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e Universidada Autónoma de Baja California, Facultad de Ciencias Marinas, Ensenada, BCS, Mexico   

A R T I C L E  I N F O   

Handling Editor: Dr. Yeonhwa Park  

Keywords: 
Vegetal proteins 
Nutritional quality 
Low-quality agricultural grains 
Anti-nutritional factors 
Agricultural by-product 

A B S T R A C T   

Protein concentrates obtained from discarded grain flours of white chickpea Sinaloa (Cicer arietinum) (CC), 
“Azufrazin” bean (Phaseolus vulgaris) (BC), and white corn (Zea mays) (MC), were characterized biochemically 
through bromatological analyses (protein, lipid, fiber, moisture, ashes, and nitrogen free extract), HPLC tech-
niques (amino acids content), and spectrophotometry (anti-nutrients: phytic acid, trypsin inhibitors, and sapo-
nins). The percentage of protein obtained from CC, BC, and MC was 71.23, 81.10, and 55.69%, respectively. Most 
peptides in the BC and CC flours had a molecular weight of <1.35 kDa, meanwhile, MC peptides were heavier 
(1.35 to 17 kDa). The amino acids (AA) profile of flours and protein concentrates were similar; however, all the 
protein concentrates showed an increased AA accumulation (300 to -400%) compared with their flours. The 
protein concentrates from BC registered the highest AA accumulation (77.4 g of AA/100 g of protein concen-
trates). Except for the phytic acid in CC and trypsin inhibitor in CC and MC, respectively, the rest of the protein 
concentrates exhibited higher amounts of the anti-nutrients compared with their flours; however, these levels do 
not exceed the reported toxicity for some animals, mainly when used in combination with other ingredients for 
feed formulations. It is concluded that CC and BC protein concentrates showed better nutritional characteristics 
than MC (level of protein, size of peptides, and AA profile). After biochemical characterization, protein con-
centrates derived from by-products have nutritional potential for the animal feed industry.   

1. Introduction 

According to Arévalos et al. (2019), agricultural grains and seeds are 
products destined for the food industry and for sowing and propagation 
of plant species, respectively. In the food industry, plant-origin proteins 
are cheaper than those of animal origin. However, their use is limited 
because they are deficient in some essential amino acids (EAA), partic-
ularly sulfur-containing amino acids; besides, plant proteins contain 
anti-nutritional factors that can be noxious or affect food utilization, 
making the diet less digestible. Therefore, they are classified as nutri-
tionally lower or low-quality proteins (Hughes et al., 2011; Hua et al., 
2019). The denaturation of proteins derived from vegetables is a process 
commonly used to increase their dietary digestibility and reduce 

anti-nutritional factors, obtaining a product of higher bioavailability, 
better protein accessibility, and lower cost (VioqueSánchez-Vioque 
et al., 2001). 

Plant-based proteins are a cheaper alternative to be included in an-
imal diets, primarily when obtained from low-quality agricultural 
grains, so these are considered agricultural by-products (Ducrocq et al., 
2022). Due to diverse factors such as smaller size and different colors, 
among others (Dobrzański and Rybczyński, 2011), grains like chickpeas, 
beans, and corn could present quality standards below those required for 
export marketing. Other criteria to consider these agricultural grains as 
by-products can include broken grains, severely deformed grains, and 
attacked or infected by plagues, which represent economic losses for 
agricultural producers (Manrique Klinge, 2017). 

Chickpea (Cicer arietinum) is a good source of protein and 
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carbohydrates; this gran has multifunctional activities related to its 
content of phytochemicals (Xing et al., 2020; Wang et al., 2021). 
However, it is limited in some EAA like valine, threonine, and trypto-
phan (Kaur and Prasad, 2021; Iqbal et al., 2006). Nevertheless, it is 
considered an option for animal nutrition. The bean (Phaseolus vulgaris) 
is a legume characterized by its high protein content and hydrosoluble 
vitamins and is a good source of polyunsaturated fatty acids (Zhang 
et al., 2021; Garcia-Mora et al., 2015). However, its nutritional char-
acteristics depend on the variety and the geographical location where it 
is cultivated. Notwithstanding, beans are also characterized by their 
deficiency in some amino acids (AA), like methionine, cysteine, and 
tryptophan (Camacho-Espinoza et al., 2010). Despite this, beans have 
been considered a nutritional source of interest for the aquaculture in-
dustry (Novriadi et al., 2019; Bu et al., 2018; Khalifa et al., 2018). In 
turn, corn (Zea mays) contains low percentages of crude protein (Eleazu 
et al., 2021; Oboh et al., 2010). It is a cereal commonly used in animal 
diets due to its levels of some AA, like methionine and cysteine; how-
ever, it is deficient in lysine (Loy and Lundy, 2019). 

