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China’s pork industry has been dramatically changing in the last few years. Pork

imports are increasing, and small-scale farms are being consolidated into large-scale

multi-site facilities. These industry changes increase the need for traceability and

science-based decisions around disease monitoring, surveillance, risk mitigation, and

outbreak response. This study evaluated the network structure and dynamics of a typical

large-scale multi-site swine facility in China, as well as the implications for disease spread

using network-based metrics. Forward reachability paths were used to demonstrate

the extent of epidemic spread under variable site and temporal disease introductions.

Swine movements were found to be seasonal, with more movements at the beginning

of the year, and fewer movements of larger pigs later in the year. The network was highly

egocentric, with those farms within the evaluated production system demonstrating high

connectivity. Those farms which would contribute the highest epidemic potential were

identified. Among these, different farms contributed to higher expected epidemic spread

at different times of the year. Using these approaches, increased availability of swine

movement networks in China could help to identify priority locations for surveillance

and risk mitigation for both endemic problems and transboundary diseases such as the

recently introduced, and rapidly spreading, African swine fever virus.

Keywords: social network analysis, pig movements, disease spread, risk-based surveillance, swine diseases

INTRODUCTION

The ongoing expansion of national and international trade has increased the movement of animals,
products, and disease globally. China’s pork industry has been dramatically impacted by these
market changes, with import tonnage quadrupling between 2005 and 2015 (1). The swine industry
in China is also seeing an increasing consolidation of traditional farms of <50 animals, into
large-scale facilities supporting thousands of pigs (1). The implications of these changes include:
increased pig density and trade, higher risk of introduction of novel pathogens, faster disease
spread, higher disease incidence, and the generation of novel pathogen strains (2–5). This has
been evident with the arrival of African Swine Fever virus (ASF) in August 2018, as well as the
dramatic impact that other swine diseases such as PRRS or PED are having in the country (6).
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These changes in swine production, as well as the introduction
of ASF, have increased the necessity for traceability and efficient
data-driven methods to support disease surveillance, prevention,
and outbreak response.

Understanding the social network of a production system
allows for risk assessment of disease dissemination within the
local industry (7), as well as a faster response in case of an
epidemic (8). Large swine operations are highly integrated and
multi-site—commercial swine production systems use separate
sites for sow farms, gilt development, nursing, finishing farms,
boar studs, and culling, requiring the frequent shipment of live
pigs from location to location (9). These intrinsic pig movement
requirements provide opportunities for disease introduction and
spread. Understanding when and where these points of contact
occur, and the network structure and vulnerabilities, may help
to strategically allocate risk-based, more cost-effective, preventive
and control measures.

Social network analysis (SNA) has been demonstrated to
be a valuable tool to describe these pig movement network
structures (10). It has been used to evaluate the movement
network dynamics and helps to quickly identify the individual
farms, areas and time periods that may pose the highest risk for
disease introduction to the system (11–14). These insights allow
for implementation of risk mitigation strategies at these spatial or
temporal hotspots (14), as well as more realistic diseasemodeling.

Understanding the social structure of a typical swine
facility in China is a first step toward risk analysis in the
Chinese swine industry; however, there is currently very limited
published information about Chinese swine farm demographics,
or the trade and contact patterns at fine spatio-temporal scale
(daily/weekly and at farm level). This lack of information
is a critical gap in China’s animal health and emergency
response plans. Moreover, the increasing demand for animal
protein due to population growth and westernization of the
diet, makes food safety and security a primary concern for
China (15). Limiting disease outbreaks, especially those that
may severely impact food production and international trade
(such as the current ASF epidemic) is critical if China is
to meet these consumer demands and maintain industry
health standards. SNA applied to the swine industry may
also allow for the identification of potential superspreaders
or super-receivers of disease within China’s pork industry
chain, providing targeted locations for surveillance and risk
mitigation (13). Food security programs in China should
prioritize characterization of the swine trade network as the first
step in risk assessment.

We undertook this study as a first exploration of the social
network of the pig trade in China.

Our primary objectives were: to describe the network
structure in a typical multi-site system in China; to describe
pig movement spatio-temporal dynamics; and to identify
priority farms that may contribute to the risk of disease
introduction and spread. The increased availability of swine
demographics and trade data in China will help to better
understand, and even predict, disease transmission patterns,
which will support risk-based surveillance and control strategies
for both endemic and emerging swine diseases such as African
Swine fever.

