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Abstract

Human use of the land (for agriculture and settlements) has a substantial negative effect

on biodiversity globally. However, not all species are adversely affected by land use, and

indeed, some benefit from the creation of novel habitat. Geographically rare species may be

more negatively affected by land use than widespread species, but data limitations have so

far prevented global multi-clade assessments of land-use effects on narrow-ranged and

widespread species. We analyse a large, global database to show consistent differences in

assemblage composition. Compared with natural habitat, assemblages in disturbed habitats

have more widespread species on average, especially in urban areas and the tropics. All

else being equal, this result means that human land use is homogenizing assemblage com-

position across space. Disturbed habitats show both reduced abundances of narrow-ranged

species and increased abundances of widespread species. Our results are very important

for biodiversity conservation because narrow-ranged species are typically at higher risk of

extinction than widespread species. Furthermore, the shift to more widespread species may

also affect ecosystem functioning by reducing both the contribution of rare species and the

diversity of species’ responses to environmental changes among local assemblages.

Author summary

Previous studies have shown that human use of the land, mainly for agriculture and settle-

ments, causes a detectable but relatively small net loss of biodiversity. However, not all
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species are affected equally, and some species even benefit from the new habitats we cre-

ate. One group of species of particular concern for biodiversity conservation are those that

inhabit only a small area. These narrow-ranged species are at higher risk of extinction

because it is more likely that any threats to the species (including human land use) will

affect their entire range. Such species can also play a unique role in the healthy functioning

of ecosystems. Here, we show that the observed small declines in biodiversity in human-

disturbed land can be broken down into large declines in narrow-ranged species, offset by

increases in wide-ranged species. All else being equal, this finding means that ecological

communities are losing their distinctive, narrow-ranged species and are becoming domi-

nated by the same species everywhere, leading to a reduction in global biodiversity. The

divergent effects of human land use on narrow-ranged and widespread species are impor-

tant for the conservation of already threatened, narrow-ranged species and may lead to a

negative effect on the functioning of ecosystems.

Introduction

Human impacts on the biosphere are substantially reducing the global number of species [1,2],

and many scientists argue that we have entered a new, human-dominated geological era, the

‘Anthropocene’ [3]. Land use is currently among the predominant pressures on biodiversity

globally [4], with substantial net losses of species in land-use types dominated by human activi-

ties [5]. However, not all species are equally impacted, and many species benefit from human

creation of novel habitats [6]. This results in strong turnover in community composition

between land-use types [5,7]. Understanding the characteristics of species that are most

impacted by human land use is essential for guiding conservation actions and also for assessing

the consequences of land-use change and biodiversity loss for the functioning of ecosystems.

Geographic range size is a fundamental property of species. Crucially, small range size is a

key determinant of species’ extinction risk [8–10], and therefore a disproportionate impact of

human land use on small-ranged species would have important consequences for biodiversity

conservation. Furthermore, rare species (including geographically restricted species) tend to

have unique combinations of functional traits and are therefore likely to make an important

contribution to ecosystem functioning [11], meaning that a disproportionate loss of small-ran-

ged species would have implications beyond their immediate conservation interest. A few geo-

graphically and taxonomically restricted studies have shown that narrow-ranged species are

more likely than wide-ranged species to be absent in human land uses [12–15], leading—all

else being equal—to a homogenization of assemblage composition across space [16]. A global,

multi-clade analysis for terrestrial ecosystems has so far been prevented by a lack of suitable

global datasets (but see [17] for a global freshwater analysis), and thus the generality of this pat-

tern remains unclear.

We present the first global synthesis of the effect of land use on an abundance-weighted

measure of the average range size of species in ecological assemblages of plants, invertebrates,

and vertebrates. We refer to this measure as Relative Community Average Range Size (RCAR).

Since samples of abundance are uncertain, and any patterns in measures of average range

size that are weighted by species’ abundance could be driven by the few most abundant species,

we also present results for a range-size measure unweighted by abundance, which we refer

to as Relative Average Range Size (RAR). Range sizes were log10-transformed prior to averag-

ing to reduce the influence on the measures of the few very widespread species. Increases in

RCAR or RAR, which reflect an increased dominance of more widespread species within

Land-use effects on widespread and narrow-ranged species
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communities, would indicate that community composition is tending to become homogenized

globally [16]. Our broad-scale synthesis enables us to assess geographic and taxonomic varia-

tion, as well as quantify overall patterns.