Due to the EAA deficiency presented in vegetable sources, diverse 
methodologies have been studied to make vegetal-origin proteins more 
efficiently assimilated by organisms (Donadelli et al., 2019). One of 
these alternatives is the use of protein concentrates (Gharibzahedi and 
Smith, 2021; Diaz et al., 2022; Sá et al., 2020), which represents both 
economic and environmental advantage over the dependence on 
animal-origin proteins (Loveday, 2020). Proteins in the form of con-
centrates contain 50 to 70% protein, and the protein isolates are above 
90%; thus, when the diet source is of vegetal origin, the obtained in-
gredients can pose different benefits like conserving functional proper-
ties, elimination of anti-nutritional factors (ANFs), and maximal possible 
extraction of proteins (Beski et al., 2015; Sánchez-Chino et al., 2019; 
VioqueSánchez-Vioque et al., 2001) Therefore, the objective of this 
research is to obtain and characterize nutritionally protein concentrates 
from discarded grains of chickpeas, beans, and corn, to assess their 
nutritional potential for the formulation animal diets. 

2. Materials and methods 

2.1. Samples 

The discard grains of white chickpea Sinaloa (Cicer arietinum), 
“Azufrasin” bean (Phaseolus vulgaris), and white corn (Zea mays) were 
provided by Productores Unidos del Río Petatlán, municipality of Gua-
save, Sinaloa, Mexico. Grains were pulverized in an industrial mill (Perc 
Grindmaster® Gr-500) (Louisville, KY, US) and sieved through a cylin-
drical sifter to obtain a fine flour of 460 μm particle size. 

2.2. Standardization of variables for the production of protein 
concentrates 

The chickpea and bean flours were dissolved in distilled water at a 
1:10 (w/v) ratio, adding a 2 N NaOH solution and stirring for 30 min at 
25◦ (pH 11 for chickpeas and pH 9.5 for beans), following the 

methodology with some modifications, described by Sánchez-Chino 
et al. (2019) and Félix et al. (2019) to obtain the chickpea protein 
concentrate, and that of Valdez-Ortiz et al. (2012) and Piñuel et al. 
(2019) with some modifications, to obtain the bean protein concentrate. 
Solutions were centrifuged at 3350 rcf for 20 min at 25 ◦C; afterward, 
the supernatant of each flour was recovered and distributed in different 
containers. The isoelectric precipitation was adjusted to three different 
pH values (3.5, 4, and 4.5). This was achieved by adding 2 N HCl and 
leaving it to rest for 16 h at 4 ◦C. The mixtures were centrifuged at 3350 
rcf for 30 min at 25 ◦C to obtain the frozen sediments at -60 ◦C and, 
finally, lyophilized for 48 h. 

To obtain the corn protein concentrate, the methodology described 
by Medina et al. (1990) with some modifications was used. The flour was 
dissolved with distilled water at a 1:5 (w/v) relation, adding 2 g of 
cupric sulfate (CuSO4), then the mixture was agitated for 30 min at 
46 ◦C, adding 2N NaOH to adjust the pH to 9.5. Then, the solution was 
centrifuged at 3350 rcf for 20 min at 25 ◦C. The supernatant was 
recovered, and the pH was adjusted (3.5, 4, and 4.5) by adding a solu-
tion of 2 N HCl. Then, the sample was left to rest for 16 h at 4 ◦C. After 
this time, new centrifugation was performed at 3350 rcf for 30 min at 
25 ◦C to obtain the sediment that was frozen and lyophilized for 48 h. 

The obtained protein yield was determined using the following for-
mula described by González et al. (2021). 

Yield (%)=
(EP)
(TP)

× 100  

Where: EP = extracted protein (g), and TP = total protein in the flour of the 
grains (g). 

2.3. Chemical-proximal analyses 

The chemical-proximal analyses of the three grains’ flours and pro-
tein concentrates were determined according to the methods described 
in AOAC, 2019. Protein was determined using the micro-Kjeldahl 
method, and lipid was estimated by Soxhlet extraction with anhydrous 
ether. Ash was analyzed using a muffle furnace to (600 ◦C) for 2 h, and 
crude fibre by the phenol–sulphuric acid method. The difference 
determined carbohydrate (NFE = Nitrogen free extract). 

