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Abstract

Emotional competence (EC) reflects individual differences in the identification, comprehen-

sion, expression, regulation, and utilization of one’s own and others’ emotions. EC can be

operationalized using the Profile of Emotional Competence (PEC). This scale measures

each of the five core emotional competences (identification, comprehension, expression,

regulation, and utilization), separately for one’s own and others’ emotions. However, the

higher-order structure of the PEC has not yet been systematically examined. This study

aimed to fill this gap using four different samples (French-speaking Belgian, Dutch-speaking

Belgian, Spanish, and Japanese). Confirmatory factor analyses and Bayesian structural

equation modeling revealed that a structure with two second-order factors (intrapersonal

and interpersonal EC) and with residual correlations among the types of competence (identi-

fication, comprehension, expression, regulation, and utilization) fitted the data better than

alternative models. The findings emphasize the importance of distinguishing between intra-

personal and interpersonal domains in EC, offer a better framework for differentiating

among individuals with different EC profiles, and provide exciting perspectives for future

research.

Introduction

Individuals differ in the extent to which they can appropriately identify, understand, express,

regulate, and utilize their own and others’ emotions. The concept of “emotional competence”

(EC)––alternatively labeled “emotional intelligence” (EI)––has been proposed to account for

this idea. Although the term EC was originally proposed to account for these individual differ-

ences [1], the term EI was later proposed and became much more popular. However, we prefer

the term EC to EI because recent meta-analysis shows that they can be improved via relatively

short trainings, unlike intelligence [2]. Given this line of research, we will use the term EC

hereafter as a synonym of EI, in accordance with previous research [3–8].
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Whether called EC or EI, the nature of these emotion-related differences has long been a

source of debate among researchers. Some authors view them as the result of differences in

abilities [9], others personality [10] and still others as the result of a mix of both [11]. The tri-

partite model proposed by Mikolajczak, Petrides [12] integrates these different conceptions by

considering that people can difference in emotion-related knowledge, abilities and traits. The

knowledge level refers to what people know about emotions and emotionally competent

behaviors (e.g., Do I know which emotional expressions are constructive in a given social situ-

ation?). The ability level refers to the ability to apply this knowledge in a real-world situation

(e.g., Am I able to express my emotions constructively in a given social situation?). The trait

level refers to emotion-related dispositions, namely, the propensity to behave in a certain way

in emotional situations (e.g., Do I typically express my emotions in a constructive manner in

social situations?). These three levels of emotion-related individual differences are loosely con-

nected [13]. In the current paper, we focus on the trait level typically measured through self-

report questionnaires [14] because the trait-level is more strongly associated with adjustment

than the ability-level is [15–19].

Previous research has shown that the trait level of EI/EC is positively associated with better

adjustment, such as more adaptive emotion regulation [20], greater subjective well-being [18],

better mental and psychical health [16, 21], higher academic performance [22], higher job sat-

isfaction [23, 24], less counterproductive work behavior [17] and greater romantic relationship

satisfaction [25]. These relationships remain significant after controlling for personality or

cognitive ability [26, 27].

To assess the trait-level EC, Brasseur, Gregoire [28] recently developed the Profile of Emo-

tional Competence (PEC). This scale assesses 10 core EC facets: five types of competences

(emotion identification, emotion comprehension, emotion expression, emotion regulation,

and emotion utilization), each comprising an intrapersonal domain (concerning one’s own

emotions) and an interpersonal domain (concerning others’ emotions). These five compe-

tences derive from the four-branch model proposed by Mayer and Salovey [9]; however, they

separate the identification from the expression of emotions based on research on alexithymia

showing that these branches are factorially and conceptually distinct [29]. A strength of the

PEC is that it can assess both intrapersonal and interpersonal domains in all five core compe-

tences. Moreover, previous research has found that it had an adequate reliability and incre-

mental validity over the Big Five personality traits [6, 28]. Given its strengths, the PEC has

been rapidly adopted in recent EC research [5, 7, 30–37].

Because EC facets are positively related to each other [28], they will be hierarchically struc-

tured. Clarification of the higher-order structure of individual differences is important because

it can provide a parsimonious summary of the vast complexity of human nature [38]. Given

that the above 10 core EC facets are categorized into a 2 (type of target) × 5 (type of compe-

tence) framework, we can assume six possible structures. These six candidate models are

depicted in Fig 1 and briefly described hereafter.

Unidimensional structure: The core 10 EC facets form only one higher-order factor (global

EC). This model will serve as a baseline for model comparison in the statistical analyses.

Target-based structure: The 10 core EC facets form two higher-order factors: intrapersonal

and interpersonal EC. These factors do not distinguish between the type of competence (emo-

tion identification, emotion comprehension, emotion expression, emotion regulation, or emo-

tion utilization).

Competence-based structure: The 10 core EC facets form five higher-order factors (emo-

tion identification, emotion comprehension, emotion expression, emotion regulation, and

emotion utilization) that do not distinguish between intrapersonal and interpersonal

competence.
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Fig 1. Candidate factorial models for emotional competence. EC: emotional competence, Iden.: emotion identification, Com.: emotion

comprehension, Exp.: emotion expression, Reg.: emotion regulation, Uti.: emotion utilization.

https://doi.org/10.1371/journal.pone.0225070.g001
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Hybrid structure: Instead of a normal second-order factor model, we can use a hybrid

model [39, 40]—an extension to the bifactor model to capture the 2 (type of target) × 5 (type of

competence) crossed structure. The 10 core EC facets form two types of dimensions (type of

target and type of competence) to yield additive effects. We provide further details and previ-

ous research applications of this model in S1 Text.