MATERIALS/METHODS

Data
Live pig movement data was collected from a large-scale multi-
site pig producer in China. These data were translated from
Mandarin to English for analysis. Farms were anonymized to
protect producer and citizen consumer privacy. The final dataset
included movement information to/from the farms belonging
to the participant multi-site pig production system between Jan
1 and Dec 31, 2017. Shipment information included: origin,
destination, date, type of shipments (culling or finisher), type of
pig, total weight, number of pigs, average weight per pig, and
distance moved. Pigs types were classified as: boar, commercial
pig, feeder, grower, sow, or unspecified. A total of 2,567
shipments were considered in this study. Data were collected,
validated and cleaned in Microsoft Excel 2016 and R language
(v.3.4.1) (16, 17).

General Approach
In a first step, we constructed and evaluated the characteristics
and properties of the complete network (for the whole study
period). In a second step, we generated and evaluated the
properties of the dynamic network (i.e., considering the
complex dynamics of the edge formation and dissolution over
time). Finally, we used the dynamic network to evaluate the
potential disease transmission and epidemic sizes over the
network, considering the actual farm-to-farm contacts under
diverse epidemiological scenarios and computing the forward
reachability paths for all nodes in the network.

Static Network Analysis
The complete “static” network for the whole study period
(i.e., 1 year) was defined using swine production sites as
nodes or vertices, and shipments of live pigs as edges. After
the complete static network was generated, we then focused
on the farm-to-farm (“to live”) movements (i.e., subset of
the network removing movements to slaughterhouses). The
static networks studied were treated as non-weighted. Network
parameters including number of nodes, number of edges,
diameter, edge density, average path length, and transitivity
were calculated to study the properties and characteristics
of the network. Centrality measures of in-degree and out-
degree were calculated for each node. Briefly, in-degree is
defined as the number of incoming shipments to a farm, out-
degree is the number of outgoing shipments from a farm (18,
19). Diameter is the longest of all the shortest path lengths
between nodes in the network (18, 19). Edge density is the
ratio of the number of edges observed in the network to
the number of possible edges (18, 19). Average path length
is the mean length of all the shortest paths between nodes
in the network (20). Transitivity coefficient is the sum of the
proportion of nodes that are connected to other nodes; this
parameter is also known as the clustering coefficient (18, 20).
The igraph package [v 1.1.2; (21)] in R Studio [v 3.4.1; (17)]
was used to generate and describe the static network and
evaluate network parameters. Edge density, diameter, average
path length, and transitivity were calculated under the igraph
package using functions: edge_density, diameter, mean_distance,
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and transitivity, respectively. Type global was used for the
transitivity function. The visNetwork package was also used for
network visualization (22).

Network Dynamics and Epidemic Size
The network Dynamic (23), ndtv (24), and tsna (25) packages
within R were used to construct and evaluate the dynamic
properties and characteristics of the complete and farm-to-farm
pig movement networks, and then to estimate the epidemic size
within the resultant dynamic network.

We computed the forward reachability path, which has been
previously shown to be a good predictor of epidemic size
(11, 26), for each node in the complete dynamic network
using the tPath function. Forward reachability is defined as the
extent to which an introduced infection can spread through
the network—given an introduction at farm A, based on the
network structure or contacts, to which farms would an infection
be expected to move (11). For each initial vertex in a directed
network, tpath searches out the sequence and distance of vertices
that are reachable following paths constrained by edge timing.
Results were presented using graphs, transmission timelines and
video (Supplementary Video 1).

RESULTS

The complete static network including all movements during
2017 for our studied Chinese production system contained
67 nodes and 2,567 edges (Figure 1). The network shipments
displayed seasonality, with the overall number of shipments
being highest in January, then declining throughout the year
(Figure 2). Growers were consistently the predominant type of
pig being shipped, with sows being the next most common. The
highest sum average weight was observed in January, with a drop
off in February and May, then a gradual increase through the rest
of the year (Figure 3).

The subsetted farm-to-farm network, discarding movements
to slaughter, had 50 nodes and 485 edges. The characteristics of
the complete vs. farm-to-farm networks are outlined in Table 1.
Both networks conform a weakly-connected component, in
which all farms are connected by some path (ignoring direction)
and are characterized by short diameters and path lengths. The
transitivity, or clustering coefficient, for both networks was zero.
The farm-to-farm network shows low edge density at 0.198.
Within our farm-to-farm network we identified those farms
with the highest in-degree and highest out-degree. Those with
the highest out-degree—our potential super-spreaders—included

FIGURE 1 | Graph of the complete pig movement network for the studied Chinese production system. Farms are in blue, slaughterhouses are in red.
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FIGURE 2 | Log number of shipments by type of pig and month of the year.

