K-uEVs exhibited distinct EV peak populations (Figure 1c), both
populations shared a size distribution ranging from 80 to 300 nm. Despite this overlap in size, our proteomic analyses revealed
484 proteins uniquely present in all I00K-uEV samples (Figure 1d, Table S4), suggesting that 100K-uEVs include EV populations
distinct from 17K-uEVs. Proteins restricted to 100K-uEVs include known EV-markers, CD9, CD63, CD81, TSG101, ITGBI and
RAB proteins, which are widely reported in both exosomal and microvesicle populations (Haraszti et al., 2016; Merchant et al.,
2017). Conversely, six proteins were exclusively identified in all 17K-uEV samples, including ATP6AP1, KRT18, LAIR1, SERPINA3,
VASN and KPNBI (Table S4) that are all reported in both exosome and microvesicle studies (Ayre et al., 2017; Bui et al., 2022;
Hayashi et al., 2020; Liao et al., 2022; Vitale et al., 2021; Yang et al., 2017), except LAIRI which was reported in plasma-membrane
derived ectosomes (Kalra et al., 2016).

While the proteomic differences elucidated in our study cannot be attributed to exact EV biogenesis mechanisms and EV
origin, our functional annotation of resolved EV proteomes revealed that a higher percentage of 17K-uEVs proteins (98.50%)
were annotated to the urinary compartment compared to 100K-uEV proteins (86.94%), perhaps suggesting that smaller uEVs
originate from broader anatomical sources (Figure le-2). Multiple routes have been proposed for small uEV entry into the urine,
yet the mode by which larger uEVs enter the urine is poorly understood. Given that a significant portion (97%) of the 17K-uEV
proteome is annotated to the plasma, it is plausible that larger uEVs are encapsulated and packaged during the filtration process
(Erdbriigger et al., 2021; Kerjaschki et al., 1989; Londono & Bendayan, 2005; Musante et al., 2020; Ndisang, 2018; Patrakka et al.,
2002).

The biomolecular compositions of I00K-uEVs and 17K-uEVs, detected by FT-IR analysis, showed similar spectral profiles that
are typical for nucleic acids, carbohydrates, lipid/acyl chains and protein/peptides in the uEV populations of HCs (Figure 2a), that
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FIGURE 5

changes in pairwise comparisons between PreOP, PostOP and REC urine samples. (a) Box and whiskers plots show the expression of three GBM ‘tumour
burden’ proteins CNDP2, HSP90ABI and MYH that were also significantly changed between PreOP and HC samples. (b) Box and whiskers plot show the
expression of proteins (MAT2A, SMCIA, ADH5) with significance in both GBM ‘tumour burden’ and ‘recurrence’ signatures. The protein abundance for each

cohort is plotted as log2(abundance), the upper error bars signify the maximum, lower error bars represent the minimum, and the middle line represents the
(Continues)
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FIGURE 5 (Continued)

median; ¥’ p-value < 0.05. (c) The fold changes of the ten shared GBM ‘recurrence’ and ‘resistance’ proteins show the same expression trends. Proteins denoted
by an asterisk (*) are also related to GBM with significance between GBM PreOP and HC.

also resemble previous studies of prostate cancer uEVs (Yap et al., 2019), hepatocellular carcinoma serum-EVs (Di Santo et al.,
2022) and melanoma cell-EV's (Stepien et al., 2021). To extrapolate meaningful differences between 100K-uEVs and 17K-uEVs,
we selected non-overlapping FT-IR regions for lipids (1458-1465 cm™! and 2700-3000 cm™1) and amide I for proteins (1600~
1700 cm™) for further qualitative and quantitative assessment (Figure 2a). Expectedly, both 100K-uEVs and 17K-uEVs showed
prominent peaks in the methyl bending region (1458-1465 cm™!) that is primarily related to the polar head group of lipids and
fatty acid/acyl chains of phospholipids (Portaccio et al., 2023). However, only 100K-uEVs had signals corresponding to methyl
stretching (2700-3000 cm ™) associated with lipid hydrocarbon chains, which contributed to the striking difference observed in
measured lipid-to-protein content of 17K-uEVs (Figure S4). Studies consistently report that small and large EV populations pos-
sess a lipid bilayer rich in sphingomyelin, cholesterol, and saturated phospholipids, providing membrane stability and delaying
EV degradation in biological fluids (Hallal et al., 2022; Paolino et al., 2022). As most lipids, for example, phospholipids, tria-
cylglycerols, and sterols, exhibit peaks in the 2700-3000 cm™! region (Movasaghi et al., 2008; Portaccio et al., 2023), we found
this observation puzzling. The absence of methyl stretches in 17K-uEVs contradicts a previous FT-IR study that reported clear
methyl stretching profiles for large EV's derived from cultured normal human melanocytes and melanoma cells (Stepien et al.,
2021). This disparity could be explained by shorter acyl chain lengths and disordered conformational phases that contribute to
less prominent and broader FT-IR spectral peaks (Christy & Egeberg, 2006; Derenne et al., 2013; Lewis & McElhaney, 2013) or
other inherent lipidomic differences between uEVs and EVs from other biofluids. Regardless, further lipidomic investigations
are needed for a more comprehensive understanding of this FT-IR anomaly.

