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Abstract: Hypoxia and hepatosteatosis microenvironments are fundamental traits of nonalcoholic
fatty liver disease (NAFLD). Hypoxia-inducible factor-1α (HIF-1α) is a transcription factor that
controls the cellular response to hypoxia and is activated in hepatocytes of patients with NAFLD,
whereas the route and regulation of lipid droplets (LDs) and macrophage polarization related to
systemic inflammation in NAFLD is unknown. Losartan is an angiotensin II receptor antagonist, that
approved portal hypertension and related HIF-1α pathways in hepatic injury models. Here, we show
that losartan in a murine model of NAFLD significantly decreased hepatic de novo lipogenesis (DNL)
as well as suppressed lipid droplets (LDs), LD-associated proteins, perilipins (PLINs), and cell-death-
inducing DNA-fragmentation-factor (DFF45)-like effector (CIDE) family in liver and epididymal
white adipose tissues (EWAT) of ob/ob mice. Obesity-mediated macrophage M1 activation was also
required for HIF-1α expression in the liver and EWAT of ob/ob mice. Administration of losartan
significantly diminishes obesity-enhanced macrophage M1 activation and suppresses hepatosteatosis.
Moreover, HIF-1α-mediated mitochondrial dysfunction was reversed in ob/ob mice treated with
losartan. Together, the regulation of HIF-1α controls LDs protein expression and macrophage
polarization, which highlights a potential target for losartan in NAFLD.
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1. Introduction

Obesity-related steatosis and nonalcoholic fatty liver disease (NAFLD) are associated
with hepatic steatosis or accumulation of fat, predominantly triglycerides, that promote mi-
tochondrial dysfunction and M1 macrophage polarization [1,2]. Obesity triggers hypoxia
in adipose tissue and the small intestine, which stabilizes and activates hypoxia-inducible
factor-1α (HIF-1α), a transcription factor implicated in hypoxia and hepatic lipid accumula-
tion, resulting in adverse metabolic effects, including insulin resistance and NAFLD [1,3,4].
Recent findings demonstrate that HIF-1α is implicated in lipid metabolism through LDs
accumulation [5], an increase of fatty acid and lipid synthesis [5,6], and upregulation of
fatty acid uptake [7].

Lipid droplets (LDs) play central roles in cellular and organismal energy homeostasis,
in particular, and overall lipid metabolism in general, that are particularly important
in tissues specialized for energy storage or lipid turnovers, such as adipose tissues, the
liver, and the intestine [8,9]. On the surface and/or in the vicinity of droplets, there are
several structural/functional proteins such as lipid droplet proteins, lipogenic enzymes,
and lipases, as well as LD-associated proteins such as perilipin families (PLIN1-PLIN5) and
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cell death-inducing DNA fragmentation factor-alpha (DFFA)-like effector (CIDE) proteins.
PLIN1 tended to be associated with larger LDs, while expression of PLIN2 was more
correlated with the presence of ballooned hepatocytes and evidence of oxidation [10].

An interesting mechanism recently related to the pathogenesis of NAFLD is the asso-
ciation between mitochondrial dysfunction and hepatocyte sensitivity to hypoxic stress. A
high-fat diet induces dysregulation of hepatic oxygen gradients and mitochondrial func-
tion in vivo by reduced complex IV activity [11]. Lipid droplets and mitochondria indeed
display close physical associations [12], and direct channeling of fatty acids from their site
of release (droplets) to the site of consumption (mitochondria) would minimize the risk of
toxic effects elsewhere, such as disruption of cellular membranes or inappropriate nuclear
signaling [13,14]. When fusion is prevented, mitochondria are fragmented, and efficient up-
take of fatty acids and their metabolic breakdown occurs only in the mitochondria directly
associated with lipid droplets. Unmetabolized fatty acids are re-exported, either into lipid
droplets or into the extracellular space, resulting in lipid accumulation and obesity [13–15].

In obesity, elevated fatty acids are a potential trigger for macrophage activation [16],
which play an important role in the modulation of inflammation through polarizing to
classically activated macrophages (M1) or alternatively activated macrophages (M2) in
certain tissue niches and upon environmental stimuli [17]. Thus, M1-type macrophages,
secrete pro-inflammatory cytokines such as tumor necrosis factor (TNF) α and interleukin
(IL) -6, are predominant adipose tissue macrophage (ATM) populations in obese adipose
tissues [18]. Previous studies have demonstrated that HIF-1α is a metabolic regulator that
plays an important role in immunologic responses and participates in the M1 polarization
of macrophages [19], and Ouyang X et al. has shown that inhibiting HIF-1 α activation
suppresses liver inflammation and cellular damage in steatohepatitis [20].

Losartan (Cozaar) is an angiotensin II receptor antagonist, that has been known
to attenuate progression of nonalcoholic steatohepatitis in obese models [21–23]. Our
early studies demonstrate that losartan decreased portal pressure and ameliorated hy-
perdynamic circulation on bile duct-ligated cirrhotic rats with portal hypertension [24]
and involvement of the HIF-1α and Wnt/β-catenin pathways on fatty liver graft with
ischemia/reperfusion injury [25]. In additional, Yang et al. demonstrated that losartan
alleviated angiotensin II induced-lipid droplet (LD) accumulation and expression of the
LD marker adipose differentiation-related protein (ADRP) in podocytes [26]. However, the
effects of losartan on HIF-1α, LDs and mitochondrial function have not yet been completely
understood. In this study, we demonstrate that losartan enhances hepatic mitochondrial
biogenesis/function and M2 macrophage polarization by inhibiting HIF-1α and lipogene-
sis pathways. Further, losartan was significantly mitigated by LDs accumulation and M1
macrophage polarization in EWAT, suggesting potential therapeutic applications for the
treatment of obesity-related diseases.

