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ABSTRACT

Introduction: Hypoglycemia remains a global
burden and a limiting factor in the glycemic
management of people with diabetes using
basal insulins or oral antihyperglycemic drugs.
Hypoglycemia data gleaned from randomized
controlled trials (RCTs) have limited generaliz-
ability, as the strict RCT methodology and
inclusion criteria do not fully reflect the real-
world clinical picture. Therefore, real-world
evidence, gathered from sources including
electronic health records (EHR), is increasingly
recognized as an important adjunct to RCTs.
Aims and methods: The LIGHTNING study
applied advanced analytical methods, including
machine learning (ML), to EHR data. The study
aimed to predict hypoglycemic event rates in
patients with type 2 diabetes (T2DM) receiving
different basal insulin treatments to identify
potential subgroups of patients who are at lower
risk of hypoglycemia when treated with one
basal insulin compared with another and to
predict hypoglycemia-related cost savings in

these subgroups. Here we provide an overview
of the objectives, study design and methods,
and validation approaches used in the
LIGHTNING study.
Conclusion: It is hoped that results of the
LIGHTNING study will help facilitate real-world
clinical decision-making in addition to provid-
ing a clinically relevant predictive model of
hypoglycemia risk.
Funding: Sanofi.
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INTRODUCTION

Hypoglycemia is a global burden and remains a
limiting factor in achieving good glycemic
control in patients with type 1 (T1DM) and type
2 diabetes mellitus (T2DM) [1]. Knowledge of
hypoglycemia incidence with basal insulin (BI)
use in general clinical practice is limited as the
majority of data regarding hypoglycemia rates
with BIs are derived from randomized con-
trolled trials (RCTs). These RCT-derived hypo-
glycemia rates must be interpreted with
caution; RCTs generally have strict inclusion
and exclusion criteria, leading to exclusion of
patients with complicating factors, e.g., those of
older age with significant comorbidities, very
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poor glycemic control, and recurrent hypo-
glycemia, and therefore are not reflective of the
true clinical picture.

While RCTs are considered the gold standard
for evaluating the effects of drugs in specific
disease and patient settings, it can be difficult to
extrapolate results to more heterogenous pop-
ulations in real-life clinical circumstances.
Hypoglycemic event rates reported in RCTs are
likely lower than in the real world [2], particu-
larly for severe events [3]. In addition, hypo-
glycemic event rates are generally higher in
observational studies versus RCTs [4], probably
owing to the absence of patient selection, strict
monitoring, education, and clinical oversight
present in RCTs, and have been found to be
influenced by different variables (e.g., geo-
graphic locations) [4].

Being able to identify people with different
hypoglycemia risk profiles would enable opti-
mal treatment management to be tailored
toward these patient types. Real-world evidence
(RWE) gathered from sources including elec-
tronic health records (EHRs), claims data, dis-
ease registries, and data from personal
devices/software applications has the potential
to be analyzed to establish these risk groups and
factors associated with a greater number of
hypoglycemic events. Indeed, information from
RWE analyses is an important complementary
component to clinical trial data as it provides a
broader and unique insight into patient infor-
mation, which could improve clinical decision-
making. Thus, RWE derived from EHRs allows
the generation of outcomes-based evidence
from an unrestricted general diabetes popula-
tion with a wide range of clinical phenotypes
and comorbidities in routine clinical practice.
However, it is necessary to overcome some of
the limitations inherent in RWE collection and
use. For example, data sources such as EHRs and
claims data are not primarily generated or col-
lected for research purposes (but rather to col-
lect patient-centered information including
clinical reports, health insurance, and reim-
bursement), and the lack of randomization and
potential unobserved confounders could gen-
erate biased research outcomes [5].

Using advanced analytic approaches, such as
machine learning (ML) [6], to analyze real-world

data allows for hypothesis generation and mod-
eling complex relationships/interactions. ML
describes the programming of computers to
‘‘learn’’ complex data relationships, using train-
ing data or past experience and statistical theory
[6], and capture them in a multivariate model.
ML approaches can deal with large sets of vari-
ables, less-restrictive assumptions, inter-correla-
tions among predicting factors, and automatic
hypothesis generation. Leveraging rich struc-
tured (database) and unstructured (clinical
notes) [7] data from EHRs, ML may be able to
identify and model the hypoglycemia risk asso-
ciated with BI use in patients with T2DM.