Also of note, and worthy of further investigation, is the contrasting observations in secondary protein conformations with
enrichments of S-turns in 100K-uEVs and f-pleated sheets in 17K-uEVs (Table 2). While inferences to protein conformational
differences in complex proteomics data is exceedingly difficult, this observation may broadly reflect the different classes of pro-
teins cargoed in EV subtypes. -turns are usually, but not invariably, found on the water accessible surface of proteins, and
account for about a third of the structure of globular proteins. Indeed, tightly compact globular proteins tend to have more -
turns than elongated fibrous proteins, which are often predominantly comprised of 8-sheet structures (Rose et al., 2004). In line
with this, we identified triple the number of protein species associated with 100K-uEVs, that is, 683 proteins compared to 205 in
17K-uEVs (Figure 1d), that feasibly would need more compact structural forms for packaging in physically smaller vesicles. Fur-
ther, we detected significantly higher levels of fibrous protein types, including KRT1, KRT2, KRT5, KRT9, KRT10, in 17K-uEVs
(Figure 1f) that may help account for the greater relative proportion of 8-sheet structures in these EV populations.

4.2 The biomolecular composition of uEVs in GBM patients

FT-IR analyses of uEVs captured from PreOP GBM patients revealed prominent alterations in methyl bending, methyl stretching,
amide I and carboxyl/primary amine/OH stretches. The most notable changes across all four vibrational regions were observed
in GBM 17K-uEVs, specifically in methyl stretching peaks that were absent in HC 17K-uEV's (Figure 2b). These alterations may
reflect changes in GBM 17K-uEV lipid profiles, conformations, molecular packing, and protein-lipid interactions. Similar changes
have been reported in Raman spectra of serum-EVs, with cancer specimens showing stronger lipid bands in the 2750-3040 cm™!
compared to healthy samples (Uthamacumaran et al., 2022). Machine learning analysis of the serum-EV spectra also demon-
strated high accuracy for distinguishing cancer from healthy samples, with Raman spectra providing better predictive power
than FT-IR spectra (Uthamacumaran et al., 2022). Further elucidation of the biomolecular changes in GBM 17K-uEV's requires
comprehensive lipidomic assessments to determine the compositional alterations (Brzozowski et al., 2018), coupled with nuclear
magnetic resonance (NMR) spectroscopy to assess structural dynamics and protein-lipid interactions (Alexandri et al., 2017).
More broadly, recent reports indicate that lipid metabolism reprogramming is a hallmark of GBM pathophysiology, and target-
ing lipid de novo synthesis, uptake, storage and catabolism pathways may be key to a successful therapeutic outcome (Kou et al.,
2022). At the same time, it is conceivable that highly destructive glioblastoma tumours invading lipid-rich brain tissue would
leach lipid metabolite species into the circulation, which may be useful as biomarkers. While the promise of serum lipidomics
for glioblastoma biomarker discovery has been proposed (Soylemez et al., 2023; Yu & Aboud, 2024), there is considerable scope
to explore other biofluid compartments, including urine and EVs.

We extensively characterised the 100K-uEV and 17K-uEV proteomes from GBM and HCs using our previously established
DIA-MS method (Hallal, Azimi et al., 2020) and resolved 13 proteins (AMBP, ANXA5, APOA1, APOB, APOD, BROX, CAT,
CNP, KNG1, MARCKSLI, MASP2, SERPINA5 and TKT) with significant distributional changes in GBM between 100K-uEV's
and 17K-uEVs (Figure 3c). Particularly noteworthy were shifts in the distributions of APOB, APOD, BROX and KNGl proteins
between uEV subpopulations across different GBM clinical time points (Figure 3d). Little is known about the exact composition
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of EV sub-populations and how they may be influenced by malignancy; however, our findings highlight the dynamic nature of
uEVs potentially reflecting clinically significant parameters like tumour recurrence and therapy response.