2. Results
2.1. Losartan Prevents NAFLD Development

We evaluated the effects of losartan on NAFLD in obese models and compared their
effects to improved liver function after 30 days of drug treatment. ob/ob mice displayed
a significantly increased body weight, and the ratio of liver/ body weight index was
compared with normal mice (Figure 1A). Although no significant differences in body
weight were observed between ob/ob mice and ob/ob mice treated losartan, losartan signifi-
cantly reduced the ratio of liver/body weight in ob/ob mice (Figure 1A,B). No significant
differences in plasma alanine aminotransferase (ALT) and aspartate transaminase (AST)
were observed between ob/ob mice and ob/ob mice treated losartan (Figure 1C,D). Triglyc-
eride (TG) and free fatty acid (FFA) levels were significantly increased in ob/ob mice as
compared with normal mice and were significantly reduced in ob/ob mice administrated
losartan (Figure 1E,F), suggesting that losartan has a potential effect of preventing NAFLD
development.
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Figure 1. Losartan attenuated NAFLD development in ob/ob mice. (A) Body weight (g). (B) Liver 
weight/body weight (%). (C) Plasma ALT (IU/dL). (D) Plasma AST (IU/dL). (E) Plasma TG (mg/dL). 
(F) Plasma FFA (mmol/L). For each animal group, n = 5. All values represent the mean ± SEM. Data 
were analyzed by Student’s t test. * p ≤ 0.05; normal vs. ob/ob. # p ≤ 0.05; ob/ob vs. ob/ob + Losartan. 
ALT, alanine transaminase; AST, aspartate aminotransferase; TG, triglyceride; FFA, free fatty acid. 

2.2. Losartan Attenuates Liver Steatosis and Hepatic HIF-1α Activation 

LDs are dynamic lipid storage organelles that are found in hepatocytes on ob/ob mice. 
Lack of leptin led to profound modifications in hepatocyte morphology and physiology 
(Figure 2). Interestingly, these changes were fat-depot specific. We assessed the abun-
dance of lipid accumulation in hepatocytes on ob/ob mice, a lipophilic dye on the Oil Red 
O (Figure 2A). These data were further confirmed by HE and Oil Red O staining, high-
lighting a novel role for losartan in reducing LDs accumulation in the context of obesity 

Figure 1. Losartan attenuated NAFLD development in ob/ob mice. (A) Body weight (g). (B) Liver
weight/body weight (%). (C) Plasma ALT (IU/dL). (D) Plasma AST (IU/dL). (E) Plasma TG (mg/dL).
(F) Plasma FFA (mmol/L). For each animal group, n = 5. All values represent the mean ± SEM. Data
were analyzed by Student’s t test. * p ≤ 0.05; normal vs. ob/ob. # p ≤ 0.05; ob/ob vs. ob/ob + Losartan.
ALT, alanine transaminase; AST, aspartate aminotransferase; TG, triglyceride; FFA, free fatty acid.

2.2. Losartan Attenuates Liver Steatosis and Hepatic HIF-1α Activation

LDs are dynamic lipid storage organelles that are found in hepatocytes on ob/ob mice.
Lack of leptin led to profound modifications in hepatocyte morphology and physiology
(Figure 2). Interestingly, these changes were fat-depot specific. We assessed the abundance
of lipid accumulation in hepatocytes on ob/ob mice, a lipophilic dye on the Oil Red O
(Figure 2A). These data were further confirmed by HE and Oil Red O staining, highlighting
a novel role for losartan in reducing LDs accumulation in the context of obesity (Figure 2A).
As shown in Figure 1A,B, the HIF-1α protein level was significantly decreased by losar-
tan treatment in ob/ob mice (Figure 2A,B). Hepatocytes of ob/ob mice were larger and
contained large multilocular LDs (Figure 2A), and showed that LD-associated proteins
(PLIN1, PLIN2, CIDEA and CIDEC) and lipofuscin were significantly increased in the liver
(Figure 2A,B). Losartan significantly reduced LD-associated proteins and lipofuscin in
ob/ob mice (Figure 2A,B). Moreover, lipolysis enzymes as known to regulate basal lipolysis
and lipid droplet size. As shown in Figure 2C, losartan significantly reduced lipolysis en-
zyme mRNA expression, including adipose triglyceride lipase (ATGL), hormone-sensitive
lipase (HSL), lipoprotein lipase (LPL) and acyl-CoA oxidase (ACO) in the liver of ob/ob
mice (Figure 2C).
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HIF-1α, PLIN1, PLIN2, CIDEA, and CIDEC protein levels by Western blot of liver after losartan 
treatment. Below graphs indicate quantification relative to Histone or β-actin. (C) Quantification of 
ATGL, HSL, LPL, and ACO by qRT-PCR. qRT-PCR indicates quantification relative to GAPDH. For 
each animal group, n = 5. All values represent the mean ± SEM. Data were analyzed by Student’s t 
test. *p ≤ 0.05; normal vs. ob/ob. # p ≤ 0.05; ob/ob vs. ob/ob + Losartan. HIF-1α, hypoxia-inducible factor-
1α; LDs, lipid droplets; HE, hematoxylin and eosin; PLIN, perilipin; CIDE, cell-death-inducing 
DNA-fragmentation-factor (DFF45)-like effector; ATGL, adipose triglyceride lipase; HSL, hormone-
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We next investigated cellular mechanisms for the effects of losartan on hepatic lipid 

accumulation. ob/ob mice showed a large increase in LD levels, probably via induction 
hepatic lipogenesis through sterol regulatory element binding protein 1 (SREBP-1) activa-
tion and fatty acid uptake cluster of differentiation 36 (CD36) expression. Losartan  mark-
edly decreased SREBP-1 and CD36 protein levels (Figure 3A,B) as well as SREBP-1c, fatty 
acid synthase (FAS), stearoyl-CoA desaturase-1 (SCD-1), and fatty acid transporters 