Homogenization of ecological assemblages has traditionally been assessed as a reduction in

spatial turnover (beta diversity) in assemblage composition [18,19]. However, this approach

has limitations because the effects of land conversion on beta diversity are scale dependent

[20]. For example, partial conversion of a natural landscape can increase beta diversity at the

landscape scale while decreasing it globally. In contrast, measures based on the average range

size of species within a community, such as RCAR and RAR used here, are always expected to

increase whenever homogenization occurs.

We combined a dataset of 1.1 million records from 445 surveys (Fig 1 and S1 Fig) that com-

pared the abundance of 19,334 species of terrestrial plants (7,111 species), invertebrates (7,048

species), and vertebrates (5,175 species) among different land uses [21], with occupancy- or

extent-based estimates of all species’ range sizes using records from the Global Biodiversity

Information Facility (GBIF; https://www.gbif.org) or from expert-drawn extent-of-occurrence

maps for vertebrates only, to calculate RCAR and RAR at 13,292 sites in different land uses

(see Materials and methods for full details).

Estimates of global range size are uncertain for most terrestrial species [22,23], with both

taxonomic and geographic patterns of underrecording hampering broad comparisons of abso-

lute range-size estimates [22,24]. These problems are mitigated to some extent in our analyses

because each of the individual biodiversity surveys—from which the abundance data were

taken—sampled within relatively restricted taxonomic groups and geographic regions, and

our hierarchically structured models account for differences in average range sizes between

surveys. Therefore, our models only require good estimates of relative range size within the

taxonomic groups and geographic regions of the individual studies. Nevertheless, to test the

robustness of our results, we repeat all of our analyses for 3 different metrics of range size

based on 2 fundamentally different underlying datasets: the occupancy of grid cells based on

records in the GBIF database, the extent of land area encompassed by records in the GBIF

database (excluding outlying records), and the total area within expert-drawn maps of species

ranges for amphibians, mammals, and birds (see Materials and methods for full details). We

Fig 1. Locations of surveys whose data were used in the analysis, by major taxonomic group of study. Shown in the Lambert

cylindrical equal area projection. Point diameters are proportional to the (loge) number of sites sampled by each survey, and are

translucent so areas of opaque colour indicate overlapping points. Studies are coloured according to the taxa sampled within the

study. The outline map is based on the World Bank map of river basins (https://bit.ly/2J86Kbq), which is published under a

CC-BY 4.0 license. The site-level data underlying this figure are freely available (DOI: 10.6084/m9.figshare.7262732).

https://doi.org/10.1371/journal.pbio.2006841.g001
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also test the sensitivity of our results to variation in the resolution of the grid used to estimate

range occupancy and extent, and to variation in the completeness of the underlying GBIF

records.

RCAR and RAR were modelled as a function of land-use type and land-use intensity,

human population density, distance to the nearest road, and coarse landscape-scale land-use

history. Land-use type and land-use intensity were classified based on the description of the

habitat where assemblages were sampled, as given in the underlying papers (see S1 Text).

Responses may also be shaped by current land use in the surrounding landscape and by the

detailed local history of land use, but reliable estimates of these factors were not available for

the vast majority of sites included in our analyses. We used mixed-effects models to control for

differences in sampling methods, sampling effort, average estimated range size, and climate

among surveys, and for spatial patterns in the sampled sites within each survey. Average range

sizes and the prevalence of different land uses are both likely to vary with elevation, so we also

fitted elevation in the models as a fixed effect. In separate models, we tested whether responses

differed geographically—as a function of the division between the tropical and temperate

realms or as a function of climatic and topographic differences—and taxonomically, by com-

paring plants, invertebrates, amphibians, reptiles, mammals and birds.

Homogenization is one explanation that can reconcile large rates of global extinction of

species with relatively small net changes in local species richness [25]. In this case, we would

expect responses of species richness and of RCAR and RAR to be more or less decoupled from

one another. To test this, we assessed whether local (per-survey) responses of RCAR and RAR

to land-use type were correlated with responses of species richness to land use in the same

locations (i.e., the same surveys; see Materials and methods for details).