Previous studies have suggested that membrane protein expression correlates with EV size (Zhai et al., 2023), and different EV
populations carry distinct cancer-specific proteomes and oncogenic cargo with biomarker potential (Ahmadzada et al., 2023).
Moreover, differential secretion rates of s-EVs and 1-EVs from GBM cells (U87MG-EGFRIII) have been demonstrated, with
GBM cells secreting more 1-EV's containing EGFRIII protein into the circulation of GBM-bearing mice, relative to non-cancerous
cells (Yekula et al., 2019). Although we do not report higher quantities of EVs from the 17K pellet from GBM patient urine, the
pronounced FT-IR spectral and proteomic differences of 17K-uEVs may be attributed to alterations in EV biogenesis and selective
packaging, increased 1-EV secretion rates from GBM tumours into the peripheral blood, as well as changes in the urogenital tract
response to tumour and treatment that might facilitate 1-EV passage and secretion into the urine.

4.3 | Streamline urine processing for measuring clinically relevant GBM 1-uEV biomarkers

Most urinary EV studies to date have sought to resolve novel biomarkers associated with s-uEVs or 100,000 X g pellets, ignoring
or discarding 1-uEV's or 17,000 X g EV populations that are often collected as at an interim protocol step (Musante et al., 2020). We
recently reported potential biomarkers for diagnosing and monitoring GBM s-uEVs (Hallal et al., 2024), and have extended our
study to assess the GBM biomarker potential of uEVs in the 17,000 X g pellet. It is important to note that relatively small volumes
of urine are indicated for characterisation and molecular analyses of larger uEVs, including 0.5 mL for EV enumeration and
microRNA quantification by qPCR, 1.5-4.5 mL for flow cytometry, and 4.5 mL for proteomic assessments by immunoblotting
(Musante et al., 2020). At these volumes, bench-top centrifuges within diagnostic laboratories can readily pellet larger uEV
populations at 17,000 X g in only 30 min.

We identified 38 17K-uEV proteins with significant abundance changes between primary GBM PreOP patients and HCs
(Figure 4a). Among these, eighteen proteins were previously identified in our s-uEV proteomics study that also corresponded
to a PreOP GBM diagnosis, including KRT19, S100A9, RPL18, DEFA3, KRT18, CHMP5, S100A8, S100A1l, IST1, GNB1, KRTS,
CAPN7, THY1, MARCKS, CHMP2B, GNAIL, JUP and CD59, with all shared markers displaying the same direction of change in
both uEV populations of GBM PreOP patients (Figure 4a, Hallal et al., 2024). Additionally, ANXAS5, APOD and KNGl proteins
displayed significant differential distribution between 100K-uEVs and 17K-uEVs from GBM patients before and after surgery
(Figure 3c,d). Notably, we also identified top-performing GBM diagnostic markers (SERPB1, AARS], LMAN2, KNGI, HPX,
KRT19 and MYOF) in the 17K-uEV pellet that demonstrated near-perfect cumulative accuracy (AUC = 1.000; classification
accuracy = 98.2%) using a logistic regression model (Figure 4b). The model was also generalisable to a small set of hold-out
PreOP GBM specimens (n = 4) and HCs (n = 4), with a classification accuracy of 87.5% (Figure 4c-1). While several significant
proteins were shared between 100K-uEVs and 17K-uEVs, only KRT19 was common between the 17K-uEV GBM PreOP signature
and our previously reported s-uEV GBM diagnostic signature (KRT19, RPS2, IST1, RPL18, RPL28, CSTB, ALDH3BI, RPL7A and
GNAI2) (Hallal et al., 2024), indicating that separate uEV fractions offer distinct, however complementary, biomarker potential.