Figure 2. Losartan decreased HIF-1α and LD-associated proteins. (A) Representative HE, Oil Red O,
HIF-1α, PLIN1, PLIN2, CIDEA and CIDEC staining of liver from normal mice and losartan-treated
ob/ob mice. Green pseudo-color represents visualization of lipofuscin’s autofluorescence at 450–490
nm. Red arrow highlights the positive staining. Scale bar: 100 µm. Quantification of (B) HIF-1α,
PLIN1, PLIN2, CIDEA, and CIDEC protein levels by Western blot of liver after losartan treatment.
Below graphs indicate quantification relative to Histone or β-actin. (C) Quantification of ATGL,
HSL, LPL, and ACO by qRT-PCR. qRT-PCR indicates quantification relative to GAPDH. For each
animal group, n = 5. All values represent the mean ± SEM. Data were analyzed by Student’s t test.
* p ≤ 0.05; normal vs. ob/ob. # p ≤ 0.05; ob/ob vs. ob/ob + Losartan. HIF-1α, hypoxia-inducible
factor-1α; LDs, lipid droplets; HE, hematoxylin and eosin; PLIN, perilipin; CIDE, cell-death-inducing
DNA-fragmentation-factor (DFF45)-like effector; ATGL, adipose triglyceride lipase; HSL, hormone-
sensitive lipase; LPL, lipoprotein lipase; ACO, acyl-CoA oxidase.

2.3. Losartan Reduces Hepatic Lipogenesis

We next investigated cellular mechanisms for the effects of losartan on hepatic lipid
accumulation. ob/ob mice showed a large increase in LD levels, probably via induction hep-
atic lipogenesis through sterol regulatory element binding protein 1 (SREBP-1) activation
and fatty acid uptake cluster of differentiation 36 (CD36) expression. Losartan markedly
decreased SREBP-1 and CD36 protein levels (Figure 3A,B) as well as SREBP-1c, fatty acid
synthase (FAS), stearoyl-CoA desaturase-1 (SCD-1), and fatty acid transporters (CD36 and
fatty acid transport protein, FATP) mRNA expression in the liver of ob/ob mice (Figure 3C).
These data indicate that losartan decreased de novo lipogenesis (DNL) and fatty acid (FA)
uptake via HIF-1α and SREBP-1c-dependant pathways.
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biogenesis and β-oxidation in ob/ob mice. Hepatic mitochondria biogenesis markers, sirtuin-1 
(SIRT1), peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α), uncou-
pling protein 1 (UCP1), and UCP2 were significantly decreased in ob/ob mice (Figure 4A,B). Gene 
expressions of PGC1α, nuclear respiratory factor (NRF) 1, NRF2 and mitochondrial transcription 
factor A (TFAM) were also reduced in ob/ob mice (Figure 4C). During losartan treatment in ob/ob 
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acyl-CoA dehydrogenase (LCAD), and medium-chain acyl-CoA dehydrogenase (MCAD) mRNA 

Figure 3. Losartan attenuates lipogenesis and improves lipolysis in liver. (A) Representative SREBP-
1 and CD36 staining of liver from-treated ob/ob mice and normal mice. Scale bar: 100 µm. (B)
Quantification of SREBP-1 and CD36 protein levels by Western blot of liver after losartan treat-
ment. Right-hand graphs indicate quantification relative to Histone (for SREBP-1) and β-actin (for
CD36). (C) Quantification of SREBP-1c, FAS and SCD-1, CD36, and FATP by qRT-PCR. qRT-PCR
indicate quantification relative to GAPDH. For each animal group, n = 5. All values represent the
mean ± SEM. Data were analyzed by Student’s t test. * p ≤ 0.05; normal vs. ob/ob. # p ≤ 0.05;
ob/ob vs. ob/ob + Losartan. SREBP-1, sterol regulatory element binding protein 1; CD36, cluster
of differentiation 36; FAS, fatty acid synthase; SCD-1, stearoyl-CoA desaturase-1; FATP, fatty acid
transport protein.

2.4. Losartan Improves Hepatic Mitochondrial Biogenesis and β-Oxidation

We aimed to explore losartan effects on the lipid relationship between hepatic mi-
tochondrial biogenesis and β-oxidation in ob/ob mice. Hepatic mitochondria biogenesis
markers, sirtuin-1 (SIRT1), peroxisome proliferator-activated receptor gamma coactivator 1
alpha (PGC1α), uncoupling protein 1 (UCP1), and UCP2 were significantly decreased in
ob/ob mice (Figure 4A,B). Gene expressions of PGC1α, nuclear respiratory factor (NRF) 1,
NRF2 and mitochondrial transcription factor A (TFAM) were also reduced in ob/ob mice
(Figure 4C). During losartan treatment in ob/ob mice, mitochondria biogenesis gradually
returned to those observed in normal mice (Figure 4A–C). Next, we observed high levels
of PPARα, carnitine palmitoyltransferase (CPT)-1, CPT-2, long-chain acyl-CoA dehydroge-
nase (LCAD), and medium-chain acyl-CoA dehydrogenase (MCAD) mRNA expression
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in ob/ob mice, and we observed significantly reduced PPARα and β-oxidation markers in
liver of ob/ob mice treatment losartan (Figure 4D).
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forming growth factor beta (TGF-β), vascular endothelial growth factor (VEGF), and ma-
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Figure 4. Losartan enhanced mitochondrial biogenesis and function in ob/ob mice. (A) The staining
for SIRT1, PGC1α, and UCP1 are green, while the staining for mitochondria (Mito Tracker) is red.
Staining for DAPI is blue. Magnification of tissue samples is 20× (red box) and for inset, magnification
is 40× (white box). Scale bar: 100 µm. (B) Quantification of SIRT1, PGC1α, UCP1, and UCP2
protein levels by Western blot of liver after losartan treatment. Right graphs indicate quantification
relative to Histone (for SIRT1 and PGC1α) and β-actin (for UCP1 and UCP2). Quantification of (C)
PGC1α, NRF1, NRF2, TFAM, (D) PPARα, CPT-1, CPT-2, LCAD, and MCAD by qRT-PCR. qRT-PCR
indicate quantification relative to GAPDH. For each animal group, n = 5. All values represent the
mean ± SEM. Data were analyzed by Student’s t test. * p ≤ 0.05; normal vs. ob/ob. # p ≤ 0.05;
ob/ob vs. ob/ob + Losartan. SIRT1, sirtuin-1; PGC1α, peroxisome proliferator-activated receptor
gamma coactivator 1-alpha; PPAR, peroxisome proliferator-activated receptor; UCP1, uncoupling
protein 1; NRF, nuclear respiratory factor; TFAM, mitochondrial transcription factor A; CPT, carnitine
palmitoyltransferase; LCAD, long-chain acyl-CoA dehydrogenase; MCAD, medium-chain acyl-CoA
dehydrogenase.