An increase in RCAR or RAR (and thus homogenization) could be caused by the loss of

species with narrow geographic ranges [26,27], which tend also to be ecologically specialized

[28], and/or by the gain of widespread species [26,27], which are often either species intro-

duced from elsewhere [29] or ruderal, pioneer, or generalist native species able to exploit

anthropogenic habitats [30]. To test whether either or both of these processes explain observed

land-use effects on RCAR and RAR, we split the species recorded within each taxonomic Class

and within each survey into 3 equal groups based on their range sizes. We then modelled both

the total abundance and species richness of each of these groups as a function of land-use type

and land-use intensity.

Results

Overall effects of land use and related pressures

Overall, land use had a strong effect on both RCAR and RAR. Assemblages in all human-dom-

inated land uses (plantation forests, croplands, pasture, and urban environments) have higher

average RCAR than those in natural vegetation types (Fig 2) Even within natural vegetation,

RCAR was higher in secondary vegetation (especially secondary vegetation in an early stage of

recovery) than in primary vegetation (Fig 2) The effects of land use on RCAR were strong, sig-

nificant, and very similar—qualitatively and quantitatively—regardless of which measure of

range size was used. The results were also very similar whether average range size was weighted

by abundance (RCAR) or not (RAR) (all likelihood ratio tests: χ2 > 153, P< 0.001; Fig 2),

showing that the patterns were not driven by responses of a few very abundant species. The

consistency in the modelled effects of land use across range-size metrics occurred despite the

underlying site-level RCAR values not always correlating strongly (R2 values between 0.26 and

0.66; S2 Fig). The low correlations are unsurprising given that the metrics were chosen to

reflect very different properties of species’ ranges and are based on completely different

Land-use effects on widespread and narrow-ranged species

PLOS Biology | https://doi.org/10.1371/journal.pbio.2006841 December 4, 2018 4 / 24

https://doi.org/10.1371/journal.pbio.2006841


Fig 2. Modelled effects of human pressures on RCAR. Effects are shown as a percentage difference from the value in minimally used primary vegetation,

and were taken from the best-fitting models among those having no interactions between explanatory variables (results including interactions are shown in

S3 Fig). Human pressures considered were as follows: land-use type and intensity, proximity to roads, and human population density. Error bars show 95%

confidence intervals. Land-use type was classified as: primary vegetation, mature secondary vegetation, intermediate secondary vegetation, young secondary

vegetation, plantation forest, cropland, pasture, and urban. We considered 3 alternative approaches for estimating species’ range size: range occupancy

based on GBIF records (opaque points in A and B), range extent based on GBIF records with outliers removed (translucent points in A and B), and, for

vertebrates only, range extent based on expert-drawn range maps (opaque points in C and D). For comparison, we also show estimates based on range

occupancy from GBIF records for vertebrates (translucent points in C and D). We considered community-average range sizes both weighted (RCAR; A and

C) and unweighted (RAR; B and D) by species’ abundance. For the models of all taxonomic groups (A and B), each land-use class was subdivided into 3

levels of human intensity of use—minimal, light, and intense (see S4 Table)—as indicated by different plotting symbols (light and intense intensity levels

were combined for the secondary-vegetation classes). Effects of proximity to roads, vegetation removal, and human population density are shown here at

the lowest, median, and highest values in the modelled dataset. Proximity to roads as shown here is the reverse of the distance to nearest road measure that

was fitted in the models. Minimally used primary vegetation furthest from a road, and at the lowest level of vegetation removal and human population

density, was used as the baseline. The site-level data underlying the models shown here are freely available (DOI: 10.6084/m9.figshare.7262732). GBIF,

Global Biodiversity Information Facility; H, highest values in the dataset for each continuous effect; HPD, human population density; ISV, intermediate

secondary vegetation; L, lowest values in the dataset for each continuous effect; M, median values in the dataset for each continuous effect; MSV, mature

secondary vegetation; Plantation, plantation forest; PR, proximity to roads; Primary, primary vegetation; RCAR, Relative Community Average Range Size;