FIGURE 3 | Sum average weight per shipment by month (kg).

farms f24, f4, and f3 with a total of 164, 86, and 65 outgoing
movements, respectively. Those with the highest in-degree—our
potential super-receivers—included farms f132, f97, and f70 with
a total of 260, 38, and 28 incoming movements, respectively.

A dynamic network was evaluated for both the complete
and farm-to-farm networks. Edge formation, dissolution and
duration are graphed and compared in Figure 4. We observe
a high rate of connectivity and duration among a few core
farms, which compose a stable community evident in our
edge statistics and visualized on the dynamic network movie
(Supplementary Video 1). The remaining edges are sporadic
and short-lived. The complete network, including movements
to slaughter, displayed higher rates of edge formation and edge
duration, than the farm-to-farm network (Figure 4).

In evaluating how a disease would move through this network
following introduction, we used forward reachability paths. We
illustrated the maximum forward reachability path of f24 in
Figure 5, highlighting the extent and locations where disease
would likely disseminate to, given a disease introduction at this
farm and assuming disease may disseminate during the whole

TABLE 1 | Network parameters for the complete and subsetted farm-to-farm

networks.

Global parameters Complete network Farm-to-farm network

Nodes 67 50

Edges 2,567 485

Edge density 0.5805 0.198

Diameter 1 1

Average path length 1 1

Transitivity 0 0

Node parameters Mean (Min, Max) Mean (Min, Max)

In-degree 38.3134 (0, 525) 9.7 (0, 260)

Out-degree 38.3134 (0, 667) 9.7 (0, 164)

study period. The forward reachability paths identified farms f24,
f4, f2 as the potential main superspreaders when considering
the whole study period. Farms f24, f4, and f2 could potentially

infect 40, 34, and 31% of the farms within our production system,
respectively. Farms f24 and f4 would have more contribution to
disease spread if infected early in the year, while f5 and f2 would
contribute to more disease spread later in the year (Table 2;
Figure 6). The potential epidemic size, and the farms that would
contribute most to disease spread, change throughout the year
(Figure 6).

DISCUSSION

This study analyzed the pig movement network structure and
characteristics of a typical multisite swine production system
in China and used forward reachability paths to illustrate the
potential spread of swine diseases under diverse epidemiological
scenarios (different index cases and time of infections). Despite
having only 1 year of information, data suggest that the system
is seasonal and predominated by the movement of growers. This
seasonality likely contributes to the variable impact certain farms

Frontiers in Veterinary Science | www.frontiersin.org 4 April 2020 | Volume 7 | Article 189

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


O’Hara et al. SNA of Chinese Swine Movements

FIGURE 4 | Edge formation and dissolution rates, and edge duration per node of the complete (blue) and farm-to-farm (red) pig movement network for the studied

Chinese production system. Time is in weeks. Edge formation is the generation of a contact between two farms. Edge dissolution is the discontinuation of contact

between two farms. The edge duration is the length of time (in weeks) that two given nodes had ongoing contact, or shipments between them.

had on epidemic spread at different times of the year, and may
be explained in part by the timing of Chinese traditional festivals.
Drops in epidemic size correspond to multiple of these events:
Chinese New Year (Jan 28; week 4), Lantern Festival (Feb 11;
week 6), Qingming (Apr 4, week 14), Dragon Boat (May 30, week
22), Mid-autumn (Oct 4, week 40), and Double Ninth (Oct 28,
week 43). Presumably more people are away from work, limiting
swine shipments, and thus disease spread during these periods.

The farm-to-farm network consisted of one giant weakly-
connected component, with a clustering coefficient of zero or no
clustering observed. The lack of clustering and the predominance
of stars structures in the network are typical in egocentric
networks, and in this case is attributable to the single source
of the data (i.e., information from one production system, with
no information on the external farms contacting our production
system). The lack of additional outgoing movement information
from what appear to be isolated receiving farms (those with
limited movements, and short edge duration), prevents us from
getting a better idea of their interconnectivity with this and/or
other production systems.