2.5. Losartan Attenuates Hepatic Inflammatory Cytokine mRNA Expression and Relate Hepatic
Macrophage Polarization

We next investigated cellular mechanisms for the effects of losartan on hepatic
macrophage polarization. Losartan treatment decreased monocyte chemoattractant protein-
1 (MCP-1), tumor necrosis factor α (TNFα), and interferon gamma (IFNγ) mRNA expres-
sion in ob/ob mice (Figure 5A). We performed immunohistochemical staining of liver-
infiltrating cells. When compared with a normal liver, M1 macrophage (CD11b, CD11c,
and CCR7) expression was significantly increased, and M2 macrophages (CD163, and
CD206) were reduced in ob/ob mice (Figure 5B,C). Losartan significantly decreased M1
macrophages and the ratio of M1/M2 macrophages (CD11c/CD206, CCR7/CD163) in
ob/ob mice (Figure 5B,C). IL-1β saw no significant changes in ob/ob mice treated with
losartan (Figure 5A). HIF-1α protein was determined in the epididymal fat tissue homoge-
nization in a Western blot (Figure 2), that is associated with increased angiogenesis markers,
transforming growth factor beta (TGF-β), vascular endothelial growth factor (VEGF), and
matrix metallopeptidase 9 (MMP-9) protein levels in the liver of ob/ob mice, suggesting
enhanced function of HIF-1 in the liver (Figure 5D,E). Losartan was significantly reduced
by angiogenesis markers, TGFβR2, VEGF, and MMP9 in ob/ob mice (Figure 5D,E). Collec-
tively, these results suggested that losartan might play a certain role in regulation of liver
inflammation and macrophage polarization in ob/ob mice.
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Figure 5. Losartan related macrophage polarization and angiogenesis in liver. (A) Quantification
of IL-1β, MCP-1, TGFβ, TNFα, and IFNγ by qRT-PCR. qRT-PCR indicates quantification relative to
GAPDH. (B) Representative CD11b, CD11c, CCR7, CD163 and CD206 staining of liver. Red arrow
highlights the positive staining. Scale bar: 100 µm. (C) Quantification of CD11c, CCR7, CD163, and
CD206 protein levels by Western blot of liver. Below graphs indicate quantification relative to β-actin.
Ratio of CD11c at CD206 and CCR7 at CD163 in liver. (D) Representative TGFβR2, VEGF, and MMP9
staining of liver. Red arrow highlights the positive staining. Scale bar: 100 µm. (E) Quantification
of TGFβR2 and VEGF protein levels by Western blot of liver. Below graphs indicate quantification
relative to β-actin. For each animal group, n = 5. All values represent the mean ± SEM. Data were
analyzed by Student’s t test. * p≤ 0.05; normal vs. ob/ob. # p≤ 0.05; ob/ob vs. ob/ob + Losartan. IL-1β,
interleukin-1β; MCP-1, monocyte chemoattractant protein-1; TGFβ, transforming growth factor beta;
TNFα, tumor necrosis factor α; IFNγ, interferon gamma; TGFβR2, transforming growth factor beta
receptor 2; VEGF, targets vascular endothelial growth factor; MMP9, matrix metallopeptidase 9.

2.6. Losartan Attenuates Lipid Accumulate and HIF-1α Protein Level in EWAT

To further study the regulation of LDs as dynamic lipid storage organelles that are
found in EWAT on ob/ob mice, we assessed the adipocytes morphology, HIF-1α, and LD-
associated protein levels (Figure 6). We have shown that HIF-1α protein levels and the size
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of lipid droplets were increased in ob/ob mice, and these observations were attenuated in
EWAT of ob/ob mice treatment with losartan (Figure 6A,B). LD-associated proteins (PLIN1,
PLIN2, CIDEA, and CIDEC) levels were significantly increased in ob/ob mice (Figure 6C,D).
Losartan significantly reduced LD-associated proteins in ob/ob mice, but PLIN2 saw no
significant change by western blot analysis (Figure 6D).
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Figure 6. Losartan attenuated HIF-1α expression and LDs formation in EWAT. (A) Representative
HIF-1α staining of EWAT from losartan-treated ob/ob mice and normal mice. Red arrow highlights
the positive staining. Scale bar: 100 µm. Quantification of (B) HIF-1α protein level by Western blot.
Below graphs indicate quantification relative to Histone. (C) Representative HE, PLIN1, PLIN2,
CIDEA and CIDEC staining of EWAT from losartan-treated ob/ob mice and normal mice. Scale bar:
100 µm. Quantification of (D) PLIN1, PLIN2, CIDEA, and CIDEC protein levels by Western blot of
EWAT after losartan treatment. Below graphs indicate quantification relative to β-actin. For each
animal group, n = 5. All values represent the mean ± SEM. Data were analyzed by Student’s t test.
* p ≤ 0.05; normal vs. ob/ob. # p ≤ 0.05; ob/ob vs. ob/ob + Losartan. HIF-1α, hypoxia-inducible
factor-1α; LDs, lipid droplets; EWAT, epididymis white adipose tissue; HE, hematoxylin and eosin;
PLIN, perilipin; CIDE, cell-death-inducing DNA-fragmentation-factor (DFF45)-like effector.