Remarkably, all seven 17K-uEV proteins (SERBP1, AARSI, LMAN2, KNG, HPX, KRT19 and MYOF) that were able to accu-
rately classify the PreOP GBM from HC specimens are implicated in aspects of cancer biology, including GBM pathogenesis.
Among these, AARSI (alanyl-tRNA synthetase 1) acts as a lactyltransferase and intracellular lactate sensor that plays key roles in
onco-regulation (Zong et al., 2024), and forms a positive feedback loop with YAP-TEAD oncoproteins and modulates the Hippo
pathway (Ju et al., 2024). While the precise role of AARSI in GBM remains unclear, the overexpression of the YAP-TAZ-TEAD
complex deregulates the Hippo pathway in glioma progression, and activates chemoresistance mechanisms such as DNA repair
and the development of an immunosuppressive microenvironment (Casati et al., 2021; Liu et al., 2019; Tian et al., 2015). Addi-
tionally, elevated SERBP1 (SERPINEl mRNA Binding Protein 1) is prevalent in GBM tumour tissue and regulates glioblastoma
development through epigenetic regulation (Kosti et al., 2020). Our previous research measured elevated SERBP1 levels in GBM
patient plasma-EVs, relative to cancer and non-cancer controls (Hallal, Azimi et al., 2020), corroborating the observed increase
of SERBP1 in 17K-uEVs from GBM patients here. Interestingly, multiple calcium-binding proteins were significant in PreOP
GBM 17K-uEVs, which are known to be dysregulated in glioblastoma tissue and play important roles in tumour cell proliferation
and metastasis (Polisetty et al., 2012). This included LMAN?2 (lectin, mannose binding 2), along with notably lower levels of S100
proteins (A8, A9 and All) and ANAXS5 (Figure 4). KNG1 (Kininogen 1) is downregulated in GBM tumour tissue and serum,
associated with shorter patient survival times and reported to suppress glioma progression (Xu et al., 2018). Here, significantly
reduced KNGl levels were detected in GBM 17K-uEV's compared to HCs (Figures 3 and 4). Elevated HPX (hemopexin) is part of
an eight-gene signature that distinguishes GBM tumours from healthy brain tissues and has prognostic significance (Yuan et al.,
2022). Keratin proteins, particularly KRT19, play important roles in cancer invasion (Saha et al., 2017); high levels of hypomethy-
lated KRT19 in GBM tumours is negative marker for survival (Mao et al., 2020). Finally, elevated MYOF (Myoferlin), one of
the 17K-uEV protein classifiers for PreOP GBM, is frequently overexpressed in cancer, and promotes cancer cell migration and
invasion (Blomme et al., 2016; Eisenberg et al., 2011). Moreover, MYOF is described as a critical component of cancer-derived
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EVs, significantly influencing tumour growth by enhancing EV functionality, facilitating molecular transfer and maintaining EV
size (Blomme et al., 2016).

We further evaluated 17K-uEV protein changes across discrete GBM clinical time points, revealing trends that correspond
to GBM tumour burden, recurrence, and resistance. Specifically, CNDP2, HSP90ABI, and MYH9 were identified as significant
GBM diagnostic proteins (GBM PreOP vs. HC) and were also associated with tumour burden (GBM PreOP vs. PostOP), with
higher levels corresponding to a high tumour load (Figure 5b). Like our 100K-uEV investigation (Hallal et al., 2024), differ-
entially abundant proteins related to a GBM diagnosis (GBM PreOP vs HC), and tumour burden (PreOP vs PostOP) shared
the same direction of change. While the surgical procedure alone may have influenced these proteomic changes (Finnerty et al.,
2013), significant protein markers are annotated to activated cancer pathways, suggesting some functional relevance (Figure S6B).
However, these significant changes could also be secondary to systemic inflammation or other GBM-related pathophysiological
effects. Additionally, longitudinal assessments of uEVs from patients with neurological disorders have indicated stable relative
abundances of uEV profiles within individuals over several weeks (Wang et al., 2019), supporting the notion that measuring uEV
biomarkers at distinct clinical intervals may allow non-invasive indications of GBM tumour changes in situ.

4.4 | Study limitations and future directions

As urine production fluctuates considerably to maintain water, ion, and pH homeostasis, uEVs are more variable than EVs
from the blood and other body fluids (Erdbriigger et al., 2021). uEV research is still in its infancy, and there is an absence of
standardised methods to adjust for confounding factors including the EV excretion rate and variations in uEV isolation. Current
uEV normalisation approaches include adjusting for excretion rates based on absolute (total protein, uEV number or levels of
uEV biomarkers) or relative (collection time, urinary creatinine and osmolality) measurements (Erdbrigger et al., 2021). As
the uEV field matures, normalisation strategies will become better defined and more accurate. To facilitate future analysis and
contextualisation of our EV data by other researchers, we have included relevant blood biochemistry and urinary creatinine and
protein levels, as recommended by MISEV2023 (Welsh et al., 2024), in Table SI. In our proteomic investigation, we adopted a
global absolute normalisation method, conducting DIA-MS analyses on equal amounts of total uEV proteins, which were then
normalised using quantile normalisation to account for differences in sample size and measurement bias.