Modified target-based structure and modified competence-based structure: In the hybrid

structure model, if factors are unstable, they can be replaced with residual correlations [41,

42]. Thus, we can also test a model replacing factors of competence-based structure with resid-

ual correlations in the hybrid structure (i.e., a modified target-based structure) or replacing

factors of target-based structure with residual correlations in the hybrid structure (i.e., a modi-

fied competence-based structure).

The authors of the PEC [28] originally assumed 10 first-order factors and two second-order

factors (intrapersonal and interpersonal EC), as corroborated by other research [6, 32]. How-

ever, to the best of our knowledge, no study has ever systematically compared this target-based

structure with other theoretically plausible factor structures. Consequently, the optimal model

for the PEC is still unknown. To fill this gap, we compared the fit of the six theoretically plausi-

ble models and tested the replicability/stability of the results across four different samples

(French-speaking Belgian, Dutch-speaking Belgian, Spanish, and Japanese).

To evaluate the best factor structure, we followed the flowchart recently proposed by

Schmitt, Sass [38]. They encourage researchers to start by conducting dimensionality analyses

(e.g., parallel analysis, minimum average partial test, exploratory graph analysis); then, if theo-

retical candidate factor structures exist, they recommend confirmatory factor analysis (CFA).

After that, if model fit is not sufficient, they recommend Bayesian structural equation model-

ing (BSEM) to explore the source of model misfit.

Previous research has emphasized that the model constraints in traditional CFA are unreal-

istic for the study of hierarchical constructs. For example, Hopwood and Donnellan [43]

found that widely used personality trait inventories (e.g., the Revised NEO Personality Inven-

tory [44]) usually demonstrate poor model fit when their structure is evaluated with CFA. This

failure is due to the inherent complexity of hierarchical constructs: In typical CFA, cross-load-

ings and residual correlations are presumed fixed at exact zero, but these unnecessarily strict

models lead to poor model fit and substantial parameter biases for factor loadings and correla-

tions [45, 46]. Nevertheless, freer parameters for cross-loadings and residual correlations

would result in a non-identified model under the traditional CFA.

To solve this issue, Muthén and Asparouhov [46] proposed a new statistical approach,

called BSEM. This approach allows simultaneous estimation of all cross-loadings and residual

correlations by using approximate zero informative priors to replace the exact zeros for those

loadings and correlations. By applying BSEM, researchers can investigate whether model mis-

fit is due to small or large cross-loadings/residual correlations, missing factors, or extra factors

[41]. BSEM has already been successfully applied to various existing cognitive and non-cogni-

tive measures [41, 46–52]. Thus, we apply BSEM to investigate source of model misfit if the fit

of the best traditional CFA model is not sufficient.

The current research

This study aimed to evaluate the higher-order structure of the PEC using Schmitt, Sass [38]’s

guidelines. As recommended in their flowchart, we started with dimensionality analyses, fol-

lowed by traditional CFA and BSEM. In order to test the stability and replicability of the results,

we evaluated the structure of PEC across four different language samples from Western and

Eastern cultures (French-speaking Belgian, Dutch-speaking Belgian, Spanish, and Japanese).

Evaluating the higher-order structure of the Profile of Emotional Competence (PEC)

PLOS ONE | https://doi.org/10.1371/journal.pone.0225070 November 14, 2019 4 / 17

https://doi.org/10.1371/journal.pone.0225070


Method

Participants and procedure

Sample A consisted of 3295 French-speaking Belgians (males = 1355, females = 1854, unan-

swered = 86, Mage = 53.36, SD = 14.01), who completed the French version of the PEC. Sample
B consisted of 9955 Dutch-speaking Belgians (male = 3746, female = 5850, unanswered = 359,

Mage = 55.62, SD = 13.34), who completed the Dutch version of the PEC. Sample A and B

were derived from a part of a study conducted by the largest Mutual Benefit Society in Bel-

gium. The data have already been used to answer other research questions (i.e., on the impact

of EC on healthcare service use; [30, 37]); however, no factor analysis of EC has ever been con-

ducted on these data. Sample C consisted of 792 Spanish people (male = 278, female = 512,

unanswered = 2, Mage = 24.07, SD = 8.44), who completed the Spanish version of the PEC

over the course of a university semester. The survey was conducted using SurveyMonkey, and

sent via email to all students enrolled in the course. Sample D consisted of 549 Japanese people

(male = 344, female = 205, Mage = 31.67, SD = 14.45), who completed the Japanese version of

the PEC. They were recruited via a Japanese data collection company (Cross Marketing Inc.)

Participants in all samples answered the questionnaire online. At the beginning of the sur-

vey, they were informed about the nature of the study, including the study’s purpose, their

right to withdraw from the study, and the confidentiality of their responses. After reading this

material, participants provided informed consent by clicking the “accept” button to start the

survey. In addition to the EC scale, participants completed other measures unrelated to the

present research question. This study was approved by the ethics committees of the Université

catholique de Louvain, University of the Basque Country, and Kyoto University.

Measure

EC was assessed with the PEC [28]. This scale comprises 10 first-order subscales with five

items each: identification-self (e.g., I am aware of my emotions as soon as they arise), compre-

hension-self (e.g., As my emotions arise, I don’t understand where they come from; reversed

item), expression-self (e.g., I am good at describing my feelings), regulation-self (e.g., When I

am sad, I find it easy to cheer myself up), utilization-self (e.g., My emotions inform me about

changes I should make in my life), identification-other (e.g., I can tell whether a person is

angry, sad or happy even if they don’t talk to me), comprehension-other (e.g., Most of the time

I understand why people feel the way they do), expression-other (e.g., I find it difficult to listen

to people who are complaining; reversed item), regulation-other (e.g., I am good at lifting

other people’s spirits), and utilization-other (e.g., If I wanted, I could easily influence other

people’s emotions to achieve what I want).