YSV, young secondary vegetation.

https://doi.org/10.1371/journal.pbio.2006841.g002

Land-use effects on widespread and narrow-ranged species
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underlying datasets. Within land-use categories, RCAR increased significantly with increasing

human land-use intensity (χ2 > 7.0; P< 0.03), to an extent that differed among land-use types

(interaction between land-use type and intensity: χ2 > 249, P< 0.001; Fig 2). Additionally,

RCAR also independently increased significantly with human population density in 7 of the 8

models (for which χ2 > 6.2; P< 0.012), although the relationships were much weaker (Fig 2)

and differed among land-use types with strong increases only in cropland and pasture (interac-

tions with land-use type: for all models, χ2 > 68; P< 0.001; S3 Fig). The effects of proximity to

roads (in all models, χ2 < 1.4, P> 0.23) and in most cases duration of human use of a land-

scape (in 6 out of 8 models, χ2 < 3.1, P> 0.08) did not affect RCAR on their own. However,

both effects often interacted significantly with land-use type (interaction between land-use

type and proximity to roads: in 6 out of 8 models, χ2 > 26.6, P< 0.022; interaction between

land-use type and duration of landscape use: for all models, χ2 > 15.3, P< 0.033; S3 Fig). Spe-

cifically, a longer history of human domination of landscapes was associated with a strong

increase in RCAR in urban environments but with decreased RCAR in cropland, plantation

forest, pasture, and mature secondary vegetation (S3 Fig); RCAR increased with increasing

proximity to roads in most land-use types, except young and mature secondary vegetation (S3

Fig). The per-survey strength of response of species richness to land-use type was weakly nega-

tively correlated with the response of RCAR to land-use type (F1,426 = 7.09, P = 0.008; R2 =

0.016; S4 Fig).

Geographic and taxonomic variation in responses

There was a significant difference in the responses of RCAR and RAR to land use between

the tropical and temperate realms (χ2 > 196, P< 0.001). RCAR increased much more

strongly in human-dominated land uses in the tropics than in the temperate realm (Fig 3).

This result was qualitatively and quantitatively very similar across all range-size measures

and for both RCAR and RAR. The tropical-temperate difference could be explained by the

fact that increases in RCAR and RAR in human land uses were stronger in locations with

lower climate seasonality: temperature seasonality in the case of RCAR (Fig 3; full statistical

results in S1 Table) and precipitation seasonality in the case of RAR (Fig 3; full statistical

results in S2 Table). Climate seasonality has previously been shown to be important in deter-

mining species’ range sizes [31] and responses to land-use change [7]. RCAR and RAR also

increased more strongly in secondary vegetation in the tropics across all species in the data-

set (Fig 3). However, for vertebrates, responses in secondary vegetation were more strongly

positive in the temperate realm (Fig 3).

There were also significant differences in the responses of RCAR and RAR to land use

among different taxonomic groups (χ2 > 219; P< 0.001). RCAR and RAR increased in

human-dominated land uses most strongly for reptiles, plants, and mammals, and least for

invertebrates (Fig 4). We caution that differences among taxonomic groups may partly reflect

differences in the quality of range-size estimates (see Discussion).

Responses of species with different relative range sizes

Homogenization implies that narrow-ranged species tend to decline in occurrence or abun-

dance, that widespread species tend to increase, or both. Splitting each survey’s species into 3

equal groups based on their range sizes revealed that land use and related pressures cause both

of these changes (Fig 5). Narrow-ranged species have much lower local abundances on average

(often by 30%–50%) under nearly all land-use classes compared with primary vegetation,

while already widespread species increased in abundance by a similar amount. Species with

mid-sized ranges also tended to have lower abundances in nonprimary land-use classes,