2.7. Losartan Attenuates Inflammation and Alters Macrophage Polarization in EWAT

We aimed to investigate whether losartan might be related to inflammatory responses
in EWAT. We examined inflammatory gene expression and macrophage accumulation in
EWAT of ob/ob mice. The mRNA expression of IL-1β, MCP1, TGFβ, TNFα, and IFNγ

were increased in ob/ob mice, and inflammatory gene expression was significantly reduced
in ob/ob mice treated with losartan (Figure 7A). Next, we showed that the effects of the
macrophage polarization observed in EWAT of ob/ob mice treatment with losartan. M1
macrophage markers F4/80, CD11b, CD11c, and CCR7 were increased and M2 macrophage
markers CD206 and CD163 were decreased in EWAT of ob/ob mice as compared to normal
mice. We also observed that alternatively activated M2 markers (CD206, CD163) were
upregulated and M1 markers (F4/80, CD11b, CD11c, CCR7) were downregulated in EWAT
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of ob/ob mice treated losartan (Figure 7B,C). Together, we demonstrated that losartan re-
duced inflammatory cytokines, M1 macrophage activation, and enhanced M2 macrophages
activation in EWAT of ob/ob mice.
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Figure 7. Losartan altered macrophage polarization in EWAT. (A) Quantification of IL-1β, MCP1,
TGFβ, TNFα, and IFNγ by qRT-PCR. qRT-PCR indicates quantification relative to GAPDH. (B)
Representative F4/80, CD11b, CD11c, CCR7, CD206 and CD163 staining of EWAT. Red arrow
highlights the positive staining. Scale bar: 100 µm. (C) Quantification of CD11c, CCR7, CD206,
and CD163 protein levels by Western blot of EWAT. Below graphs indicate quantification relative to
β-actin. The ratio of CD11c at CD206 and CCR7 at CD163 in the EWAT. For each animal group, n = 5.
All values represent the mean ± SEM. Data were analyzed by Student’s t test. * p ≤ 0.05; normal
vs. ob/ob. # p ≤ 0.05; ob/ob vs. ob/ob + Losartan. EWAT, epididymal white adipose tissue; IL-1β,
interleukin-1β; MCP1, monocyte chemoattractant protein-1 (CCL2); TGFβ, transforming growth
factor beta; TNFα, tumor necrosis factor α; IFNγ, Interferon gamma.

3. Discussion

In the present study, we evaluated the effects of losartan on NAFLD in an obese model;
there was no significant improvement in plasma ALT and AST, which is in line with the
previous observation of Hirata and coworkers in NAFLD patients [23]. However, losartan
is able to decrease plasma TG, FFA, and the liver-to-body (L/B) weight ratio in ob/ob
mice, which suggests that losartan might improve fat deposition in the liver. In addition,
several other pathways are also likely to be involved in the beneficial effects of losartan,
which are well known in NASH progression and are based on inflammation processes
and TG accumulation. Losartan treatment strongly reduced steatosis score [21], as well
as decreased oxidative stress and liver fibrosis in nonalcoholic steatohepatitis in rats [22].
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However, the exact mechanism of losartan therapy for NAFLD is unclear, which is needed
to elucidate further studies.

In liver steatosis, swelling of hepatocytes caused by lipid accumulation results in
decreased hepatic sinusoidal perfusion and impaired hepatic microcirculation, thereby
accelerating hepatic hypoxia [27]. As the homeostatic response to hypoxia increased to
molecular genetic mechanisms, in which HIF-1 and HIF-2 have important roles, hypoxia
induces liver lipid accumulation of metabolic adaptation [28]. Hepatic HIF-1α is activated
in rodent models of diet-induced liver steatosis [28] and in human beings with NAFLD [29].
Early findings demonstrate that HIF-1 is implicated in lipid metabolism through LD
accumulation [5], increase of fatty acid and lipid synthesis [5,30], and upregulation of fatty
acid uptake [7], but the effect of LD-associated proteins is unclear. Inactivation of HIF-2α
significantly suppressed the development of hepatic steatosis, indicating a novel role for
HIF-2 in the regulation of hepatic lipid metabolism in vivo [31]. However, controversy
remains regarding the role of HIF-2 as a pro-lipogenic factor [32], in as much as HIF-2
-deficient mice also exhibit hepatic steatosis, and the forced expression of HIF-1, but not HIF-
2, in liver stimulates lipid accumulation in mice [33]. Therefore, we sought to elucidate the
link between hepatic HIF-1α activation and LD-associated proteins. LD-associated proteins
are essential for the maintenance of development of hepatic steatosis in mice [5,30,33].
Several proteins located at the surface of LDs (hypoxia-inducible protein 2, HIG2; Perilipin;
PLIN2/adipose differentiation-related protein, ADRP; and Tip47) are essential for their
membrane integrity, and HIG2 and ADRP are induced by hypoxia [5,30,33].

In addition, several reports showed that the CIDE family proteins are important
regulators of various aspects of lipid metabolism, including control of lipid storage and LD
size of adipocytes (by Cidea and Fsp27) [34,35]. Cidea deficient mice have lean phenotypes
and are resistant to obesity [36], and there was up-regulation of mitochondrial activity
and acquirement of brown adipose tissue-like properties in the white adipose tissue of
CIDEC/FSP27 deficient mice [34–36]. Furthermore, liver-specific knocking down of Cidea
in ob/ob mice resulted in less lipid accumulation [37], and alleviated hepatic steatosis
SREBP-1c stimulated the transcription of Cidea by directly binding to the SRE identified in
the Cidea gene promoter in hepatocytes [34,37]. Furuta et al. reported that the fatty acid
synthase (FAS) gene is up-regulated by hypoxia via activation of Akt and SREBP-1 [38]. In
the present study, our results agreed with previously published evidence, in which losartan
decreased hepatosteatosis [21] and PLIN2 [39] in the liver of an obesity model.