2.4. Characterization of protein concentrates 

The peptide and amino acid profile and anti-nutrient levels were 
determined only in the chickpea, beans, and corn concentrates that 
showed the highest protein concentration after treatment with different 
pH levels. 

2.4.1. Peptides profile 
This analysis was performed following the methodology described by 

Martínez Montaño et al. (2020), using HPLC (Varían™ ProStar) equip-
ped with a Bio SEC-5™ (4.6 × 300 mm; Agilent) molecular exclusion 
column and monitoring the absorbance at 254 nm with a diodes array 
detector. Samples were eluted with a buffer of 150 mM sodium phos-
phate at a pH of 7, using an isocratic flow of 0.4 mL/min. The molecular 
weight was determined concerning the elution time of a molecular 
weight marker constituted by thyroglobulin (MW = 670 kDa), 
gamma-globulin (MW = 158 kDa), ovalbumin (MW = 44 kDa), 
myoglobin (MW = 17 kDa), and vitamin B12 (MW = 1.35 kDa). 

2.4.2. Amino acids profile 
The amino acid content of the meal samples was determined ac-

cording to the chapter #2.2.56 (Council of Europe, 2005). Each 25 mg 
sample was supplemented with 200 μL of 6 N HCl with 0.06% of phenol 
to be digested for 24 h at 110 ◦C under a nitrogen atmosphere. After-
ward, the samples were rehydrated with 0.1 N HCL and filtered through 
a PTFE-B of 0.45 μm mesh. Before the chromatographic analysis, the 

Abbreviations 

CC Chickpea Concentrate 
BC Bean Concentrate 
MC Corn Concentrate 
EAA Essential Amino acids 
NEAA Non-essential amino acids 
ANFs Anti-nutritional factors 
RCF Relative Centrifugal Force 
MPS Minimal protein solubility  
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samples were derivatized using the OPA reagent (o-phthalaldehyde) and 
an HPCLC equipment (Varían™ ProStar) with a C-18 reverse phase 
column (AdvanceBio AAA™, Agilent, 4.4 × 100 mm). A gradient was 
used, employing as eluent A the buffer of 10 mM dibasic sodium phos-
phate (Na2HPO4), 10 mM of decahydrate sodium borate (Na2B4O7 10 
H2O), and 5 mM of sodium azide (NaN3), at a pH of 8.2 and, as eluent B, 
a mixture of methanol:acetonitrile:water, 45:45:10 (v:v:v). The flow rate 
was 1.5 mL/min. Absorbance was monitored at a wavelength of 338 nm 
using a diodes array detector. A standard amino acids mixture (Agilent 
5061-3332) was used for determining the amino acid concentrations. 

2.4.3. Anti-nutritional factors 
Phytic acid was determined according to the methodology described 

by Vaintraub and Lapteva (1988), and results were expressed as phytic 
acid equivalents per gram of a sample, dry weight (PAE/g). 

Trypsin inhibitor levels were expressed in trypsin inhibitor units per 
milligram of sample (ITI/mg). 

The calculation was made using the following formula: 

UTI =
Abs trypsin − Abs sample

0.01  

UTI
mg sample

=
(Abs. Max. Tryp. − Abs sample) ∗ Dilution factor

0.01 ∗ mg of sample in 2 mL 

One unit of trypsin inhibitor (UTI) was defined as the amount of 
inhibitor that inhibits 1 μg of pure trypsin and determined through 
spectrophotometry using the technique of Liu (2019). The analysis of 
condensed tannins was performed following the modified technique of 
Deshpande and Cheryan (1985). Results are reported as milligram 
equivalents of catechin per 100 g of dry sample (mg EC/100 g). Saponins 
were quantified with the colorimetric technique proposed by Hiai et al. 
(1976) using vanillin and H2SO4 to generate chromophore groups in 
steroidal and triterpenoid saponins. Results were expressed as milligram 
diosgenin equivalents per 100 g dry sample (mg ED/100 g). 

2.5. Statistical analysis 

The statistical analysis was performed using the Statistica 7® soft-
ware to determine whether significant differences existed among the 
treatments. Data were initially subjected to an analysis of normality and 
homogeneity of variance using the Shapiro-Wilk and the Bartlett tests, 
respectively. Because data were distributed normally, an ANOVA vari-
ance analysis was performed; the Tukey’s test was used to compare the 
means, with a significance level set at P < 0.05. Results for anti- 
nutritional and comparisons between flours and concentrates were 
analyzed with a Student-t-test (P < 0.05). All analyses were made using 
the IBM® SPSS Statistics software. All values were presented as means 
± standard deviation in tests carried out in triplicate. 