Land-use effects on widespread and narrow-ranged species
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Fig 3. Geographical variation in the response of RCAR to land use. We first tested for tropical-temperate differences in observed responses to disturbed

land uses (A–D), and then whether responses to human land use vary with climatic seasonality or topographic heterogeneity (significant results are shown

in E–F). All effects are shown as a percentage difference from values in primary vegetation. Error bars (A–D) and shading around lines (E–F) show 95%

confidence intervals. For the analyses shown here, the land-use classification was coarsened to 3 classes: primary vegetation, secondary vegetation (all stages

of recovery), and human-dominated (plantation forest, cropland, pasture, and urban). Land-use intensity was not considered. For the tropical-temperate

models (A–D), as in the main models, we considered 3 measures of range size, with community-average range size both weighted (RCAR; A, C, and E) and

unweighted (RAR; B, D, and F) by species’ abundance; these different combinations are plotted as in Fig 2. The site-level data underlying the models shown

here are freely available (DOI: 10.6084/m9.figshare.7262732). CV, Coefficient of variation; RAR, Relative Average Range Size; RCAR, Relative Community

Average Range Size.

https://doi.org/10.1371/journal.pbio.2006841.g003

Land-use effects on widespread and narrow-ranged species
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although not by as much as narrow-ranged species (Fig 5). As with the previous results, mod-

elled patterns were qualitatively and quantitatively similar across all range-size metrics, and for

both total abundance and species richness differences (Fig 5).

Sensitivity analyses

In addition to being consistent across the different methods of calculating both RCAR and

RAR, our results were also generally very robust in sensitivity tests, in which we used subsets

of the vertebrate and plant data with range-size estimates restricted to taxa and regions with

successively more complete GBIF data ([22]; see S5 and S6 Figs). The magnitude of land-use

effects on RCAR was reduced—but still significant—in the most stringent subsets of the data

(S5 Fig). However, the step at which this change occurred was associated with the loss of

almost all tropical sites (S7 Fig), which we show above to be the most strongly affected by

human land use. Nevertheless, if the large effects seen in the tropics were caused by poor esti-

mates of range size, they entailed uncertainty only in the degree to which widespread species

had higher abundance in disturbed habitats (S6 Fig); the reduced abundance of narrow-ranged

species was consistent across all data subsets (S6 Fig).

The results were also very similar when we used different spatial resolutions to grid the

GBIF data in order to estimate range sizes (S8 Fig). If anything, the effects of land use were

stronger when we used a finer-resolution grid than that used for the results presented in the

main text (S8 Fig). We tested for spatial autocorrelation in the residuals associated with each of

the underlying surveys (as in [5]), finding significant spatial autocorrelation no more often

than expected by chance (S9 Fig; one-sided equality of proportions test: χ2 < 1.52, P> 0.10).

Furthermore, the residuals of the model showed no pattern with respect to latitude (S10 Fig),

despite geographic gradients in average range size [32].

Fig 4. Differences among taxonomic groups in the response of RCAR to land use. Effects are shown as a percentage difference relative to primary

vegetation. Error bars show 95% confidence intervals. For these analyses, the land-use classification was coarsened to 3 classes: primary vegetation,

secondary vegetation (all stages of recovery), and human-dominated (plantation forest, cropland, pasture, and urban). Land-use intensity was not

considered. Primary vegetation was used as the baseline. As in the main models, we considered community-average range size both weighted (RCAR; A and

C) and unweighted (RAR; B and D) by species’ abundance; these different combinations are plotted as in Fig 2. The site-level data underlying the models

shown here are freely available (DOI: 10.6084/m9.figshare.7262732). RAR, Relative Average Range Size; RCAR, Relative Community Average Range Size.

https://doi.org/10.1371/journal.pbio.2006841.g004

Land-use effects on widespread and narrow-ranged species
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Discussion

In most parts of the world, human populations are growing [33], human-dominated land uses

and secondary vegetation are increasing at the expense of primary vegetation [34], and the

road network is being expanded [35]. Our models show that each of these pressures leads to an

increase in the average range size of species within ecological assemblages, confirming the

global—and in most cases taxonomic—generality of a pattern previously demonstrated by

smaller-scale, single-clade studies [12–15], consistent with a similar global synthesis for