All translated measures were created via a back-translation procedure. Participants in sam-

ples A, B and D rated each item on a 5-point scale, whereas, participants in sample C rated it

on a 7-point scale, because this sample were relatively homogeneous (i.e., everyone was a stu-

dent). To increase the potential to detect true variation, the number of response options was

increased [53]. Importantly, this modification did not affect our main results, because we

found similar factor structure across all samples, as described in the results section.

Statistical analyses

First, we conducted dimensionality analyses based on the first-order facet scores, using the

exploratory graph analysis [54]. This method has been shown to be superior to other tradi-

tional dimensionality analysis methods such as the parallel analysis or the minimum average
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partial test [54, 55]. Exploratory graph analysis with a triangulated maximally filtered graph

was conducted using the EGA 0.4 package [56] in R 3.5.0 [57].

Next, we implemented CFA to compare the fit of possible factor structure models (Fig 1).

All CFA were conducted with Mplus Version 8.2 [58]. Since the normalized estimate of Mar-

dia’s coefficient indicated that multivariate normality was violated, we applied a robust maxi-

mum likelihood (MLR) estimator and the Satorra–Bentler scaled χ2. There is a controversy as

to whether MLR or weighted least squares mean- and variance-adjusted (WLSMV) estimation

is superior when multivariate normality is violated [59]. However, neither the Akaike Informa-

tion Criterion (AIC) nor the Bayesian information criterion (BIC) can be computed with

WLSMV, while both can with MLR. Because AIC and BIC are frequently used for model com-

parison, we used MLR in this study. To help parameter estimation, we constrained paths from

the same second-order factors with only two indicators (i.e., competence-based structure,

hybrid structure, and modified competence-based structure), as in previous studies [60]. We

used AIC and BIC for model comparison; lower BIC and AIC suggest better model fit. More-

over, we used the comparative fit index (CFI; a value� .90 suggests acceptable fit), standard-

ized root mean square residual (SRMR; a value� .08 suggests acceptable fit), and root mean

square error of approximation (RMSEA; a value� .08 suggests acceptable fit) to evaluate over-

all model fit [61, 62]. Missing values (only 0.013%) were handled by full information maxi-

mum likelihood estimation (software default settings).

If the fit indices of the best-selected model are not sufficient in CFA with MLR, Schmitt,

Sass [38] recommend BSEM to explore source of model misfit. Here, the BSEM models were

estimated using the Bayes estimator with a series of prior specifications for cross-loadings and

residual correlations with the standardized item scores. All BSEM were conducted with Mplus

Version 8.2 [58]. For metrics, we fixed one relatively stable first-order factor loading per factor

and set variances of second-order factors at one. First, BSEM models specified noninformative

priors for the hypothesized factor loadings, but did not estimated cross-loadings and residual

correlations. Next, we specified small-variance informative priors for the cross-loadings,

choosing normal prior distributions N (0, 0.01) yielding 95% small cross-loading bounds of

±0.20 [46]. Finally, we added informative Inverse Wishart (dD,d) priors for the residual vari-

ances/covariances [41], where D refers to the residual variance/covariance of the Bayesian

CFA models and d refers to the degrees of freedom. We used d = 1000 as a starting value; then,

we conducted the sequence of sensitivity analyses described in Asparouhov, Muthén [41]. If

convergence was fast but model fit was unacceptable (PPp< .05), the next step reduced d (e.g.,

-100) and repeated the analyses. If slow or no convergence happened, the next step increased d
(e.g., + 100) and again repeated the analyses. This sensitivity analysis procedure was intended

to change the variance of the small priors to monitor the distance between the data and the

model. As explained in Asparouhov and Muthén [63], “In this process no particular prior vari-

ance is preferred, rather, the prior variance is adjusted gradually to maintain identifiability of

the model while resolving model fit and separating parameters that have minor deviations

from zero from substantively important misspecifications” (p. 2).

The BSEM estimation was run with three independent Markov chain Monte Carlo chains

using the Gibbs sampler [41, 46], with 150,000 iterations (of which the first 75,000 were dis-

carded as the burn-in phase). No thinning was conducted. Model convergence was monitored

by potential scale reduction (a value� 1.10 suggests convergence) and visually checking trace

plots. Model fit was evaluated using the posterior predictive p-value (PPp) with associated 95%

confidence interval; a PPp< .05 and a positive 95% lower limit imply a poor model fit. The

deviance information criterion (DIC) was used for comparison of BSEM models because it is

more appropriate than BIC for BSEM [41]; lower DIC suggests better model fit. Moreover,

when we used approximately zero priors for cross-loadings and/or residual correlations, prior-
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posterior predictive p-value (PPPp) was used to test for the hypothesis that a set of parameters

are approximately zero [63, 64]; a PPPp< .05 imply that this hypothesis is rejected. All data

and Mplus syntaxes needed for analyses are available at https://osf.io/mwpxt/.

Results

Dimensionality analyses and CFA with MLR

Exploratory graph analysis showed that two common factors were recommended in all sam-

ples. Next, we conducted CFA with MLR to compare model fit of possible factor structures. Fit

indices of each model are shown in Table 1. In all samples, AIC and BIC were lower for the tar-

get-based structure than for the unidimensional EC structure. Moreover, an improper solution

(the psi matrix is not positive definite) was found for the competence-based structure. This

improper solution emerged because some correlation coefficients among second-order factors

Table 1. Fit indices of CFA with a robust maximum likelihood estimation.