Node centrality and reachability parameters allowed us
to identify potential farms that can act as super-spreaders

or super-receivers within the network. Super-spreaders, those
farms with high out-degree and highest reachability, represent
those most likely to have a key role in the dissemination
of disease within the network. Super-receivers, those farms
with high in-degree, represent those most likely to introduce
diseased animals to their farm, and thus become infected. The
most cost-effective preventive and control measures will be
those targeting farms characterized as super-spreaders for the
implementation of risk-mitigation strategies (i.e., biosecurity,
vaccination, quarantine etc.), while our super-receivers should be
prioritized for enhanced surveillance programs.

Within this study, we evaluated both the complete network
and the farm-to-farm network that excluded movements to
slaughter. For most infectious diseases, slaughterhouses act
as dead ends. In terms of assessing disease spread through
a system, it would therefore make sense to focus on those
movements that went on to live. However, given the high level
of concern for spread of ASF via fomites and contaminated meat
products, infected animals that reach slaughterhouses and are
not identified, and other pigs who many become infected while
awaiting slaughter, pose a dissemination risk if their tissues reach
the market (27).
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FIGURE 5 | Forward reachability path for farm 24 of the dynamic farm-to-farm network for the studied Chinese production system and considering the entire study

period (i.e., 53 weeks). (A) The forward reachability within the farm-to-farm network when an infection is started at farm 24. (B) Visualization of those farms that could

be contacted, and thus become infected, given a disease introduction at farm 24. (C) Forward reachability for farm 24 plotted by time in weeks.

TABLE 2 | Potential maximum epidemic size (i.e., number of farms infected)

based on the forward reachability path for different index cases and time periods

when the disease is theoretically initiated (in weeks).

ID Index farm t1-10 t10-20 t20-30 t30-40 t40-50 t1-53

1 f2 10 11 9 10 12 21

2 f22 8 8 11 8 10 13

3 f24 13 14 12 11 11 27

4 f3 9 11 9 11 10 15

5 f4 13 11 8 7 5 23

6 f5 7 10 10 12 13 17

7 f6 3 9 10 9 10 19

Cell colors have increasing scale from light yellow to red and are proportional to the

number of farms infected. Themaximum epidemic size considering the whole study period

is shown in the t1-53 gray column.

This model could be improved with the addition of
movement data for other swine production systems, and
better information about node parameters such as farm size,

production type, disease status, or biosecurity and management
practices, which was not available for the current study. The
use of forward reachability paths was considered a fast and
reliable approach to estimate the epidemic size for all the
nodes and different time periods in the study (11, 28, 29).
This approach has been proved to be a good substitute
for SIR modeling techniques, particularly in situations like
this, where there are low number of secondary contacts
due to the egocentric nature of the network. Overall, our
approach provides an adequate platform from which to
understand how disease could move through the studied Chinese
production system.

Using social network analysis of a representative, large
multi-site swine production system in China, we were able to
identify target farms for risk-based surveillance and disease
mitigation efforts. This approach allows us to inform on
the most effective and cost-efficient approaches to risk
mitigation, disease management, and outbreak response in
this particular production system, and can be easily adapted
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FIGURE 6 | Potential maximum epidemic size (i.e., number of farms infected) based on the forward reachability path for different index cases (farm 2, 22, 24, 3, 4, 5,

and 6) per week when the disease is theoretically initiated at the beginning of the week.

to other production systems if data becomes available. Future
directions should include the incorporation of more data
about on-farm demographics, farm type and management
practices within our network, as well as the incorporation of
additional production systems. Creating a spatially explicit
network and incorporating the distance between farms and
the transportation routes would allow the inclusion and
evaluation of other transmission pathways (i.e., airborne
transmission, truck movements, fomites, etc.) for stronger
predictions of disease dissemination, particularly in those
areas with high pig farm density. Additionally, the model
could be used to evaluate the efficacy of specific biosecurity or
riskbased interventions.

To the authors’ best knowledge this study represents the
first description of the pig movement patterns in a large-
scale Chinese swine production system. We have provided an
initial exploration of the swine movement patterns in this
system and have demonstrated how the use of social network
analyses can be used to inform surveillance and risk mitigation
strategies to improve decision-making, and disease prevention
and control, within the Chinese swine industry. Given that
China has just experienced its first incursion of ASF, the
availability of more swine trade data could help to better
understand ASF transmission dynamics, as well as to prevent
and control further outbreaks. By better understanding the
contacts and movement structure of the Chinese pork system,
resourcesmay bemore efficiently targeted at priority locations for
more timely disease mitigation. We recommend the expansion
and utilization of this approach as a benchmark in the food
safety and emergency response plan for China’s swine industry
moving forward.
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Supplementary Video 1 | Visualization of the dynamic farm-to-farm network

movements across time. Farms with the highest number of movements of sows in

red, the remaining farms in blue. Node size is proportional to the cumulative

number of movements in the entire time period: small <50, medium 50–200, large

>200. Time is presented in weeks.