Fig 5. Effects of land-use type and land-use intensity on the total abundance or species richness of species with different range sizes. Effects are shown

as a percentage difference relative to minimally used primary vegetation. Total abundance (A, C) and richness (B, D) are back-transformed to their original

scales. For clarity, error bars here show ±1 standard error. The species sampled within each taxonomic Class within each survey were separated into 3 equal

groups by range size into those with the widest ranges (upward-facing triangles), medium-sized ranges (circles), and narrowest ranges (downward-facing

triangles). As in the main models, we either considered species’ abundance (i.e., modelling total abundance: A and C) or not (i.e., modelling species

richness: B and D); we also considered 3 different metrics of range size for all species or for vertebrates only, with these combinations plotted as in Fig 2. The

site-level data underlying the models shown here are freely available (DOI: 10.6084/m9.figshare.7262738). ISV, intermediate secondary vegetation; MSV,

mature secondary vegetation; Plantation, plantation forest; Primary, primary vegetation; YSV, young secondary vegetation.

https://doi.org/10.1371/journal.pbio.2006841.g005
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freshwater fish assemblages [17]. The results have important implications for the conservation

of species, sustainable land-use practices, and likely also for ecosystem functioning.

The increases in RCAR and RAR in disturbed habitats also suggest a homogenization of

local ecological assemblages worldwide. Previous detailed studies across well-studied regions

have shown that human land use homogenizes biodiversity, increasing the similarity between

neighbouring communities [19]. Our results imply that human land use is causing a similar

homogenization of community composition for many different taxonomic groups globally.

Although the surveys with the most negative responses of local species richness to human

land use tended also to show the strongest increases of RCAR in human land uses (S4 Fig),

the weakness of this relationship (R2 = 0.016) suggests that changes in richness and RCAR are

largely decoupled. This combination of results is consistent with homogenization as a mecha-

nism that reconciles the observed large global losses of biodiversity—as well as the regional

and national declines in many species—with the relatively small average net change in local

diversity [5,25]. Whereas the balance between species loss and species gain may depend on

context, homogenization is occurring in all disturbed habitats.

Our results have important implications for species conservation. In general, species with

narrow ranges are the most likely to be threatened with extinction because the drivers of threat

are more likely to affect the entire range of these species [8]. More specifically, narrow ranges

will tend to reflect more specific climatic requirements and thus greater sensitivity to climate

change. Given this, our results suggest that the same species are likely to be sensitive to both

land use and climate change. The contrasting effects of land use on the abundance of narrow-

and wide-ranged species highlights the importance of primary vegetation for species with

small ranges [36]. Even mature secondary vegetation—whose assemblages may approach

those in primary vegetation in terms of species richness [5,37], total abundance [5], and bio-

mass [37]—has a substantially reduced abundance of narrow-ranged species compared with

primary vegetation (Fig 5). Our study adds new weight to calls for larger investments in the

study and conservation of narrow-ranged species. It also highlights the additional insight avail-

able from using biodiversity metrics that reflect assemblage composition as well as numbers of

taxa or individuals [38,39].

The changes in community-average range size also have implications at the ecosystem level.

Because widespread species tend to be ecological generalists [28], the increases in RCAR and

RAR that we show probably indicate functional homogenization at a global scale. Previous

studies have suggested that narrow-ranged species may be functionally distinct, potentially

making an important contribution to resilient ecosystem function [11]. The increased abun-

dance of widespread species may also drive spatial synchrony among assemblages and popula-

tions within landscapes, increasing the risk of extreme dynamics [40].

Increases in RCAR and RAR were strongest in the tropical realm. There are three possible

—likely interconnected—reasons for this difference. First, native tropical species tend to have

smaller average ranges than temperate species [32], increasing the contrast with wide-ranging

newcomers. Second, tropical species—especially narrow-ranged species—may be more spe-

cialized, on average, than temperate species [41]. Third, temperate regions have experienced a

longer history of large-scale human disturbance than most tropical regions, which has likely

already filtered out the most sensitive species from assemblages and expanded the range of dis-

turbance-tolerant species [42]. The first two explanations may be associated with dispropor-

tionately strong responses in environments with low climatic seasonality or topographic

heterogeneity because climatically stable environments are characterized by species with

smaller average range sizes [31] and more specialized species [43]. Indeed, we showed that

the stronger responses of average community range sizes in tropical areas could be better

explained by the lower climatic seasonality of these environments than by the tropical-
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temperate division alone (Fig 3). The disproportionate increases in RCAR and RAR in the

tropics have important implications for the future conservation of biodiversity, given that

most species—and especially narrow-ranged species—are found in the tropics and that most

future land conversion is predicted to occur here [44].