Model S-B χ2 df CFI SRMR RMSEA

[90%CI]

AIC BIC

Sample A: French-speaking Belgian (n = 3295)

I. Unidimensional structure model 11903.36��� 1165 .752 .074 .053 [.052, .054] 432663.82 433639.84

II. Target-based structure model 11072.80��� 1164 .771 .071 .051 [.050, .052] 431662.44 432644.57

III. Competence-based structure model Improper solution (the psi matrix is not positive definite)a

IV. Hybrid structure modelb 12002.03��� 1160 .749 .128 .053 [.052, .054] 432790.38 433796.91

V. Modified target-based structure model 10833.01��� 1159 .776 .071 .050 [.049, .051] 431378.87 432391.49

VI. Modified competence-based structure model Improper solution (the psi matrix is not positive definite)a

Sample B: Dutch-speaking Belgian (n = 9955)

I. Unidimensional structure model 32717.74��� 1165 .741 .075 .052 [.052, .053] 1240702.91 1241855.84

II. Target-based structure model 30814.93��� 1164 .757 .073 .051 [.050, .051] 1238366.84 1239526.98

III. Competence-based structure model Improper solution (the psi matrix is not positive definite)a

IV. Hybrid structure modelb 34435.04��� 1160 .727 .134 .054 [.053, .054] 1242779.92 1243968.88

V. Modified target-based structure model 30195.92��� 1159 .762 .074 .050 [.050, .051] 1237618.45 1238814.61

VI. Modified competence-based structure model Improper solution (the psi matrix is not positive definite)a

Sample C: Spanish (n = 792)

I. Unidimensional structure model 5322.47��� 1165 .645 .103 .067 [.065, .069] 135376.74 136124.67

II. Target-based structure model 5137.93��� 1164 .660 .100 .066 [.064, .067] 135142.27 135894.87

III. Competence-based structure model Improper solution (the psi matrix is not positive definite)a

IV. Hybrid structure modelb 5296.40��� 1160 .646 .139 .067 [.065, .069] 135366.28 136137.59

V. Modified target-based structure model 5085.29��� 1159 .664 .100 .065 [.064, .067] 135085.45 135861.43

VI. Modified competence-based structure model Improper solution (the psi matrix is not positive definite)a

Sample D: Japanese (n = 549)

I. Unidimensional structure model 3569.89��� 1165 .713 .078 .061 [.059, .064] 71654.89 72344.18

II. Target-based structure model 3437.59��� 1164 .729 .076 .060 [.057, .062] 71511.00 72204.60

III. Competence-based structure model Improper solution (the psi matrix is not positive definite)a

IV. Hybrid structure modelb 3605.94��� 1160 .708 .142 .062 [.060, .064] 71728.47 72439.302

V. Modified target-based structure model 3412.66��� 1159 .731 .075 .060 [.057, .062] 71481.33 72196.478

VI. Modified competence-based structure model Improper solution (the psi matrix is not positive definite)a

Note. CFA: confirmatory factor analysis, S-B χ2: Satorra-Bentler scaled χ2

a Some correlation coefficients among second-order factors exceeded 1.00, suggesting factors were overextracted.
b Rindskopf (1983)’s reparameterization was applied.

���p< .001

https://doi.org/10.1371/journal.pone.0225070.t001
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(e.g., correlation between emotion identification and emotion expression) exceeded 1.00,

implying factors were overextracted (for detailed factor loadings, see S1 Table). These results

suggest that target-based structure is superior to the unidimensional structure and the compe-

tence-based structure.

For the hybrid structure, some variances were negative, suggesting an improper solution.

Lance and Fan [65] indicated that this improper solution usually happens in a hybrid-structure

model. To solve this issue, they recommended Rindskopf [66]’s reparameterization, which

fixes the variance of the residual at one and estimates the coefficient. Following their recom-

mendation, we applied Rindskopf [66]’s reparameterization to the hybrid model; it returned

proper solutions in all samples. Although the model fit of the hybrid structure was inferior to

that of the target-based structure, the patterns of second-order factor loadings were interesting:

factor loadings from the target-based structure (intrapersonal and interpersonal EC, average

factor loadings = .75) were much stronger than those from the competence-based structure

(emotion identification, emotion comprehension, emotion expression, emotion regulation,

and emotion utilization; average factor loadings = .21; for detailed factor loadings, see S2

Table).

With regards to the modified target-based structure, where competence factors in the

hybrid structure were replaced by residual correlations, AIC and BIC were the lowest among

the possible models, in all samples. Moreover, as in the competence-based structure, an

improper solution (non-positive-definite psi matrix) was found for the modified competence-

based structure in all samples, because some correlation coefficients among second-order fac-

tors exceeded 1.00, implying that factors were overextracted. Taken together, these results sug-

gest that the modified target-based structure is best to represent the EC factor structure as

assessed with the PEC.

Standardized second-order factor loadings deriving from the modified target-based struc-

ture are shown in Table 2. All hypothesized major loadings were substantially large (� .36)

and statistically significant. Moreover, when looking at residual correlations among first-order

factors, correlations between regulation-self and regulation-other were substantially large in all

samples (rs = .41 to .55). However, although SRMRs (except for sample C) and RMSEAs

showed adequate fit, CFIs were not acceptable in all samples even for the best-fitted modified

two-second-order-factor model. Therefore, we explored the source of model misfit using

BSEM.

BSEM

We conducted BSEM using the modified target-based structure model. Table 3 presents the fit

indices of the results. In all samples, BSEM with no informative priors and BSEM with cross-

loadings were rejected by the data (PPp� .001), with a high 95% lower PP limit. Therefore, we

added informative priors for the residual variances/covariances. When d was set to 1000,

BSEM analyses gave PPp values higher than .05 in sample B (.278), but lower than .05 in sam-

ples A, C, and D (PPp� .042). Therefore, the next step decreased d by 100 and repeated the

analyses with the new d. This procedure was repeated until sufficient model fit was achieved.