Our current observations suggest that losartan plays a role in attenuating hepatic
steatosis and hypoxia in the initiation of lipid accumulation. The protein levels of HIF-1α
and LD-associated proteins were significantly decreased in liver and EWAT of ob/ob mice
treated with losartan. Here, we delineate the potential mechanism of losartan that inhibits
hepatic lipogenesis, and would attenuate hepatosteatosis in obesity-associated disease.

This study revealed that hepatic steatosis is accompanied not only by lipogenesis
but also by impaired mitochondrial biogenesis. Previous studies have demonstrated that
mitochondrial activity is globally repressed in more severe models of obesity, such as ob/ob
and db/db mice, and Gao Q et al. conclude that PPARα and fatty acid oxidation (LCAD
and MCAD) was increased in ob/ob mice [40]. These mice have lower arterial oxygenation
suggestive of mild hypoxia and exposure to higher plasma cytokine levels, as well as HIF-
1α being stabilized and promotion of mitochondrial complex IV dysfunction (decreased
activity and stability) in age-dependent obesity [41,42]. Incomplete mitochondrial and lipid
oxidation and/or respiratory chain dysfunction, when combined with limited antioxidant
activity, increases hepatic oxidative stress and liver injury prior to the development of
obesity [40–42].

We showed that protein level analysis confirmed downregulation of mitochondrial
biogenesis and upregulation β-oxidation, suggesting mitochondrial dysfunction of livers
in ob/ob mice [42,43]. As a result, the expression levels of key regulatory factors involved in
mitochondrial metabolism and organelle biogenesis, namely, PGC-1α, TFAM, and NRF-2,
have been reported to be reduced in NAFLD [43–45]. Losartan significantly increased mito-
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chondrial biogenesis (SIRT1, PGC1α, UCP1, UCP2 protein levels, and PGC1α, NRF1, NRF2,
and TFAM mRNA expression), and reduced β-oxidation was found in livers from ob/ob
mice. Rodgers JT et al. confirmed the SIRT1 was down-regulated due to decreased NAD+

levels, which allowed the acetylation and activation of HIF-1a during hypoxia [45–47]. In
addition, the SIRT1-HIF-1α interaction in hypoxic mouse tissues and observed in vivo
showed that SIRT1 has negative effects on tumor growth and angiogenesis [44–49]. Accord-
ingly, the liver might promote steatosis by enhancing HIF-1α and inhibiting SIRT1 signaling
that stimulates hepatosteatosis in ob/ob mice, and these phenomena were neutralized by
losartan.

Another mechanism impairing mitochondrial respiration involves ROS-mediated
release of TNF in the liver [48,49]; Van den Bossche et al. showed that inflammatory M1
macrophage activation dampens mitochondrial function, thereby preventing the repolar-
ization to an anti-inflammatory M2 phenotype [48]. HIFs have recently been identified as
important regulators of immunity and inflammation. Wang et al. showed that macrophage
activation in NASH involves a complex interplay between HIF-1α and autophagy, as these
pathways promote pro-inflammatory overactivation in MCD diet-induced NASH [49,50].
In this study, we found that HIF-1α mediates MCP1, TNFα, and IFNγ production and
that HIF-1α-mediated impairment of liver and EWAT increases IL-1β production [49–51],
which induced M1 polarization [19,51] in mice contributing to obesity-induced NAFLD.
We were able to detect expression of M1 macrophage (CD11b, CD11c, CCR7) protein levels,
and the ratio of M1/M2 was increased in the liver and EWAT of ob/ob mice. In this study,
losartan is involved in dampening obesity-induced proinflammatory gene expression,
suppressing the ratio of M1/M2, suggesting that HIF-1α activation plays a prominent
role in related macrophage polarization in ob/ob mice. The link between hypoxia and
macrophage polarization in hepatosteatosis and EWAT suggests that losartan may interfere
with the progression of obesity-associated disease.

This current study demonstrates the role of losartan in improving steatosis in ob/ob
mice significantly: (1) losartan attenuated lipogenesis and LDs accumulation in hep-
atosteatosis and EWAT; (2) losartan improved mitochondrial biogenesis and β-oxidation
in hepatosteatosis; (3) losartan decreased the inflammatory response and macrophage
polarization in hepatosteatosis and EWAT. In conclusion, this study demonstrates that
losartan attenuated hepatic LDs accumulation and enhanced mitochondrial function and
M2 macrophage polarization, possibly through partial effects by modulating HIF-1α sig-
naling, and is a major link between obesity and NAFLD. Thus, our study identifies that
losartan could be a novel therapy for the treatment of NAFLD, which has become a world-
wide health-threatening epidemic.

4. Materials and Methods
4.1. Animal Experiments

C57BL/6J (normal) mice and leptin-deficient (ob/ob) mice, obtained from the National
Laboratory Animal Center (Taiwan), were housed for this study. All animal procedures
were performed according to standard protocols and in compliance with standard recom-
mendations for the proper care and use of laboratory animals. This study was approved by
the Animal Care and Use Committee of Chang Gung University Institutional Animal Care
and Use Committee (approved serial no. CGU14-044). All of the mice were group-housed
(four to five mice per cage) in Macrolon cages in clean-conventional animal rooms in the
American Association for Accreditation of Laboratory Animal Care (AAALAC)-accredited
animal facility at Chang Gung University (12-h light-dark cycle, relative humidity 50–60%,
and temperature ~21 ◦C) and had ad libitum access to food and water. The mice were then
matched into three groups (n = 5/group) based on body weight: (1) normal mice, (2) ob/ob
mice; (3) ob/ob mice+ losartan (100 mg/L dissolved in water for 30 days). After 30 days,
animals were terminated by gradual fill CO2 asphyxiation, and a terminal blood sample
was collected by cardiac puncture.
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4.2. Sample Collection and Biochemical Analysis

Plasma was obtained by centrifugation and stored at−80 ◦C until biochemical analysis.
Plasma alanine aminotransferase (ALT) and AST (Aspartate aminotransferase, GOT) were
measured by Randox ATL and AST assay (RANDOX, Antrim, UK). Plasma triglycerides
(TG) and free fatty acids (FFA) were measured by Randox triglycerides assay and NEFA
Assay.