The LIGHTNING study involves the use of
advanced analytical methods, including ML, to
predict hypoglycemia rates in individuals with
T2DM receiving different BI treatments. The
study aims to identify general predictors of
hypoglycemia in these patients, as well as
potential subgroups of patients who are at lower
risk of hypoglycemia with one type of BI for-
mulation versus another, and estimate associ-
ated costs savings between comparison groups.

The approach to the LIGHTNING study is
novel in terms of combining the latest ML
methodology [utilizing natural language pro-
cessing (NLP) to capture as many hypoglycemic
events as possible] and rich real-world data sour-
ces tomodel hypoglycemia risk related to product
use. Here, we provide an overview of the objec-
tives, study design and methods, and validation
approaches used in the LIGHTNING study.

The main objectives of the LIGHTNING
study are to:

• Leverage ML-derived treatment-specific
modeling to predict hypoglycemia rates
in people with T2DM prescribed first- and
second-generation BIs [first generation:
insulin glargine 100 U/ml (Gla-100) and
insulin detemir (IDet); second generation:
insulin glargine 300 U/ml (Gla-300) and
insulin degludec (IDeg)].

• Identify patient subgroups where the pre-
dicted hypoglycemic event rates differ
between these BIs.

• Use an integrated claims–EHR data set to
estimate incurred medical costs resulting
from hypoglycemic events for these partic-
ular subgroups.
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METHODOLOGY
OF THE LIGHTNING STUDY

Data Source

The Optum� longitudinal clinical repository
(Humedica EHR) combines data frommore than
50 US healthcare providers, covering more than
700 hospitals and 7000 clinics, in a database
comprising more than 80 million patients. The
‘‘Integrated’’ data set links both claims and
clinical data for approximately 10 million mat-
ched individuals. The LIGHTNING study will
use all data collected from 1 January 2007 to 31
March 2017 from 831,456 people with T2DM
receiving BI treatment (Fig. 1). All patient data
from the Optum Humedica EHR and Integrated
databases used for the LIGHTNING study were
anonymized, and therefore informed consent
from patients was not applicable.

Optum’s Humedica EHR data sets were
selected as the data source for the LIGHTNING
study, owing to attributes including sample
size, US geographic scope, richness of clinical
data (especially clinical notes via NLP), and data
quality. Optum had utilized NLP to identify and

automatically read clinical documentation,
translating it into structured data sets, which
enabled the capture of key information from
the notes, such as hypoglycemia occurrence [7].

Study Population

Inclusion Criteria
Patients with a confirmed diagnosis of T2DM
[presence of 1 or more ICD-9 or 10 diagnosis
codes (ICD-9: 250.x0; 250.x2; ICD-10: E11)] or
one or more prescriptions for an antidiabetic
treatment at any time during the study window
were included. In addition, the cost estimation
analysis required that patients had linked EHR
and claims data available.

Exclusion Criteria
Patients who were likely to have a predominant
diagnosis of T1DM at any time during the study
window were excluded. Exclusion was based on
the algorithm by Klompas et al. [8], which
defined likely T1DM as a ratio of T1DM to
T2DM diagnosis ICD codes[ 0.5 and either a
prescription for intramuscular glucagon or no
record of an oral antidiabetic treatment other

Fig. 1 LIGHTNING study population—patient and
patient-treatment selection. a Multiple BI defined as
patient-treatments that have another BI start within

1 week (before or after) of the specified BI start.
b Inactivity defined as the lack of any time-stamped data.
BI basal insulin, PSM propensity score matching
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than metformin. Individuals who underwent
more than ten BI treatments (i.e., frequent
switching between BIs) within the study win-
dow were excluded, as they likely represent
unusual clinical behavior.

‘‘Patient-Treatment’’ and Cohort Creation

To maximize use of the available data, the
LIGHTNING study aimed to evaluate data dur-
ing time periods when people were using BI
rather than simply evaluating each individual.
Therefore, the unit of analysis used was the
period in which an individual was observed to
be receiving a BI treatment in the data set (ter-
med a ‘‘patient-treatment’’; Fig. 2); there could
be multiple patient-treatments per individual.

The start of thepatient-treatment (indexdate)
was defined as the date of either the start of pre-
scription of any BI (first generation: Gla-100 and
IDet; second generation: Gla-300 and IDeg) or
the change of prescription from one BI to
another. The end of the patient-treatment was
defined as the earliest of either the end of study
period (31 March 2017), the change of prescrip-
tion from the index BI to another, or 1 year after
the treatment index date. For hypoglycemic
event rate calculation, the duration was defined
as the duration of the patient-treatment period
minus the duration of all inpatient stays during
this period (as inpatients may have been treated
with BIs other than the index basal insulins,
which may have contributed to the hypo-
glycemic events experienced).