When d was set to 200, PPp values were greater than 0.05 in all samples (.206 to .660). Thus,

we adopted d = 200 to maintain the identifiability of the model while resolving model fit and

separating parameters that had minor deviations from zero from substantively important

misspecifications.

Potential scale reductions were lower than 1.10 in all samples, and chains indicated clear

mixing in trace plots, suggesting good convergence [46]. Following Depaoli and van de Schoot

[67], we also checked whether convergence remained after doubling the number of iterations
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(300,000); potential scale reductions remained lower than 1.10 and deviations of parameters

were� |0.02| in all samples, suggesting good convergence. Moreover, PPp values were greater

than 0.05 and the 95% PP limit did not include zero in all samples, suggesting good model fit.

DIC showed that the model with cross-loadings and residual correlations was superior to the

one with only cross-loadings and the one without cross-loadings or residual correlations, in all

samples.

Standardized second-order factor loadings and factor correlations of this model (d = 200)

are shown in Table 4 (for standardized first-order factor loadings and residual correlations, see

S3 Table). All hypothesized major second-order factor loadings were substantively large

(� .34) and the credible interval did not include zero, except for the loading of utilization-self
on intrapersonal EC (factor loadings = .14–.30). As in the results of CFA, intrapersonal and

interpersonal EC were significantly correlated with each other (rs = .67–.80). Residual correla-

tions between regulation-self and regulation-other were substantially large in all samples (rs =

.39–.55).

Table 2. Results of the CFA with a robust maximum likelihood estimation of the modified target-based structure model.

Sample A: French-speaking

Belgian (n = 3295)

Sample B: Dutch-speaking

Belgian (n = 9955)

Sample C: Spanish (n = 792) Sample D: Japanese (n = 549)

Intrapersonal

EC

Interpersonal

EC

Intrapersonal

EC

Interpersonal

EC

Intrapersonal

EC

Interpersonal

EC

Intrapersonal

EC

Interpersonal

EC

Factor loadings

Identification-self .95� [.92, .98] .96� [.95, .98] .98� [.92, 1.04] .95� [.89, 1.02]

Comprehension-self .87� [.84, .89] .85� [.84, .87] .79� [.71, .87] .84� [.75, .93]

Expression-self .81� [.78, .84] .83� [.81, .85] .78� [.69, .86] .83� [.75, .92]

Regulation-self .61� [.57, .65] .61� [.59, .64] .53� [.44, .63] .69� [.60, .78]

Utilization-self .36� [.30, .41] .37� [.32, .41] .44� [.33, .55] .39� [.24, .55]

Identification-other .93� [.91, .95] .96� [.95, .97] .92� [.86, .99] .82� [.71, .93]

Comprehension-other .93� [.91, .96] .96� [.94, .97] .98� [.92, 1.04] .90� [.80, .99]

Expression-other .75� [.71, .78] .82� [.80, .84] .81� [.75, .87] .72� [.63, .81]

Regulation-other .86� [.82, .89] .83� [.81, .85] .76� [.68, .84] .89� [.77, 1.00]

Utilization-other .50� [.45, .55] .53� [.50, .56] .36� [.25, .47] .86� [.75, .97]

Factor correlation

Intrapersonal EC <->

Interpersonal EC

.71� [.68, .74] .77� [.75, .78] .67� [.59, .76] .73� [.63, .83]

Residual correlations

Identification-self <->

Identification-other

.09 [-.15, .33] .01 [-.21, .22] -.48� [-1.69,

.73]

.21 [-.26, .67]

Comprehension-self

<-> Comprehension-

other

.29� [.14, .45] .21� [.10, .31] -.27 [-.84, .31] .32� [.01, .63]

Expression-self <->

Expression-other

.02 [-.07, .10] .07� [.01, .13] .03 [-.17, .23] .16 [-.20, .53]

Regulation-self <->

Regulation-other

.55� [.47, .62] .51� [.47, .55] .46� [.35, .58] .41� [.20, .62]

Utilization-self <->

Utilization-other

.11� [.05, .17] .12� [.08, .16] .12 [.01, .23] .20 [-.04, .43]

Note. 95% confidence intervals are in square brackets. EC: emotional competence. Although several upper bounds of 95% confidence intervals of standardized factor

loadings were higher than one, this is normal and not a problem. For example, the results of Muthén and Asparouhov [46] also show that several upper bounds of 95%

confidence intervals of standardized factor loadings were higher than one (see https://www.statmodel.com/BSEM.shtml for the their results on confidence intervals).

�95% confidence interval does not include zero.

https://doi.org/10.1371/journal.pone.0225070.t002
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Next, we looked at newly estimated parameters in BSEM with cross-loadings and residual

correlations, to explore what makes the model fit of CFA worse. The results are summarized in

Table 5. They suggested that most cross-loadings and residual correlations were substantively

small. Indeed, PPPp was more than .05 in all samples, suggesting that the hypothesis that a set

of parameters are approximately zero was not rejected (Table 3). Thus, the BSEM analysis sug-

gests that minor cross-loadings and residual correlations contributed to the CFA model misfit.