Responses of community-average range sizes varied strongly among taxonomic groups,

with the largest increases in RCAR and RAR in human-modified land uses for reptiles, plants,

and mammals, and the weakest for invertebrates. The reasons for these taxonomic differences

are not clear, and we caution that they may to some extent reflect variation in the quality of

range-size estimates. Varying quality of range-size estimates is especially likely to explain the

weak responses for invertebrate species, given that invertebrate ranges are likely to be the most

incompletely defined, and narrow-ranged invertebrates have been shown to be less likely to be

captured in incomplete surveys [45]. However, the particularly strong responses of reptiles

highlight the conservation concern of a group that—among vertebrates—has already been

shown to respond most strongly to human land use and whose species are likely to have their

ranges most reduced by future climate change [46]. The broadly consistent responses across

most taxonomic groups, especially for those groups that likely have better-characterized

ranges, provide further evidence that the overall results are not likely to be an artefact of poor

range-size estimates.

Such a broad-scale analysis necessarily entails many uncertainties. The greatest challenge

here was in the estimation of range sizes. For most species, highly accurate range-size estimates

will not be available for the foreseeable future. Therefore, we selected estimates of range size

that were as different as possible in nature (e.g., occupancy versus extent) and in the underly-

ing data and methodology, which resulted—by design—in site-level RCAR and RAR measures

that were not always very strongly correlated (S2 Fig). Nevertheless, the modelled effects of

land use were generally very robust to (a) using different range-size metrics (including expert-

drawn range maps, which suffer less from the biases that characterize GBIF data) (Figs 2–5),

(b) the choice of whether or not to weight by recorded species abundances (Figs 2–5), (c) the

removal of sites where the underlying range-size estimates may be less reliable (S5 and S6

Figs), and (d) the use of different grid resolutions to estimate range sizes (S8 Fig). Improved

knowledge of species’ ranges will in time refine estimates of RCAR and RAR.

As with any correlative analysis, it is impossible to determine the mechanisms behind

observed patterns with confidence. For example, the disproportionate sensitivity of narrow-

ranged species to land use may reflect the fact that these species tend also to be rare in other

ways, such as having low abundance or being habitat specialists [47]. How different forms of

rarity interact to determine sensitivity to land use is an important question for future studies.

Our analyses also ignore how responses to land-use change unfold over time, though these

dynamics will often be important [48]. Spatial comparisons of RCAR and RAR among land

uses do not provide a direct measure of the temporal homogenization of biodiversity.

All studies based on samples of biodiversity in different land uses are potentially biased by

differences in detection probability among species and among locations. We expect numeri-

cally rare species to be undersampled relative to abundant species, especially in the more

closed habitats typical of natural vegetation. If anything, numerically rare species are likely also

to have narrow ranges ([49], but see e.g. [50]), in which case our modelled effects of land use

on RCAR will be conservative. We have expressed changes in RCAR and abundance relative to

values from assemblages in minimally used primary vegetation, but even such ‘pristine’ assem-

blages will have been influenced by humans in many cases [51,52]; any bias caused by unrecog-

nised past human influence will—by introducing widespread species into sites treated as

pristine—have diluted rather than strengthened the effects we see. Another potential issue is

that range sizes show biogeographical patterns that are unrelated to land-use differences, in
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particular tending to increase with latitude [31]. However, sites within most of the surveys in

our dataset span a very small latitudinal range (the sites sampled in more than 92% of surveys

ranged over less than 1˚ of latitude), and the residuals from our main model showed no latitu-

dinal (or longitudinal) pattern (S10 Fig).

Overall, our results provide strong and consistent evidence that land use and related pres-

sures reduce the abundance of narrow-ranged species while increasing the abundance of

widespread species. This will, on average, lead to a homogenization of terrestrial ecological

assemblages worldwide. The disproportionate loss of narrow-ranged species in human land

uses is of concern for biodiversity conservation and ecosystem functioning, given that these

species tend to be at the greatest risk of extinction and may play unique functional roles.