4.3. Histological, Immunohistochemistry, and Immunofluorescence Analysis of Adipose Tissue and Liver

Liver and EWAT were fixed overnight in 10% phosphate-buffered formalin, and were
embedded in paraffin. Five-micrometer-thick sections were then stained with hematoxylin
and eosin (HE) to assess lipid infiltration. For immunohistochemistry and immunofluores-
cence, liver and EWAT sections were stained with anti-PLIN1 (Ab3526, abcam, Cambridge,
UK), PLIN2 (NB110-40877, Novus Biologicals, Centennial, CO, USA), CIDEA (NBP1-76950,
Novus Biologicals, Centennial, CO, USA), CIDEC (Ab198204, abcam, Cambridge, UK),
SREBP-1 (SC-366, Santa Cruz Biotechnology, Dallas, TX, USA), CD36 (SC-70644, Santa
Cruz Biotechnology, Dallas, TX, USA), SIRT1 (ab110304, abcam, Cambridge, UK), PGC1α
(ab54481, abcam, Cambridge, UK), UCP1 (ab10983, abcam, Cambridge, UK), HIF-1α
(ab179483, abcam, Cambridge, UK), TGFβR2 (Santa Cruz Biotechnology, Dallas, TX, USA),
VEGF (ab69479, abcam, Cambridge, UK), MMP9 (AB19016, Millipore, Burlington, MA,
USA), F4/80 (Ab6640, abcam, Cambridge, UK), CD11b (ab133357, abcam, Cambridge,
UK), CD11c (ab52632, ab11029, abcam, Cambridge, UK), CCR7 (abcam, Cambridge, UK),
CD163 (ab182422, abcam, Cambridge, UK), CD206 (ab64693, abcam, Cambridge, UK),
DAPI (62248, Thermo Fisher Scientific, Waltham, MA, USA) and MitoTracker Red CMXRos
(M7512, Thermo Fisher Scientific, Waltham, MA, USA). For immunohistochemistry analy-
sis, sections were also stained with secondary antibodies conjugated with HRP-conjugated
anti-rabbit (G-21234, Millipore, Burlington, MA, USA), anti-mouse (G-21040, Millipore,
Burlington, MA, USA), anti-rat (31470, Genetex, Irvine, CA, USA) or anti-goat (31402,
abcam, CA, UK), followed by incubation in DAB peroxidase solution (Millipore, Burling-
ton, MA, USA) and subsequent counterstaining with hematoxylin (Sigma, St. Louis, MO,
USA). The images shown here were obtained using an Olympus IX71 microscope. For
immunofluorescence analysis, sections were incubated with the secondary antibody, mouse
secondary antibody Alexa Fluor 488 (A-11029, Thermo Fisher Scientific, Waltham, MA,
USA), rabbit Secondary Antibody, Alexa Fluor 488 (A11034, Thermo Fisher Scientific,
Waltham, MA, USA), rabbit Secondary Antibody, Alexa Fluor Plus 647 (A32795, Thermo
Fisher Scientific, Waltham, MA, USA), goat Alexa Fluor 488, Alexa Fluor 633, anti-mouse
or anti-rabbit (Thermo Fisher Scientific, Waltham, MA, USA) and DAPI (62248, Thermo
Fisher Scientific, Waltham, MA, USA) for nuclear staining. Positive staining for CD11c,
CCR7, CD163, CD206 were quantified using ImageJ software (1.45, NIH).

4.4. Oil Red O Staining

Lipid droplets were visualized by Oil Red O staining (ORO; Sigma-Aldrich; Merck
KGaA, Darmstadt, Germany). Fresh liver tissues were embedded carefully in an optimal
cutting temperature compound (OCT) in a plastic mold, followed by freezing at −80 ◦C.
Liver tissue sections (10 µm thick) were stained with Oil Red O working solution (w/v, 60%
isopropyl alcohol and 40% water) for 15 min, that was later rinsed with 50% isopropanol
and counterstained with hematoxylin for the nucleus.

4.5. Auto-Fluorescence Detection of Lipofuscin

The liver sections were deparaffinized, hydrated and mounted into 40% glycerol/TBS
mounting medium. Lipofuscin auto-fluorescence was then evidenced by excitation at
450–490 nm, using a dichromatic mirror at 510 nm and a long-pass filter at 515 nm [52].
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4.6. RNA Isolation and Quantitative Real-Time PCR

The liver and EWAT samples were obtained from all mice. Total RNAs of liver and
EWAT tissues were extracted using TRIzol Reagent (Life Technologies, Waltham, MA,
USA) and a RNeasy Kit (QIAGEN, Germantown, MD, USA). The complementary DNA
(cDNA) was obtained using a High-Capacity cDNA Reverse Transcription Kit (Thermo
Fisher Scientific, Waltham, MA, USA). The cDNA samples were amplified by a quantitative
reverse-transcription polymerase chain reaction using Fast SYBR Green (Roche, Basel,
Switzerland). Relative expression levels were determined by normalizing each Ct value to
either gene expression for mice samples using the44Ct method. The primer sequences
used in this study are shown in Table 1.

Table 1. Oligonucleotide sequences for t-qPCR.