Discussion

This study aims to clarify the higher-order structure of the PEC with four different samples

(French-speaking Belgian, Dutch-speaking Belgian, Spanish, and Japanese). Dimensionality

analyses and CFA with MLR revealed that the modified target-based structure (distinction

based on the intrapersonal and interpersonal factors with residual correlations among types of

competence) fits best among the possible factor structure models, in all samples. This finding

emphasizes the importance of distinguishing between intrapersonal and interpersonal

domains in EC. Moreover, the results of BSEM showed that model misfit within the modified

target-based structure was caused by minor cross-loadings and residual correlations. Given

that the strict constraints of exact-zero cross-loadings and residual correlations are unneces-

sary in the CFA model [38, 46], these results offer further evidence of the validity of the modi-

fied target-based structure.

The importance of distinguishing between intrapersonal and interpersonal domains is con-

sistent with theory in EC-related research areas and other fields in psychology. For example, in

the related field of emotion regulation, researchers recently developed a theoretical model

assuming that perceiving, understanding, and regulating others’ emotions are related but dis-

tinct psychological processes from perceiving, understanding, and regulating one’s own emo-

tions [68–70]. More broadly, Leary, Raimi [71] indicated the importance of distinguishing

intrapersonal from interpersonal motives in a wide range of psychological phenomena, such as

cognitive dissonance, biases in decision-making, and self-conscious emotions. The distinction

Table 3. Fit indices of Bayesian structural equation modeling of the modified target-based structure model.

Model 2.5% PP limit 97.5% PP limit DIC BIC PPp PPPp
Sample A: French-speaking Belgian (n = 3295)

The model with no informative priors 11689.52 11903.78 426830.90 427842.85 .000 –

The model with cross-loadings (prior variances = 0.1) 1554.46 1809.31 417041.98 421126.38 .000 .000

The model with cross-loadings (prior variances = 0.1) and residual correlations (d = 200) -171.09 111.28 416081.36 428903.03 .660 1.00

Sample B: Dutch-speaking Belgian (n = 9955)

The model with no informative priors 35481.30 35697.62 1297841.07 1299036.04 .000 –

The model with cross-loadings (prior variances = 0.1) 4076.99 4344.89 1263778.32 1272267.13 .000 .000

The model with cross-loadings (prior variances = 0.1) and residual correlations (d = 200) -153.61 130.49 1263325.63 1278197.47 .565 1.00

Sample C: Spanish (n = 792)

The model with no informative priors 4881.34 5105.61 102569.10 103346.51 .000 –

The model with cross-loadings (prior variances = 0.1) 958.39 1213.53 98912.79 102212.55 .000 .000

The model with cross-loadings (prior variances = 0.1) and residual correlations (d = 200) -85.97 204.83 98433.42 109068.55 .206 .998

Sample D: Japanese (n = 549)

The model with no informative priors 2668.25 2886.40 70756.81 71472.86 .000 –

The model with cross-loadings (prior variances = 0.1) 824.22 1086.16 69163.35 72323.71 .000 .083

The model with cross-loadings (prior variances = 0.1) and residual correlations (d = 200) -114.50 171.73 68727.93 78883.19 .345 .935

Note. PPp: Posterior predictive p-value, PPPp: Prior-posterior predictive p-value

https://doi.org/10.1371/journal.pone.0225070.t003
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Table 4. Results of Bayesian structural equation modeling of the modified target-based structure model (d = 200).

Sample A: French-speaking

Belgian (n = 3295)

Sample B: Dutch-speaking

Belgian (n = 9955)

Sample C: Spanish (n = 792) Sample D: Japanese (n = 549)

Intrapersonal

EC

Interpersonal

EC

Intrapersonal

EC

Interpersonal

EC

Intrapersonal

EC

Interpersonal

EC

Intrapersonal

EC

Interpersonal

EC

Factor loadings

Identification-self .96
�

[.75, 1.19] -.03 [-.35, .26] .93
�

[.71, 1.20] .02 [-.31, .30] .99
�

[.83, 1.20] -.03 [-.34, .22] .98
�

[.80, 1.22] -.07 [-.40, .19]

Comprehension-self .90
�

[.73, 1.08] -.04 [-.29, .18] .88
�

[.72, 1.07] -.03 [-.27, .18] .90
�

[.77, 1.07] -.10 [-.33, .11] .89
�

[.72, 1.08] -.06 [-.31, .17]

Expression-self .69
�

[.48, .91] .13 [-.15, .37] .70
�

[.46, .94] .11 [-.18, .36] .65
�

[.42, .87] .18 [-.10, .41] .67
�

[.39, .96] .20 [-.16, .49]

Regulation-self .69
�

[.50, .86] -.05 [-.26, .15] .74
�

[.51, .94] -.07 [-.29, .17] .61
�

[.39, .79] -.03 [-.23, .17] .58
�

[.35, .79] .09 [-.15, .30]

Utilization-self .14 [-.13, .39] .25 [.03, .44] .14 [-.23, .49] .23 [-.06, .48] .20 [-.09, .47] .29 [.06, .48] .30 [-.04, .60] .14 [-.14, .39]

Identification-other .02 [-.21, .23] .90
�

[.74, 1.07] -.03 [-.31, .19] .96
�

[.80, 1.19] .06 [-.19, .29] .88
�

[.71, 1.05] .02 [-.22, .23] .83
�

[.65, 1.01]

Comprehension-other .07 [-.19, .29] .87
�

[.69, 1.06] .02 [-.25, .24] .93
�

[.74, 1.14] .11 [-.16, .35] .89
�

[.71, 1.07] .14 [-.09, .35] .77
�

[.57, .95]

Expression-other -.14 [-.40, .09] .88
�

[.71, 1.07] -.07 [-.32, .16] .90
�

[.71, 1.09] -.12 [-.39, .11] .90
�

[.74, 1.09] -.09 [-.35, .15] .79
�

[.58, .99]