REFERENCES

1. Gale F. China’s Pork Imports Rise Along with Production Costs. Washington,

DC: USDA Economic Research Service (2017).

2. Food and Agriculture Organization of the United Nations (FAO of the UN).

World Livestock 2013 - Changing Disease Landscapes. Rome (2013).

3. Hayama Y, Yamamoto T, Kobayashi S, Muroga N, Tsutsui T. Potential impact

of species and livestock density on the epidemic size and effectiveness of

control measures for foot-and-mouth disease in Japan. J Vet Med Sci. (2016)

78:13–22. doi: 10.1292/jvms.15-0224

4. Le Menach A, Legrand J, Grais RF, Viboud C, Valleron AJ, Flahault A.

Modeling spatial and temporal transmission of foot-and-mouth disease

in France: identification of high-risk areas. Vet Res. (2005) 36:699–

712. doi: 10.1051/vetres:2005025

5. Mangen MJJ, Nielen M, Burrell AM. Simulated effect of pig-population

density on epidemic size and choice of control strategy for classical

swine fever epidemics in The Netherlands. Prev Vet Med. (2002) 56:141–

63. doi: 10.1016/S0167-5877(02)00155-1

6. Food and Agriculture Organization of the United Nations (FAO of the UN).

African Swine Fever Threatens People’s Republic of China. In FAO Animal

Health Risk Analysis - Assessment. Rome: FAO (2017).

7. Thakur KK, Revie CW, Hurnik D, Poljak Z, Sanchez J. Analysis

of swine movement in four canadian regions: network structure and

implications for disease spread. Transbound Emerg Dis. (2016) 63:e14–

26. doi: 10.1111/tbed.12225

8. Yang Y, McKhann A, Chen S, Harling G, Onella JP. Efficient vaccination

strategies for epidemic control using network information. Epidemics. (2019)

27:115–22. doi: 10.1016/j.epidem.2019.03.002

9. Key N, McBride WD. The Changing Economics of US Hog Production. USDA-

ERS Economic Research Report. Washington, DC: USDA (2007).

10. Martínez-López B, Perez AM, Sánchez-Vizcaíno JM. Social

network analysis. Review of general concepts and use in

preventive veterinary medicine. Transbound Emerg Dis. (2009)

56:109–20. doi: 10.1111/j.1865-1682.2009.01073.x

11. Dubé C, Ribble C, Kelton D, McNab B. Comparing network analysis

measures to determine potential epidemic size of highly contagious

exotic diseases in fragmented monthly networks of dairy cattle

movements in Ontario, Canada. Transbound Emerg Dis. (2008)

55:382–93. doi: 10.1111/j.1865-1682.2008.01053.x

12. Martínez-López B, Perez AM, Sánchez-Vizcaíno JM. Combined

application of social network and cluster detection analyses for

temporal-spatial characterization of animal movements in Salamanca,

Spain. Prev Vet Med. (2009) 91:29–38. doi: 10.1016/j.prevetmed.2009.

05.007

13. Dubé C, Ribble C, Kelton D, McNab B. A review of network

analysis terminology and its application to foot-and-mouth disease

modelling and policy development. Transbound Emerg Dis. (2009)

56:73–85. doi: 10.1111/j.1865-1682.2008.01064.x

14. Dorjee S, Revie CW, Poljak Z, McNab WB, Sanchez J. Network analysis of

swine shipments in Ontario, Canada, to support disease spread modelling

and risk-based disease management. Prev Vet Med. (2013) 112:118–

27. doi: 10.1016/j.prevetmed.2013.06.008

15. Lam HM, Remais J, Fung MC, Xu L, Sun SS. Food supply and food safety

issues in China. Lancet. (2013) 381:2044–53. doi: 10.1016/S0140-6736(13)6

0776-X

16. R Core Team. R: A Language and Environment for Statistical Computing.

Vienna: R Foundation for Statistical Computer (2013). Available online

at: http://www.R-project.org/ (accessed February 16, 2020).