3. Results and discussion 

3.1. Proximal analyses and yields of flours and protein concentrates 

Table 1 shows the results of the proximal content in the flours of the 
three grains. The protein content in the chickpea, bean, and corn flours 
was 22.34 ± 0.22, 21.58 ± 0.22, and 9.13 ± 0.04%, respectively, which 
increased in the concentrates (Sánchez-Chino et al., 2019) (Table 2). The 
percentage of crude proteins and protein yield of the three concentrates 
was higher when precipitated isoelectrically at a pH of 4.5. The BC 
yielded the highest amount of proteins (81.10 ± 0.66%), whereas the 
highest yield (60.99%) was observed in the MC. Comparatively, the MC 
showed the lowest protein concentration (55.69 ± 0.38%). However, its 
protein yields were higher than those of BC and CC because the initial 
protein level is statistically (P < 0.05) lower than in the chickpea and 
bean flours. Considering that the protein yield is a relation of the level of 
protein obtained from the concentrates divided by the initial protein 
levels of the flours, the yields of the corn concentrate with the three 

Table 1 
Chemical-proximal analyses of chickpea (Cicer arietinum), Azufrazin bean 
(Phaseolus vulgaris), and corn (Zea mays) flours.   

Chickpea Bean Corn 

Protein (%) 22.34 ± 0.20a 21.58 ± 0.61a 9.13 ± 0.04b 

Lipids (%) 6.28 ± 0.07a 3.50 ± 0.36c 5.33 ± 0.36b 

Fiber (%) 2.78 ± 0.06c 3.18 ± 0.34b 5.39 ± 0.01a 

Moisture (%) 8.22 ± 0.21c 10.04 ± 0.11b 10.67 ± 0.06a 

Ash (%) 3.71 ± 0.02b 4.26 ± 0.07a 1.68 ± 0.02c 

NFE (%) 66.52 ± 1.69b 69.27 ± 1.03a 66.93 ± 0.89b 

NFE: Nitrogen free extract. Average ± standard deviation values of triplicate 
analyses. Different lowercase letters indicate statistical differences among 
grains; Tukey test, P < 0.05. 

Table 2 
Proximal composition and yields of chickpea, bean, and corn protein 
concentrates.  

Chickpea concentrate 

Proximal composition Yields 

pH Proteina 

(%) 
Lipidsa 

(%) 
Fibera 

(%) 
Asha 

(%) 
Concentrate 
yielda (g/kg) 

Protein 
Yieldb 

(%) 
3.5 69.42 ±

0.76b 
18.93 ±
0.11b 

3.45 ±
0.67a 

3.74 
±

0.16a 

220.48 31.07 

4 70.05 ±
0.32b 

18.84 ±
0.43b 

2.06 ±
0.19b 

3.76 
±

0.35a 

230.54 31.35 

4.5 71.23 ±
0.48a 

19.50 ±
0.40a 

2.43 ±
0.46b 

3.45 
±

0.82a 

210.98 31.88 

Bean concentrate 
Proximal composition Yields 

pH Proteina 

(%) 
Lipidsa 

(%) 
Fibera 

(%) 
Asha 

(%) 
Concentrate 
yielda (g/kg) 

Protein 
Yielda 

(%) 
3.5 78.84 ±

0.14b 
10.20 ±
0.81a 

1.69 ±
0.29c 

4.13 
±

0.13a 

200 36.53 

4 79.21 ±
0.04b 

6.27 ±
0.72b 

2.67 ±
0.41b 

3.78 
±

0.12b 

200.51 36.7 

4.5 81.10 ±
0.66a 

2.39 ±
0.25c 

7.21 ±
0.57a 

3.07 
±

0.06c 

200.39 37.58 

Corn concentrate 
Proximal composition Yields 

pH Proteina 

(%) 
Lipidsa 

(%) 
Fibera 

(%) 
Asha 

(%) 
Concentrate 
yielda (g/kg) 