Regulation-other .03 [-.20, .24] .85
�

[.67, 1.01] .06 [-.17, .26] .80
�

[.60, .98] .00 [-.22, .21] .83
�

[.65, .98] -.07 [-.29, .13] .95
�

[.80, 1.11]

Utilization-other .09 [-.14, .30] .40
�

[.14, .63] .10 [-.16, .33] .40
�

[.08, .67] .00 [-.21, .20] .34
�

[.07, .57] .04 [-.26, .31] .85
�

[.60, 1.06]

Factor correlation

Intrapersonal EC <->

Interpersonal EC

.73
�

[.50, .87] .80
�

[.60, .93] .67
�

[.38, .86] .73
�

[.48, .89]

Residual correlation

Identification-self <->

Identification-other

.10 [-.03, .23] .00 [-.14, .14] -.32
�

[-.43,

-.19]

.21
�

[.07, .33]

Comprehension-self

<-> Comprehension-

other

.27
�

[.14, .39] .18
�

[.05, .31] -.21
�

[-.33,

-.08]

.30
�

[.17, .41]

Expression-self <->

Expression-other

.01 [-.12, .14] .07 [-.06, .19] .01 [-.12, .13] .16
�

[.03, .29]

Regulation-self <->

Regulation-other

.55
�

[.45, .64] .51
�

[.40, .60] .46
�

[.35, .56] .39
�

[.28, .50]

Utilization-self <->

Utilization-other

.10 [-.01, .21] .11 [-.01, .22] .10 [-.02, .21] .18
�

[.05, .31]

Note. 95% credible intervals are in square brackets. EC: emotional competence. Although several upper bounds of 95% credible intervals of standardized factor loadings

were higher than one, this is normal and not a problem. For example, the results of Muthén and Asparouhov [46] also show that several upper bounds of 95% credible

intervals of standardized factor loadings were higher than one (see https://www.statmodel.com/BSEM.shtml for the their results on credible intervals).

�95% credible interval does not include zero

https://doi.org/10.1371/journal.pone.0225070.t004

Table 5. Frequency distribution of the strength of cross-loadings and residual correlations in the model with cross-loadings (prior variances = 0.1) and residual cor-

relations (d = 200).

Cross-loadings |β| < .10 .10� |β| < .20 .20� |β| < .30 |β| � .30

Sample A: French-speaking Belgian 447 (97.17%) 11 (2.39%) 2 (0.44%) 0 (0.00%)

Sample B: Dutch-speaking Belgian 451 (98.04%) 6 (1.30%) 3 (0.65%) 0 (0.00%)

Sample C: Spanish 449 (97.61%) 7 (1.52%) 2 (0.44%) 2 (0.44%)

Sample D: Japanese 454 (98.70%) 5 (1.09%) 1 (0.22%) 0 (0.00%)

Residual correlations |r| < .10 .10� |r| < .20 .20� |r| < .30 |r| � .30

Sample A: French-speaking Belgian 1156 (91.38%) 102 (8.06%) 6 (0.47%) 1 (0.08%)

Sample B: Dutch-speaking Belgian 1115 (88.14%) 141 (11.15%) 9 (0.71%) 0 (0.00%)

Sample C: Spanish 1157 (83.56%) 188 (14.86%) 19 (1.50%) 1 (0.08%)

Sample D: Japanese 1137 (89.88%) 115 (9.09%) 10 (0.79%) 3 (0.24%)

https://doi.org/10.1371/journal.pone.0225070.t005
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between intrapersonal and interpersonal domains is increasingly considered as essential to

properly understand psychological phenomena.

In the domain of EC, the intrapersonal versus interpersonal higher-order dimensions do

more than just provide a parsimonious summary of a complex construct. They are also useful

to accurately predict external variables. In fact, previous studies found that intrapersonal and

interpersonal EC were differently related to external criteria—for example, intrapersonal EC

was more strongly related to objective indices of health [30], depression [33] and regulation of

one’s own emotions [36, 72], whereas interpersonal EC was more strongly related to behaviors

aimed at regulating others’ negative emotions [7, 73]. These results suggest that intrapersonal

versus interpersonal dimensions can afford more nuanced exploration of relationships

between EC and external variables and increase its predictive power.

This study has also implications for emotional education. Emotional education refers to an

intervention program aimed at improving EC [74]. Recent research showed that relatively

short intervention programs can improve trait-level EC [3, 4]. For effective emotional educa-

tion, implementers should successfully grasp participants’ current level of EC and respond to

it. To achieve this goal, the intrapersonal versus interpersonal EC dimensions will be useful to

analyze the characteristics of participants’ EC profiles and design tailored intervention to foster

it. Recent research has strongly called for theory-based EC intervention program that is

designed according to a theoretical model of EC [74, 75]. The current results suggest that intra-

personal versus interpersonal dimensions can contribute to this line of research by better dif-

ferentiating among individuals with different EC profiles and providing a useful framework

for designing better emotional education content.

The present study revealed that competence-based factors should be replaced by residual

correlations. Nevertheless, among competences, residual correlations between regulation-self
and regulation-other were significant and large after controlling for intrapersonal and interper-

sonal factors in all samples. This may reflect the fact that individual differences in regulation of

one’s own emotions are positively associated with those in regulation of another person’s emo-

tions. For example, Niven, Totterdell [76] revealed that individual differences in intrinsic

affect-improving (the extent to which an individual typically engages in up-regulation of their

own emotions) and extrinsic affect-improving (the extent to which that individual typically

engages in up-regulation of another person’s emotions) were differentiated but positively asso-

ciated with each other. Such a positive relationship may be represented as significant residual

correlation between regulation-self and regulation-other in the modified target-based structure.