Gene Forward Reverse

ATGL 5′ aacaccagcatccagttcaa 3′ 5′ ggttcagtaggccattcctc 3′

HSL 5′ agacaccagccaacggatac 3′ 5′ catcaccctcgaagaagagca 3′

LPL 5′ actcatctccgccatgcc 3′ 5′ ccagctttctcctagcaagg 3′

ACO 5′ atgaatcccgatctgcgcaaggagc 3′ 5′ aaaggcatgtaacccgtagcactcc 3′

SREBP-1c 5′ actgtcttggttgttgatgagctggagcat 3′ 5′ atcggcgcggaagctgtcggggtagcgtc 3′

FAS 5′ tgtcattggcctcctcaaaaagggcgtcca 3′ 5′ tcaccactgtgggctctgcagagaagcgag 3′

SCD-1 5′ ccggagaccccttagatcga 3′ 5′ tagcctgtaaaagatttctgcaaacc 3′

FATP 5′ gcttcaacagccgtatcctc 3′ 5′ tcttcttgttggtggcactg 3′

CD36 5′ gcaaaacgactgcaggtcaac 3′ 5′ tggtcccagtctcatttagcca 3′

CPT-1 5′ ggacagagactgtgcgttcct 3′ 5′ gcgatatccaacagtgcttga 3′

CPT-2 5′ caaggccctggctgatgatgtg 3′ 5′ agtctctgtccgcccctctcg 3′

LCAD 5′ tcaacagcagttacttgg 3′ 5′ gacaatatctgagtggag 3′

MCAD 5′ ggggaggatgacggagcagc 3′ 5′ cgggtactttaggatctggg 3′

PGC1α 5′ gactcagtgtcaccaccgaaa-3′ 5′ tgaacgagagcgcatcctt 3′

TFAM 5′ ggaatgtggagcgtgctaaaa 3′ 5′-tgctggaaaaacacttcggaata 3′

UCP1 5′ cctgcctctctcggaaacaa 3′ 5′-tgtaggctgcccaatgaaca 3′

UCP2 5′ gcctctggaaagggacttctc 3′ 5′ accagctcagcacagttgaca 3′

NRF1 5′ cgcagcacctttggagaa 3′ 5′-cccgacctgtggaatacttg-3′

NRF2 5′ atggatttgattgacatcctt 3′ 5′ catgtttttctttgtatctgg 3′

IL-1β 5′ aacctgctggtgtgtgacgttc 3′ 5′ cagcacgaggcttttttgttgt 3′

MCP1 5′ aggtccctgtcatgcttctg 3′ 5′ tctggacccattccttcttg 3′

TGFβ 5′ tatagcaacaattcctggcg 3′ 5′ tgctgtcacaggagcagtg 3′

TNFα 5′ ttgacctcagcgctgagttg 3′ 5′ cctgtagcccacgtcgtagc 3′

IFNγ 5′ cctcaaacttggcaatactc 3′ 5′ agcaacaacataagcgtcat 3′

GAPDH 5′ tcaccaccatggagaaggc 3′ 5′ gctaagcagttggtggtgca 3′

ATGL, adipose triglyceride lipase; HSL, hormone-sensitive lipase; LPL, lipoprotein lipase; ACO, acyl-CoA oxidase;
SREBP-1c, sterol regulatory element-binding protein 1c; FAS, fatty acid synthase, SCD-1, stearoyl-CoA desaturase-
1, FATP, fatty acid transport protein; CD36, cluster of differentiation 36; CPT-1, carnitine palmitoyltransferase 1;
LCAD, long-chain acyl-CoA dehydrogenase; MCAD, medium-chain acyl-CoA dehydrogenase (ACADM); PGC1α,
peroxisome proliferator-activated receptor gamma coactivator 1-alpha; TFAM, mitochondrial transcription factor
A; UCP1, uncoupling protein 1; NRF1, nuclear respiratory factor 1; IL-1β, interleukin-1β; MCP1, monocyte
chemoattractant protein-1 (CCL2); TGFβ, transforming growth factor beta; TNFα, tumor necrosis factor α; IFNγ,
interferon gamma; GAPDH, glyceraldehyde-3-phosphate dehydrogenase.

4.7. Protein Isolation and Western Blot Analysis

Western blotting was performed using 50–100 µg of nuclear fraction, cytosolic fraction
or whole extract of liver and EWAT. Tissues were homogenized in lysis buffer (100 mM
Tris-HCl, pH 7.6, 2mM EDTA, 2mM EGTA, 150 mM NaCl, 1% Triton X-100) containing
proteinase inhibitors and phosphatase inhibitors (78442, Thermo Fisher Scientific, Waltham,
MA, USA). The specific antibodies against the respective antigens were as follows: PLIN1
(ab3526, abcam, Cambridge, UK), PLIN2 (NB110-40877, Novus Biologicals, Centennial,
CO, USA USA), CIDEA (NBP1-76950, Novus Biologicals, Centennial, CO, USA), CIDEC
(ab198204, abcam, Cambridge, UK), SREBP-1 (SC-366, Santa Cruz Biotechnology, Dallas,
TX, USA), CD36 (SC-70644, Santa Cruz Biotechnology, Dallas, TX, USA), SIRT1 (ab110304,
abcam, Cambridge, UK), PGC1α (ab54481, abcam, Cambridge, UK), UCP1 (ab10983, abcam,
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Cambridge, UK), UCP2 (ab203244, ab97931, abcam, Cambridge, UK) HIF1α (ab179483,
abcam, Cambridge, UK), TGFβR2 (SC-17791, Santa Cruz Biotechnology, Dallas, TX, USA),
VEGF (ab69479, abcam, Cambridge, UK), CD11b (ab133357, abcam, Cambridge, UK),
CD11c (ab52632, ab11029, abcam, Cambridge, UK), CCR7 (ab32527, abcam, Cambridge,
UK), CD163 (ab182422, abcam, Cambridge, UK), CD206 (ab64693, abcam, Cambridge, UK),
β-actin (MAB1501, Millipore, Burlington, MA, USA), and Histone (SC-56616, Santa Cruz
Biotechnology, Dallas, TX, USA). The protein expression was detected using an enhanced
chemiluminescence kit (Millipore, Burlington, MA, USA), and quantified using Image-
Quant 5.2 software. Each experiment was repeated with a minimum of three independently
prepared protein samples.

4.8. Statistical Analysis

All data are expressed as means ± SEM. The significance of differences between
values was determined using the two-tailed unpaired t test. p values less than 0.05 were
considered significant.
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