Protein 
Yielda 

(%) 
3.5 54.37 ±

0.55b 
27.07 ±
0.68a 

9.63 ±
0.34a 

4.24 
±

0.10c 

150.1 59.55 

4 55.44 ±
0.26ab 

16.37 ±
0.32b 

2.56 ±
0.24b 

3.78 
±

0.42b 

130.06 60.72 

4.5 55.69 ±
0.38a 

12.33 ±
0.41c 

2.23 ±
0.61b 

4.54 
±

0.12a 

120.98 60.99 

Average ± standard deviation values of triplicate analyses. Different lowercase 
letters indicate statistical differences among grains; Tukey test, P < 0.05. 

a Average ± standard deviation of triplicate analyses. 
a Grams of dry weight obtained of the protein concentrate per kilogram of 

processed flour (g/kg). 
b : Relation extracted protein/initial protein of the flour (%). 
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tested pH levels were higher. It is worth mentioning that all the yields 
were higher than those reported by González et al. (2021) and Jarpa--
Parra et al. (2014). The protein level in the MC (89.58%) was lower than 
those reported by Medina et al. (1990). Although these authors followed 
the same protein extraction conditions, they used shelled and germi-
nated corn. 

The pH directly influenced the protein content and, thus, the yield of 
each grain; in this case, the highest levels of proteins were obtained at an 
isoelectric point of 4.5 because when dealing with proteins like albumins 
and globulins, these have a minimal solubility at pH between 4 and 5. 
Sánchez-Vioque et al. (1999) obtained the minimal protein solubility 
(MPS) for chickpea protein at pH 4.3 (except albumins which are soluble 

at 4.3), meanwhile, Kusumah et al. (2020) reported that MPS for Pha-
seolus vulgaris and Ph. radiatus beans was found at pH 4.56 and 4.81, 
respectively. Besides, Gu and Glatz (2007) worked at pH of 4.0 to obtain 
the MPS for corn proteins. Moreover, different studies on protein con-
centrates have determined that the 4.5 pH value positively influences 
variables like the properties of foaming, emulsion, and solubility (Jar-
pa-Parra et al., 2014; Boye et al., 2010). On the other side, the amount of 
crude protein in CC and BC was higher than that reported by 
Sánchez-Chino et al. (2019) and Torres-Fuentes et al. (2011) with the 
same grains, applying an alkaline extraction at pH 11 coinciding with 
our findings; but, in our case, without the use of enzymes like pancreatin 
and pepsin. 

Table 3 
Chromatographic profile of peptides of chickpea, bean, and corn flours and their respective concentrates at a pH value of 4.5.  

kDa Area (%) 

Chickpea Bean Corn 

Flour Concentrate Flour Concentrate Flour Concentrate 

>670 9.94 0.07 4.03 1.36 0.34 3.34 
670 – 158 15.58 5.20 14.13 17.32 7.02 1.69 
158 – 44 14.40 5.72 21.92 24.98 12.87 12.23 
44- 17 6.85 1.55 8.21 2.30 8.30 15.91 
17–1.35 40.56 30.86 37.45 18.10 45.44 46.34 
<1.35 12.64 56.57 14.24 35.91 26.00 20.40  

Fig. 1. Chromatographic profiles of peptides of flours from (A) chickpea (Cicer arietinum), (B) bean (Phaseolus vulgaris), and (C) corn (Zea mays). The graph shows the 
signal from the UV monitor at 254 nm. 
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3.2. Peptides profile 

More than 50% of the molecular weight of the peptides contained in 
the flours of the three grains ranged from ˂ 1.35 to 17 kDa, and the same 
tendency was observed in their concentrates (Table 3; Figs. 1–2). 
However, CC and MC peptides with this molecular size represented more 
than 66%. For the chickpea and bean flours -legumes that contain 
globulins of 7S and 11S subunits-, their molecular weight range from 
150 to 190 kDa (Barac et al., 2015; Dhawan et al., 1991) and became 
fractioned at a pH value of 4.5. This procedure reduces their size, as 
occurred with CC and BC. The molecular weight of the corn flour pep-
tides is given by the presence of zeins, mainly δ-zeins (approximately 10 
kDa) and β-zeins (15 kDa) (Espinosa et al., 2015; Wu et al., 2009). As for 
CC and BC, the dilution process of the corn flour protein in acidic con-
ditions (pH 4.5) increase the number of smaller peptides due to a 
possible protein denaturing and hydrolysis by the very acidic or very 
alkaline pH conditions. This process interrupts the quaternary and ter-
tiary structures, mainly in proteins like globulin; these conditions lead to 
the production of amino acids or low molecular weight peptides (Quelal 
et al., 2019; Rodsamran and Sothornvit, 2018). The cleavage of α and β 
subunits of 11S protein from globulins into polypeptides with MW of 
43.6 kDa to 5.9 kDa has been reported by Sánchez-Vioque et al. (1999) 
when chickpea flour was subjected to an alkaline extraction and sub-
sequent precipitation of the proteins at the isoelectric point. 