While the precise contributions of different components of the urogenital tract to the total uEV population are not yet fully
understood (Erdbriigger et al., 2021), it is plausible that external factors such as damage, injury, infection, or inflammation within
and beyond the urogenital system can influence both the total excretion of uEVs and the composition of the uEV pool. For
example, procedures like digital rectal examinations can impact uEV composition, resulting in higher levels of prostatic fluids and
EVs derived from the prostatic luminal epithelium (Hendriks et al., 2016). In our study, the effect of catheterisation on uEVs from
GBM patients analysed here cannot be discounted (Peychl & Zalud, 2008), and significant findings from comparisons between
uEVs from catheterised GBM patients and voided HCs should be carefully validated in our future investigations. Furthermore,
GBM patients undergoing therapy may experience microscopic haematuria due to myelosuppression, which contributes to a
bleeding tendency and a weakened immune system with increased risk of urological infections (Furukawa et al., 2018). The
presence of blood in the urine from patients experiencing haematuria can cause uEV aggregation and loss, leading to false high
ratios of protein-to-creatinine, which can negatively impact molecular assessments (Raimondo et al., 2018). Thus, our future
studies will also report the blood content in urine specimens to identify patients with haematuria complications and ensure
minimal impact on our uEV molecular assessments. Furthermore, our future uEV studies may benefit from implementing mild
trypsin treatments of patient urine prior to uEV isolation, as this has been shown to reduce blood protein contaminants and
enhance uEV proteomic assessments (Raimondo et al., 2018). Addressing these challenges will ensure that resolved uEV cargoed
biomarkers in this study are unaffected by complications that are frequently associated with aggressive brain tumours, treatment
response or toxicity.

Given the essential role of lipids in uEVs and the limited existing lipidomic characterisation studies (Erdbriigger et al., 2021),
coupled with noteworthy differences observed in the FT-IR spectral regions associated with lipids for GBM 17K-uEVs, future
comprehensive lipidomic investigations of both 100K-uEVs and 17K-uEVs are warranted. Mass spectrometry assessments will
enable a comparative assessment of lipid species across 100K-uEVs and 17K-uEVs, while techniques such as NMR will provide
insight into their structural dynamics and interactions with proteins (Alexandri et al., 2017; Brzozowski et al., 2018). It is impor-
tant to note that while no differences in nucleic acid or carbohydrate content were observed in the FT-IR assessments between
uEV populations from HCs, we could not make these observations in our GBM uEVs due to the presence of PBS in our sam-
ples. Furthermore, considering the significant differences in protein distribution between 100K-uEVs and 17K-uEVs in GBM,
along with the feasibility of 17K-uEVs for liquid biopsies that detect tumour burden, recurrence and treatment resistance, further
exploration of both 100K-uEVs and previously overlooked 17K-uEV's as sources of biomarkers is justified. Our future validation
investigations will encompass larger, longitudinal cohorts of urine samples captured from GBM patients at multiple clinical time
points, including at treatment baseline, end-of-treatment, and instances of confirmed tumour recurrence or pseudoprogression.
To ensure the validity and specificity of findings to GBM patients), future studies also require the expansion of specimen cohorts
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to include cancer controls and non-cancer controls. Accompanying rich clinical and radiological metadata will allow us to val-
idate and assess the clinical utility of biomarkers cargoed by 100K-uEVs and 17K-uEVs, providing deeper insights into uEV
subpopulation dynamics in GBM patients.

4.5 | Concluding remarks

While the promise of uEVs in biomarker discovery is emerging, little is known about the characteristics and composition of
different urinary EV subpopulations, as well as their relevance as biomarkers. In this study, we conducted the first comprehensive
characterisation of EV fractions obtained at 100,000 X g and 17,000 X g from urine. We found clear differences in protein and lipid
content between these populations, which enabled differentiation between patients with GBM and HCs. Using our established
DIA-MS method (Hallal et al., 2024), we performed in-depth proteomic profiling of both 100K-uEVs and 17K-uEVs, revealing
significant proteome distribution changes in GBM patient urine and across distinct GBM clinical time points. We identified
potential 17K-uEV protein biomarkers associated with a GBM diagnosis that are distinct from 100K-uEV diagnostic biomarkers
previously determined for GBM (Hallal et al., 2024). These findings highlight the biomarker potential of uEV populations for a
GBM diagnosis, monitoring tumour progression and response to treatment. Further research is warranted to fully appreciate the
individual and combined capabilities of biomarkers associated with different uEV populations.
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