17. RStudio: Integrated Development for R. RStudio, Inc. Boston, MA (2015).

18. Lee K, Polson D, Lowe E, Main R, Holtkamp D, Martínez-López B.

Unraveling the contact patterns and network structure of pig shipments

in the United States and its association with porcine reproductive and

respiratory syndrome virus (PRRSV) outbreaks. Prev Vet Med. (2017)

138:113–23. doi: 10.1016/j.prevetmed.2017.02.001

19. Wasserman S, Faust, K. Social Network Analysis: Methods and Applications.

Cambridge: Cambridge University Press (1994).

20. Watts DJ, Strogatz SH. Collective dynamics of ’small-world’ networks.Nature.

(1998) 393:440–2. doi: 10.1038/30918

21. Csárdi G, Nepusz T. The igraph software package for complex

network research. InterJournal Comp Syst. (2006) 1695:1–9.

doi: 10.5281/zenodo.3630268

22. Almende BV, Benoit T, Titouan R. visNetwork: Network Visualization Using

‘vis.is’ Library. R package version 2.0.9 (2019). Available online at: https://

CRAN.R-project.org/package=visNetwork (accessed February 11, 2020).

23. Butts CT, Leslie-Cook A, Krivitsky PN, Bender-deMoll S. networkDynamic:

Dynamic Extensions for Network Objects. Seattle, WA (2019).

24. Bender-deMoll S. ndtv: Network Dynamic: Temporal Visualizations. Seattle,

WA (2019).

25. Bender-deMoll S. tsna: Tools for Temporal Social Network Analysis. Seattle,

WA (2019).

26. Bui-Xuan BM, Ferreira A, Jarry A. Computing Shortest, Fastest, and Foremost

Journeys in Dynamic Networks. INRIA RR-4589. Sophia Antipolis: National

Institute for Research in Computer Science and Automation (INRIA) (2002).

27. Shike J. China to Shut Down Small Slaughterhouses to Control ASF. Farm

Journal’s Pork (2019). Available online at: https://www.porkbusiness.

com/article/china-shut-down-small-slaughterhouses-control-asf (accessed

February 8, 2020).

28. Dubé C, Ribble C, Kelton D, McNab B. Estimating potential epidemic size

following introduction of a long-incubation disease in scale-free connected

networks ofmilkingcowmovements inOntario, Canada. Prev VetMed. (2011)

99:102–11. doi: 10.1016/j.prevetmed.2011.01.013

29. Büttner K, Krieter J, Traulsen I. Characterization of contact structures for the

spread of infectious disease in a pork supply chain in northern germany by

dynamic network analysis of yearly andmonthly networks.Transbound Emerg

Dis. (2015) 62:188–99. doi: 10.1111/tbed.12106

Conflict of Interest: XZ was employed by the company Bright Food (Group)

Co., Ltd.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Copyright © 2020 O’Hara, Zhang, Jung, Zhou, Qian and Martínez-López. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Veterinary Science | www.frontiersin.org 8 April 2020 | Volume 7 | Article 189

https://www.frontiersin.org/articles/10.3389/fvets.2020.00189/full#supplementary-material
https://doi.org/10.1292/jvms.15-0224
https://doi.org/10.1051/vetres:2005025
https://doi.org/10.1016/S0167-5877(02)00155-1
https://doi.org/10.1111/tbed.12225
https://doi.org/10.1016/j.epidem.2019.03.002
https://doi.org/10.1111/j.1865-1682.2009.01073.x
https://doi.org/10.1111/j.1865-1682.2008.01053.x
https://doi.org/10.1016/j.prevetmed.2009.05.007
https://doi.org/10.1111/j.1865-1682.2008.01064.x
https://doi.org/10.1016/j.prevetmed.2013.06.008
https://doi.org/10.1016/S0140-6736(13)60776-X
http://www.R-project.org/
https://doi.org/10.1016/j.prevetmed.2017.02.001
https://doi.org/10.1038/30918
https://doi.org/10.5281/zenodo.3630268
https://CRAN.R-project.org/package=visNetwork
https://CRAN.R-project.org/package=visNetwork
https://www.porkbusiness.com/article/china-shut-down-small-slaughterhouses-control-asf
https://www.porkbusiness.com/article/china-shut-down-small-slaughterhouses-control-asf
https://doi.org/10.1016/j.prevetmed.2011.01.013
https://doi.org/10.1111/tbed.12106
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles

	Network Analysis of Swine Shipments in China: The First Step to Inform Disease Surveillance and Risk Mitigation Strategies
	Introduction
	Materials/Methods
	Data
	General Approach
	Static Network Analysis
	Network Dynamics and Epidemic Size

	Results
	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