Patients aged C 18 years at the time of their
first known prescription of a BI in the EHR
database were analyzed. Patient-treatments
were excluded from the analyses if more than
one type of BI treatment was started within
1 week of the index date, if treatment started

prior to 1 April 2015 (prior to Gla-300 becoming
available in the USA), or if patients had any
period of inactivity [ 270 days during 1 year
prior to index date.

The period prior to the patient-treatment
(the ‘‘look-back’’ period) was used to collect data
for covariate modeling. This period was 1 year
by default, although covariates related to
demographics and comorbidity may trace back
to the beginning of the study period.

After patient and patient-treatment level
inclusion/exclusion criteria had been applied,
four treatment-specific modeling cohorts were
created. Each modeling cohort represented all
eligible treatment periods of the specific insulin
and was used to develop a treatment-specific
hypoglycemic model (the model that would be
used for prediction of hypoglycemic event rates
attributable to that particular BI; see ‘‘Modeling
approach’’ section). The aggregate of the four
cohorts—‘‘BI-treated population’’—were used as
the scoring data set for all four final models.

Target Outcomes

Two primary outcomes were defined and identi-
fied: hypoglycemic event rates and hypo-
glycemia costs. Hypoglycemic event rates
comprisedboth severe andnon-severe events.An
event was defined as hypoglycemia if it met any
of the following four criteria: ICD-9 and 10
hypoglycemia diagnosis code (based on the
algorithm of Ginde et al. [9]), laboratory plasma
glucose levels B 70 mg/dl, administration of
intramuscular glucagon, or identified via NLP
tables from the Optum EHR (Fig. 3). NLP is the
methodused tohelpdefinepatient signs, disease,
and symptoms from clinical notes. The NLP
approach to identifying hypoglycemic events
was based on themethodology utilized byNunes

Hypoglycemia
Patient

Treatment index

Look-back
perioda

Patient-treatment

Treatment end

Fig. 2 LIGHTNING study window schematic. a Baseline period and time window for model covariate development
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et al. [7]. The search term used to define hypo-
glycemic events in the NLP table was ‘‘.*hypo-
glyce.*’’ excluding the terms ‘‘hypoglycemic
awareness,’’ ‘‘hypoglycemic unawareness,’’ or
‘‘neonatal hypoglycemia.’’ The search also avoi-
ded inclusion of hits associated with ‘‘negative
sentiment’’ (e.g., ‘‘negative’’ deny, have not) and
identified hypoglycemia with sentiments that
can be categorized as severe (e.g., severe, seizure,
coma) or with any indication of historic occur-
rence (e.g., from patient histories). The defini-
tion of ‘‘severe’’ hypoglycemia is provided in
Fig. 3; any hypoglycemic events that were not
severe were defined as ‘‘non-severe.’’

Hypoglycemia costs were modeled utilizing
the Integrated data set, with hypoglycemic
events defined in the EHRs of adult T2DM

patients who had both EHR and claims data,
with costs captured from the claims data. Costs
associated with hypoglycemic events were all
medical costs incurred during the acute period
between the start and the end of an event. The
end of an event was defined as either (1) the
discharge date of hospitalization (or 5 calendar
days following admission if the discharge date
was not available for inpatient admissions) or
(2) the end of the next calendar day or the next
hypoglycemic event for ED/outpatient visits
(whichever occurred soonest).

ICD ICD-9/10 codes

Criterion

IM glucagon

Natural language
processing (NLP)

Plasma glucose

ICD-9/10 code
for hypoglycemiab

Hypoglycemia definitiona

IM glucagon administration

Mention of hypoglycemia

Measures ≤70 mg/dl

ICD-9/10 code for hypoglycemia that is severe by defaultc 
(all related to hypoglycemic coma)

ICD-9/10 code for hypoglycemiab

Hypoglycemia is reason for care on discharge or admission OR
hypoglycemia index date on same day as ED visit/inpatient
admission diagnosis

Severe hypoglycemia definitiona

IM glucagon administration

Mention of hypoglycemia with either
– Descriptor of severity – including severity terms