In the protein concentrates, the reduction in the number of peptides 
in the range of 158 to ˃ 670 kDa confirms the effect of the acid treatment 

of flours. Our results indicate that the acid treatment at pH 4.5 frag-
mented the peptides with the highest molecular weight contained in the 
proteins (González et al., 2021; Hadidi et al., 2020; Aryee and Boye, 
2016; Benítez et al., 2008; Ordóñez et al., 2008), reducing them to 
<1.35 kDa peptide size. Such peptides are characterized by their high 
bioavailability (easy digestion and absorption) (Day et al., 2022; 
González et al., 2021; Zaretabar et al., 2021), which is a fundamental 
criterion for the formulation and elaboration of commercial diets 
(Espinoza and Castillo, 2022). 

3.3. Amino acids profile 

As observed in Table 4, the amino acid profiles of the three grains 
and their respective concentrates were similar, as reported by Chew 
et al. (2003). The chickpea, bean, and corn proteins are characterized by 
their deficiency in sulfur-containing amino acids (methionine and 
cysteine) (Reyes-Moreno et al., 1993). Within the EAA, the highest 
amino acid percentages in the bean concentrate were registered for 
arginine and leucine (7.7 ± 0.2%, 7.6 ± 0.3%, respectively), coinciding 
with Lee et al. (2022). Also, this tendency was observed by Espino-
sa-Ramírez and Serna-Saldívar (2019), Mune et al. (2011), and Awa-
dalkareem et al. (2008) in rice isolates, protein isolates of chickpeas, and 
Bambara bean concentrate, respectively. BC presented the highest EAA 
levels among all flours and concentrates. 

Concerning NEAA, glutamic acid was the amino acid with the highest 
presence in all flours and concentrates. Just like that, some amino acids 

Fig. 2. Chromatographic profiles of peptides of protein concentrates from (A) chickpea (Cicer arietinum), (B) bean (Phaseolus vulgaris), and (C) corn (Zea mays). The 
graph shows the signal from the UV monitor at 254 nm. 
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increase after the protein extraction process, coinciding with other re-
ports on protein concentrates (Zambrano et al., 2022; Gorissen et al., 
2018; Brishti et al., 2017); however, the amino acid profile varies ac-
cording to the level of purity and extraction of the vegetable protein 
(Baune et al., 2022). 

3.4. Anti-nutritional factors 

Diverse studies have shown the presence of anti-nutritional factors in 
protein isolates and concentrate obtained from seeds of legumes and 
non-legumes (Bora, 2014; Martínez Augustin and Martínez de Victoria, 
2006), which can be toxic and affect the bioavailability of amino acids 
(Hua et al., 2019; Ngugi et al., 2017; Gilani et al., 2005). Therefore, it is 
necessary to confirm their presence and content in the ingredients that 
make up commercial diets. 

The phytic acid content of CC diminished significantly (12.77%; P <
0.05; Table 5) compared with its flour, whereas the trypsin inhibitors 
diminished in 8.2%; however, this was not significant. As described by 
Garg et al. (2020) and Xu and Chang (2008), the series of treatments or 
steps during the isolation of chickpea proteins reduces the ANF, like the 
levels of glucosinolates and phytate, which can be attributed mainly to 
the binding of phytates to the sodium ions, because NaOH was used 
during the elimination of soluble compounds. 

The levels of saponins increased significantly (P < 0.05; Table 5) in 
the CC from 20.75 ± 1.92 in the flour to 25.6 ± 1.95 mg of diosgenin per 
gram of sample in the concentrates. This effect is mainly because a large 
part of these ANFs remains bound to the rest of the proteins that sedi-
ment during the isoelectric precipitation, triggering an increase in anti- 
nutritionals as a function of the high levels of proteins in the concen-
trates (Ngugi et al., 2017; Francis et al., 2001). 

The three ANFs analyzed in the BC increased significantly (P < 0.05). 
The phytic acid of the BC flour increased by 0.78 mg/g of the sample 
because ANFs -like the phytic acid-have a negative charge with a wide 
pH range (from 3 to 1.5 and 8 to pH 7.5), binding to proteins and cations. 
When the pH is below the isoelectric point, the phytic acid binds to net 
positively-charged proteins, forming an insoluble binary complex 
through electrostatic interactions (Mondor et al., 2009; Cheryan and 
Rackis, 1980). The trypsin inhibitors and saponins also increased (11.13 
UTI/mg of sample and 4.42 mg of diosgenin/g of sample, respectively) 
compared to the bean flour (Table 5). 