We also found that utilization-self did not significantly load on intrapersonal EC in BSEM

results, unexpectedly. Several previous studies have also found that facilitating thought using

emotions—which is a competence related to utilizing one’s own emotions—does not reliably

emerge in the factor analysis and is not conceptually distinct from the other competences [77].

For example, factor loadings of the facilitating thought using emotions branch were negligible

and not statistically significant beyond the general factor [78]. As discussed in Mayer, Caruso

[79], this may be because people utilize their emotions by their emotion comprehension com-

petence (or another competence) rather than any competence distinctly related to facilitating

thought. More research is needed to confirm the position of utilization-self in EC.

Alongside its strengths, several limitations of this study have to be acknowledged. First, our

results are based on self-report measures of EC. Although self-reports are the most widely used

method to measure traits and although they have shown evidence of both theoretical and

empirical validity [8, 27, 44], traits—including trait-level EC—can also be assessed through

observer ratings [80]. Future research should investigate whether the current results can be

generalized to alternative methods. Second, given that construct validation is an ongoing
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process [81], future research should gather further construct validity evidence such as conver-

gent, discriminant, and predictive validity of the PEC.

Despite these limitations, these findings show the importance of distinguishing between

intrapersonal and interpersonal domains in EC. This insight sheds new light on the factor

structure of the PEC and opens exciting perspectives for future research.

Supporting information

S1 Table. Results of the CFA with a robust maximum likelihood estimation of the compe-

tence-based structure model.

(PDF)

S2 Table. Results of the CFA with a robust maximum likelihood estimation of the hybrid

structure model.

(PDF)

S3 Table. Results of the Bayesian structural equation modeling of the modified two sec-

ond-order factor model with cross-loadings and residual correlations.

(PDF)

S1 Text. Details and previous research applications of the hybrid structure model.

(PDF)

Acknowledgments
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39. Howard JL, Gagné M, Morin AJS, Forest J. Using bifactor exploratory structural equation modeling to

test for a continuum structure of motivation. J Manage. 2018; 44: 2638–64. https://doi.org/10.1177/

0149206316645653

40. Wu C-H, Chen LH. Examining dual meanings of items in 2 × 2 Achievement Goal Questionnaires

through MTMM modeling and MDS approach. Educ Psychol Meas. 2009; 70: 305–22. https://doi.org/

10.1177/0013164409344501

41. Asparouhov T, Muthén B, Morin AJS. Bayesian structural equation modeling with cross-loadings and

residual covariances: Comments on Stromeyer et al. J Manage. 2015; 41: 1561–77. https://doi.org/10.

1177/0149206315591075

42. Marsh HW, Bailey M. Confirmatory factor analyses of Multitrait-Multimethod data: A comparison of

alternative models. Appl Psychol Meas. 1991; 15: 47–70. https://doi.org/10.1177/

014662169101500106

43. Hopwood CJ, Donnellan MB. How should the internal structure of personality inventories be evaluated?

Pers Soc Psychol Rev. 2010; 14: 332–46. https://doi.org/10.1177/1088868310361240 PMID:

20435808

44. Costa PT Jr., McCrae RR. Revised NEO Personality Inventory (NEO-PI-R) and NEO Five-Factor Inven-

tory (NEO- FFI) professional manual. Odessa, FL: Psychological Assessment Resources; 1992.

Evaluating the higher-order structure of the Profile of Emotional Competence (PEC)

PLOS ONE | https://doi.org/10.1371/journal.pone.0225070 November 14, 2019 15 / 17

https://doi.org/10.1080/01926187.2012.748549
https://doi.org/10.1080/01926187.2012.748549
https://doi.org/10.1111/j.1751-9004.2010.00334.x
https://doi.org/10.1111/j.1751-9004.2010.00334.x
https://doi.org/10.1177/1754073916650493
https://doi.org/10.1177/1754073916650493
https://doi.org/10.1371/journal.pone.0062635
http://www.ncbi.nlm.nih.gov/pubmed/23671616
https://doi.org/10.1002/per.2410070403
https://doi.org/10.1037/emo0000034
https://doi.org/10.1037/emo0000034
http://www.ncbi.nlm.nih.gov/pubmed/25893449
https://doi.org/10.1007/s12144-018-0002-9
https://doi.org/10.1007/s12144-018-9918-3
https://doi.org/10.1007/s12144-018-9918-3
https://doi.org/10.1016/j.paid.2018.09.020
https://doi.org/10.1016/j.paid.2018.09.020
https://doi.org/10.1007/s12144-018-0062-x
https://doi.org/10.1007/s12144-018-0062-x
https://doi.org/10.1016/j.jad.2017.09.047
http://www.ncbi.nlm.nih.gov/pubmed/28972931
https://doi.org/10.1016/j.paid.2018.04.013
https://doi.org/10.1177/0898264314535633
https://doi.org/10.1177/0898264314535633
http://www.ncbi.nlm.nih.gov/pubmed/24920650
https://doi.org/10.1080/00223891.2018.1449116
https://doi.org/10.1080/00223891.2018.1449116
http://www.ncbi.nlm.nih.gov/pubmed/29630411
https://doi.org/10.1177/0149206316645653
https://doi.org/10.1177/0149206316645653
https://doi.org/10.1177/0013164409344501
https://doi.org/10.1177/0013164409344501
https://doi.org/10.1177/0149206315591075
https://doi.org/10.1177/0149206315591075
https://doi.org/10.1177/014662169101500106
https://doi.org/10.1177/014662169101500106
https://doi.org/10.1177/1088868310361240
http://www.ncbi.nlm.nih.gov/pubmed/20435808
https://doi.org/10.1371/journal.pone.0225070
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