(e.g. ‘severe’) and attributes (e.g. ‘emergency’)
– ED visit/inpatient admission on same day as

medical record was written

Measures <54 mg/dld

AND

OR

OR

OR

OR

OR

OR

OR

Fig. 3 Comprehensive definitions of hypoglycemia and
severe hypoglycemia. a Maximum of one hypoglycemic
event in a calendar day. In case of same-day hypoglycemic
events, the severe event will be counted; secondary
inpatient hypoglycemic events are excluded. b Codes used
to identify hypoglycemia: ICD-9: 249.30; 249.80; 250.30;
250.31; 250.80; 250.81; 251.0; 251.1; 251.2; 270.3
(inclusion of 249.80, 250.80, and 250.81 only in the
absence of other contributing diagnoses (ICD-9, 259.8,
272.7, 681.xx, 682.xx, 686.9x, 707.1–707.9, 709.3,
730.0–730.2, or 731.8). ICD-10: E08.64; E08.641;

E08.649; E09.64; E09.641; E09.649; E10.64; E10.641;
E10.649; E11.64; E11.641; E11.649; E13.64; E13.641;
E13.649; E15; E16.0; E16.1; E16.2. c Codes regarded as
severe by default: ICD-9: 249.30; 250.30; 250.31; 251.0;
ICD-10: E08.641; E09.641; E10.641; E11.641; E13.641;
E15. d ADA, EASD Joint Statement on Hypoglycemia
[23]. ADA American Diabetes Association, EASD
European Association for the Study of Diabetes, ED
emergency department, ICD international classification of
disease, IM intramuscular
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Covariates for Modeling

The LIGHTNING study used both manually
created covariates and covariates automatically
created from all available data. These covariates
were used for both the hypoglycemic rate model
and cost-estimation analysis, although some
covariates were excluded from cost analysis as it
was not feasible to apply them to event-level
data. The manually created covariates were
identified through literature review as impor-
tant confounding factors related to hypo-
glycemia and cost in T2DM, including:
demographics, socioeconomics, comorbidities,
diabetic complications, diabetic disease status,
and medication use. Prior hypoglycemic event
cost, only available in the claims database, was
added to the cost-estimation analysis.

The automatically generated covariates were
created by an algorithm that recognized pat-
terns by clustering and re-grouping, as previ-
ously described [10]. Of the 1500 clusters
identified in LIGHTNING, the top 100 clusters
with the largest average number of patient-
treatments in each variable were selected. The
derived clusters were then evaluated for clinical
relevance, as hierarchical clustering should be
considered an intermediate step that requires
validation.

Modeling Approach

Descriptive Analysis
Study variables, including key covariates and
outcome measures, were analyzed descriptively,
comparing the modeling cohorts. Numbers and
percentages were reported for categorical vari-
ables and means and standard deviations (SDs)
for continuous variables.

Hypoglycemia Prediction by Basal Insulin Type
To compare the hypoglycemic event rate
between each first- or second-generation BI, a
separate predictive model was developed for
each treatment-specific cohort from the same
list of covariates (Fig. 4). Once validated, each
treatment-specific model was then applied to
the full ‘‘BI-treated population’’ (scoring data
set) to obtain the treatment-specific hypo-
glycemic event rate estimate (a prediction of the
hypoglycemia rate in the full population if all
patients were using that particular BI).

A Poisson generalized linear model (GLM)
[11] was used for modeling because it allows a
discrete count of events to occur in each period
but does not allow for ‘‘over-dispersion’’ (i.e., it
constrains the variance to be equal to the
mean). A zero-inflated negative binomial GLM
was initially used, but was over-fitted to the data

Patient 1
Patient 1
Patient 3
...
Patient N

V1 ... VX Hypo rate
Training set (model building)

1. Sample dataset with replacement forming
 training and test sets for each treatment-specific cohort

3. Bootstrap steps 1 and 2 many times 
to form confidence intervals and point estimates

Patient 1
Patient 2
Patient 3
...
Patient N

V1 ... VX Hypo rate

Patient 2
...
Patient Y

V1 ... VX Hypo rate
Test set (accuracy estimation)

IDeg

Hypoglycemia
rate

Gla-300

IDet

Gla-100

2. Train 4 drug-specific models, validate, and apply each to
the entire BI-treated population to generate predicted rates

Fig. 4 Predictive modeling of hypoglycemia rates. Gla-100 insulin glargine 100 U/ml, Gla-300 insulin glargine 300 U/ml,
IDeg insulin degludec, IDet insulin detemir, V visit
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for the smaller segments and performance was
thus degraded. The Poisson model is also con-
siderably simpler and so easier to understand.
The Poisson GLM used the number of hypo-
glycemic events as the target variable (outcome)
and the length of observation as an offset vari-
able. Least absolute shrinkage and selection
operator (LASSO) regularization [12] was used to
select variables.