The concentrates procurement process gave rise to significant 
changes (P < 0.05) in the levels of phytic acid in MC, which increased 
from 22.13 ± 0.47 in the flour to 40.17 ± 0.71 mg/g sample. The heat 
treatment to obtain the concentrate could be responsible for the com-
plete deactivation of the phytase enzyme, as mentioned by Sharma et al. 
(2022) and Omosebi et al. (2018). Likewise, the saponin levels increased 
in all concentrates because these compounds can be transported with the 
protein if extractions are made only with water without applying any 
other type of treatment like cooking; hence, a concentrate produced only 
with water extraction can contain high levels of saponins (Dersjant-Li, 
2021). On the other hand, the trypsin inhibitors showed a significant 
diminution (P < 0.05), from 1.56 ± 0.08 UTI/mg in the flour to 1.1 ±
0.08 UTI/mg of corn concentrated, because these are thermolabile ANFs 
(Eleazu et al., 2021; Chukwuma et al., 2016, Table 5). 

The results obtained were similar to those reported in chickpea, 
bean, and corn grains in studies already existing in the literature 
(Samtiya et al., 2020; Saurabh et al., 2021). 

4. Conclusions 

The extraction condition used in the study produced the highest 
protein concentrate levels (corn = 55.69%, chickpea = 71.23%, and 
bean = 81.10%. The chickpea and bean concentrates showed a higher 
percentage of peptides of low molecular weight (<1.35 kDa: 56.57% 
chickpeas; 35.91% beans), whereas, in the corn concentrates, the 
highest percentage of peptides ranged from 1.35 to 17 kDa (46.34%). 
The flours presented a higher concentration of peptides with a molecular 
weight of 1.35 to 17 kDa. The extraction process showed that the phytic 
acid and saponin levels were higher in chickpea, bean, and corn con-
centrates. In contrast, the trypsin inhibitors showed a diminution in the 
chickpea and corn concentrates. Due to the presence of nutritional 
properties in the chickpea and bean concentrates, such as high levels of 

Table 4 
Composition of total amino acids (AA; g/100 g of protein) of chickpea, bean, and 
corn flours and their respective protein concentrates obtained at pH 4.5.  