The models were developed (‘‘trained’’) on
80% of each treatment-specific cohort (termed
the ‘‘training sets’’). Ten-fold cross-validation
was used to inform model selection and model
parameter optimization. Models were then val-
idated on the remaining 20% of each treatment-
specific cohort (internal validation). Bootstrap-
ping was used to evaluate the variability of
model estimates (i.e., to generate confidence
intervals) [13].

Patient Subgroup Identification
Subgroups of the population with T2DM were
identified through data-driven partitioning
using all variables that had been selected by the
LASSO regularization step. Categorical variables
were represented as multiple binary variables,
one for each level of the category. Numerical
variables modeled as a continuum were, for the
purposes of subgroup creation, split into quar-
tiles or, in some cases, manually split if natural
thresholds existed.

Within every partition or subgroup, the dif-
ference in hypoglycemia rates between BIs was
assessed. To do this, the predictive hypo-
glycemia models developed for both BIs being
compared (‘‘reference’’ and ‘‘comparator’’) were
applied to each patient-treatment in the scoring
data set. Each patient-treatment was then asso-
ciated with an expected ‘‘delta,’’ e.g., the change
in hypoglycemia rate that can be expected by
changing from the comparator to reference BI.
The average of these deltas across all patient-
treatments within the subgroup constituted the
differential rate for the subgroup. Ranking the
subgroups by delta, one would identify the most
differentiating subgroups between the com-
parator and reference BI, being the top and
bottom subgroups.

Estimating Hypoglycemia Treatment Cost
A cost model was built to predict the cost of a
hypoglycemic event in the T2DM population
using the Integrated data set. The data set used
for the treatment cost modeling included all
hypoglycemic events in EHRs for T2DM
patients who were at least 18 years of age at the
time of the event and who had linked claims
data. Severe hypoglycemic events with a cost of
$0 were excluded. Study period and covariates
were the same as those described for the hypo-
glycemia prediction models except when
covariates could not be created because of data
limitation.

Gradient-boosted trees (using prediction
errors from previous decision trees to improve
the performance of subsequent trees) were uti-
lized for cost estimation, which have been suc-
cessful in cost prediction previously [14]; they
allowed the capture of complex non-linear
relationships underlying the hypoglycemia
cost. The cost estimator was applied to the
subgroups identified as drivers of the differen-
tial hypoglycemic rate to estimate the cost per
hypoglycemic event for each subgroup. When
subgroups had key defining variables missing
because of data limitation, an overall model
cost estimate for a hypoglycemic event was used
for the subgroups. Cost saving at the subgroup
level was calculated by applying the subgroup-
specific cost estimate of a hypoglycemic event
to the delta hypoglycemic event rate between
the comparator and reference BI.

Statistical Validation

Internal Validity
As previously mentioned, LIGHTNING used
20% of patient-treatments as the validation set
for each treatment-specific model. This set was
used to evaluate the model performance to
ensure unbiased generalization if the model was
applied to new data.

Overall validation of model accuracy was
performed and reported using the normalized
GINI coefficient, which was converted into an
AUC equivalent measure. As part of the valida-
tion process, the statistical findings from the

Diabetes Ther (2019) 10:605–615 611



study were manually assessed for clinical
relevance.

Determining the Confidence Interval
Bootstrapping [13] was used to determine the
variability of the predictive models, estimating
confidence intervals by running each model
[1000 times (each on resampling of the data)
to observe the variability of estimates. This
approach is an application to GLM of the non-
parametric bootstrapping method as previously
described [15–17] and is applied in many areas,
including machine learning [18, 19], to quan-
tify variability in estimates from many types of
mathematical models.

The entire modeling process in LIGHTNING
was bootstrapped, from sample selection
through model training, to regularization, to
calculation of the differential hypoglycemia
rate estimates per subgroup. The bootstrapping
process tested model predictions multiple times
on the validation set, while different model
parameters were tested; this process improves
generality and confidence interval estimation
(i.e., how confidently the results can be
extrapolated from the analysis into broader
populations).

Compliance with Ethics Guidelines

The OPTUM databases used in the LIGHTNING
study were compliant with the Health Insur-
ance Portability and Accountability Act. Fully
anonymized retrospective data were obtained
from OPTUM via a license agreement, and the
LIGHTNING study did not involve primary data
collection by the authors. The LIGHTNING
study was therefore deemed exempt from ethi-
cal approval.

DISCUSSION

The global burden of hypoglycemia is substan-
tial, and significant gains could be made by
identifying ways to reduce this burden with the
use of particular therapies in certain patient
subgroups. The LIGHTNING study aims to use
the US Optum Humedica EHR and Integrated

data sets to predict hypoglycemic event rates
associated with use of first- and second-genera-
tion BI to identify subgroups of patients who
benefit from a lower rate of hypoglycemia with
one BI versus another and to estimate the cost
savings within these subgroups to determine
economic relevance to payors and health sys-
tems. ML-assisted predictive modeling tech-
niques can exploit the rich data source
provided, and NLP leverages the maximum
amount of hypoglycemia data.

RWE data sources may have inherent bias
that could limit their value for drawing causal
inferences between treatment and outcomes.
LIGHTNING aimed to minimize or avoid the
impact of confounding factors that may impact
the generalization of the modeling results by
adopting an iterative, holistic approach com-
bining data science, clinical expertise, and data
quality control, which was undertaken to
address potential biases (see Table 1 for exam-
ples of some of the methods used to address bias
in the LIGHTNING study). Further strengths of
the LIGHTNING study include the lack of
restrictive inclusion criteria, which ensures that
patients who may be at high risk of hypo-
glycemia are not excluded (as is often observed
in RCTs); the inclusion of PSM, enabling com-
parisons with the DELIVER studies [20, 21] that
used a different EHR data set (Predictive Health
Intelligence Environment database); the capac-
ity for the predictive modeling (and ML) tech-
niques to handle large amounts of data; the
hypothesis-free nature of the automatically
generated covariates, which ensures that
covariate determination is not limited by cur-
rent clinical knowledge. However, there are
some limitations to our methodology, which is
to be expected when using novel techniques:
results observed will not necessarily represent a
causal relationship, but only statistical associa-
tion (for example, covariates in the model may
actually be proxies for other covariates not
present in the database); the limited eligibility
criteria used in the study may result in incom-
plete capture of clinical information from
patients; the nature of the EHR means that only
BI prescriptions are captured, not actual use of
the product (or the dose used); the use of NLP is
relatively new and should be further validated;

612 Diabetes Ther (2019) 10:605–615



the model used may be limited in its ability to
capture the effects of interactions between
covariates; the use of ML itself may have
potential negative consequences, such as de-
skilling of physicians due to overreliance on
computer systems for decision-making [22]. In
addition, it is important to note that external
validation of the analyses using independent
data sources (e.g., another EHR source) has not
been done. Additional analyses with external
data sets could provide a better understanding
of relationships between variables and predicted
outcomes and further validate the results. It
should be noted that all study designs have
limitations, and the limitations of LIGHTNING
do not necessarily exceed those seen with more
traditional methodologies.

In summary, the LIGHTNING study aims to
provide RWE regarding hypoglycemic risks with
different BIs for treatment of T2DM, leveraging
ML algorithms and technology applied to the
real-world data to identify patient subgroups
that may experience a hypoglycemia benefit
with newer BI formulations and to estimate the
cost of hypoglycemia unique to that subgroup.
It is hoped that findings generated from the
LIGHTNING study, with oversight from a team
of clinical experts, will support the develop-
ment of novel clinical hypotheses in patients
with T2DM that will help facilitate real-world

clinical decision-making in addition to provid-
ing a clinically relevant predictive model.
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Table 1 Addressing potential bias in the LIGHTNING study

Methodology to
address bias

Key requirements

Definition Adequate definition of the key variables to capture the analytic cohort, relevant exposures,

covariates, and outcomes. Crucial to capture correct data on potential confounders by involving

clinical experts prior to and during analysis

Imputation Filling missing or erroneous data with sensible placeholder values. Each variable must be treated

individually as one must be careful not to introduce any new biases into the model

Quality control Variables must be validated to ensure that definitions are adhered to and that the underlying data

are representative of reality. Pre-define acceptability criteria for each variable or class of

variables, based on expert input or general demographic information. Acceptability criteria

define reasonable ranges for the variables and actions to be taken if the variables fall outside

these ranges. Pre-defining these criteria ensures that the decisions are based on clinical or

scientific rationale rather than engineering expediency
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