Amino 
acid 

HG CG HF CF HM CM 

EAA 
ARG 3.7 ±

0.1d 
6.7 ±
0.0b 

2.4 ±
0.1e 

7.7 ±
0.2a 

0.7 ±
0.0f 

5.0 ±
0.2c 

HIS 0.7 ±
0.0d 

1.8 ±
0.0b 

0.7 ±
0.0d 

3.0 ±
0.1a 

0.3 ±
0.0e 

1.4 ±
0.21c 

LYS 1.5 ±
0.0c 

5.1 ±
0.0b 

1.6 ±
0.0c 

6.0 ±
0.2a 

0.3 ±
0.0e 

1.2 ±
0.0.1d 

MET 0.3 ±
0.0d 

1.0 ±
0.0b 

0.4 ±
0.0de 

1.2 ±
0.1a 

0.2 ±
0.0e 

0.7 ±
0.0c 

PHE 1.4 ±
0.0d 

4.5 ±
0.0b 

1.4 ±
0.0d 

5.3 ±
0.1a 

0.5 ±
0.0e 

2.1 ±
0.1c 

ILE 0.8 ±
0.0d 

3.2 ±
0.0b 

0.9 ±
0.0d 

3.3 ±
0.0a 

0.3 ±
0.0d 

1.2 ±
0.0c 

LEU 1.8 ±
0.0d 

5.7 ±
0.0b 

2.0 ±
0.0d 

7.6 ±
0.3a 

1.4 ±
0.0e 

3.7 ±
0.1c 

VAL 0.9 ±
0.0d 

1.4 ±
0.8b 

1.0 ±
0.0d 

3.5 ±
0.1a 

0.4 ±
0.0e 

1.7 ±
0.1c 

THR 0.8 ±
0.0d 

2.6 ±
0.0b 

0.9 ±
0.9d 

2.8 ±
0.2a 

0.3 ±
0.0e 

1.4 ±
0.0c 

ΣEAA 11.9 ±
0.1e 

32.0 ±
0.8b 

11.2 ±
0.1d 

40.4 ±
0.5a 

4.6 ±
0.1f 

18.5 ±
0.2c 

NEAA 
ALA 1.1 ±

0.0d 
3.2 ±
0.0b 

1.1 ±
0.0d 

3.4 ±
0.0a 

0.8 ±
0.0e 

2.9 ±
0.1c 

ASP 1.6 ±
0.1d 

8.4 ±
0.0b 

1.7 ±
0.0d 

5.9 ±
0.3a 

0.4 ±
0.0e 

2.1 ±
0.1c 

GLU 4.0 ±
0.1c 

13.8 ±
0.1a 

3.6 ±
0.2c 

13.3 ±
0.4a 

1.8 ±
0.1d 

6.9 ±
0.2b 

GLY 1.5 ±
0.1d 

2.9 ±
0.0c 

1.5 ±
0.1d 

5.2 ±
0.2a 

0.5 ±
0.0e 

3.1 ±
0.0b 

SER 1.4 ±
0.0e 

3.6 ±
0.9b 

1.6 ±
0.0d 

6.0 ±
0.0a 

0.5 ±
0.0f 

2.4 ±
0.0c 

TYR 0.6 ±
0.0e 

2.2 ±
0.0b 

0.7 ±
0.0d 

3.2 ±
0.0a 

0.3 ±
0.0f 

1.4 ±
0.1c 

ΣNEAA 10.2 ±
0.1d 

34.0 ±
0.9b 

10.2 ±
0.1d 

36.9 ±
0.5a 

4.4 ±
0.1e 

18.7 ±
0.1c 

Total 22.3 66.2 21.6 77.4 9.0 37.3 

Average ± standard deviation values of triplicate analyses. Different lowercase 
letters indicate statistical differences among grains; Tukey test, P < 0.05. 
EAA. Essential amino acids; NEAA. Non-essential amino acids; ARG: arginine; 
HIS: histidine; LYS: lysine; MET: methionine; PHE: phenylalanine; ILE: isoleu-
cine; LEU: leucine; VAL: valine; THR: threonine; ALA: alanine; ASP: aspartic 
acid; GLU: glutamic acid; GLY: glycine; SER: serine; TYR: tyrosine. 

Table 5 
Levels of anti-nutrients in chickpea, bean, and corn flours and protein concen-
trates at a pH value of 4.5.  

Ingredient Phytic acida Trypsin inhibitorsb Saponinsc 

Chickpea flour 15.67 ± 0.37a 7.93 ± 0.34a 20.75 ± 1.92b 

Chickpea concentrate 13.67 ± 0.01b 7.28 ± 0.2a 25.6 ± 1.95a 

Bean flour 17.4 ± 0.24b 9.23 ± 0.25b 13.56 ± 1.68b 

Bean concentrate 18.18 ± 0.07a 20.36 ± 1.4a 17.98 ± 0.81a 

Corn flour 22.13 ± 0.47b 1.56 ± 0.08a 15.24 ± 0.95b 

Corn concentrate 40.17 ± 0.71a 1.1 ± 0.08b 34.73 ± 2.85a 

Mean ± standard deviation value, different letters among columns indicate 
statistically significant differences based on the Student-t test (P < 0.05). 

a Values expressed in milligrams of phytic acid/grams of sample. 
b Values expressed in trypsin inhibitors units (TIU)/milligrams of a sample. 
c Average ± standard deviation values of triplicate analyses. Values expressed 

in milligrams of diosgenin/grams of sample. 
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protein and low-weight peptides, these can become of great interest to 
the food industry because they are proposed to have better digestibility. 

Nevertheless, the all-year-round availability of discarded grains 
could be a limitation for farm feed producers. It is also recommended to 
perform more studies on the production of corn concentrates because, 
despite obtaining protein levels above those of the initial flour, the 
presence of ANFs like phytic acid and saponins in higher amounts could 
lead to nutritional and palatability disadvantages. The yield obtained 
from the protein concentrates is superior to that previously reported; it is 
of great importance since a methodology is proposed for protein 
concentrate production from discharged raw material. As part of the 
agri-food industry, discarded grains like chickpeas, beans, and corn, 
present quality standards below those required for human consumption 
and marketing and are considered by-products that can be used for the 
farm-animals feed-producing industry. These ingredients represent both 
an economic and an environmental advantage because the increase in 
their utilization could be a guideline to reduce the dependence on 
animal-origin proteins. 
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