Materials and methods

Assemblage composition data

We extracted data from the Projecting Responses of Ecological Diversity In Changing Terres-

trial Systems (PREDICTS) database [21,53] on 28 April 2015. This database is a collation of

individual studies that compared species presence/absence or abundance among different

types of land use. The data used in this study consisted of a total of 1,127,401 records of abun-

dance (presence/absence records were excluded) that could be matched to a corresponding

estimate of range size (see below). These records were taken from 368 sources—published or

in-press papers, or unpublished datasets with published methods (a full reference list is given

in S1 Text)—that contained data from 445 surveys, collectively sampling 13,292 sites (S1 Fig),

spread across all but one of the world’s terrestrial biomes (flooded grasslands/savannas were

not sampled), approximately in proportion to total productivity (S1 Fig). The dataset con-

tained records for 19,334 species in total, with no strong taxonomic bias, and records for over

1% of described species in many major taxonomic groups (S1 Fig). Abundance records were

corrected for any variation in sampling effort within studies (which affected 16% of studies) by

assuming that recorded abundance increases linearly with effort [54]. More sophisticated

methods for correcting the abundance estimates could not be used because most of the under-

lying studies did not make repeat visits to each site. However, for uncertainty in the abundance

estimates to bias our results would require that recorded abundances were biased with respect

to both range size and land use. This type of bias seems unlikely, and so we expect any uncer-

tainty in the recorded abundances simply to add noise to the modelled relationships. We

obtained geographic coordinates for all sites from the source publications or their authors.

Estimating range size

Estimates of the global range size of species always contain considerable uncertainty. In this

study, we estimated range size using 3 different metrics and repeated the analyses with each

metric. The measures used were as follows: (1) the area occupied by species based on records

in the GBIF database—‘GBIF occupancy’ (the measure focused on in the main text); (2) an

estimate of the extent of species’ ranges based on GBIF records—‘GBIF extent’; and (3) an esti-

mate of range extent based on expert-drawn extent-of-occurrence maps (available only for ver-

tebrate species)—‘Expert extent’. Metric 1 captures a different aspect of range size (occupancy)

than that captured by metrics 2 and 3 (extent). All GBIF records for plants, arthropods, verte-

brates, molluscs, and annelids were downloaded (http://www.gbif.org) on 25 June 2015. These

raw extracts were then filtered to contain only species also found in the PREDICTS database.

GBIF occupancy was estimated by summing the total area of the grid cells containing a

record in the GBIF database. This approach will underestimate ranges when recording is

incomplete but avoids overestimating ranges of species with poor range filling and is much
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less affected by incorrectly located records than extent-based measures. Estimates obtained in

this way will vary depending upon the spatial resolution of the grid used. Using a finer resolu-

tion should better represent the range sizes of narrow-ranged species but also increases the

influence of biases and incompleteness in GBIF records. To ensure the robustness of our

results to the choice of grid, we generated estimates using equal-area grids with 3 different grid

sizes: 110 km × 110 km, 55 km × 55 km, and 11 km × 11 km. We focus in the main text on the

results using the 110-km grid because, at finer resolution, the patchiness of the GBIF data is

likely to create greater discrepancies across species.

To estimate GBIF extent, we first defined a rectangle bounded by the pair of longitudes that

encompassed the central 95% of GBIF records in a longitudinal direction as well as the pair of

latitudes that encompassed the central 95% of GBIF records in a latitudinal direction. This

exclusion of outlying records mitigates to some extent the effect of the incorrectly located rec-

ords present within GBIF. The rectangle was defined as a grid of cells of flexible resolution. We

clipped the gridded rectangle using a gridded land-sea mask to represent only terrestrial areas.

The land-sea mask grid was derived from the World Borders dataset (www.thematicmapping.

org) using the rasterize function in the raster package Version 2.3–12 [55] in R Version 3.1.2

[56]. The total range extent was then calculated as the sum of the area of all of the land cells

within the rectangle. Grid cell area was calculated as above. To test the robustness of the range-

extent estimates to the use of different grids, we used 3 spatial resolutions (as above): 110 km,

55 km, and 11 km. We used this simple measure of range extent rather than more sophisticated

extent measures based on, for example, minimum convex polygons because the latter measures

would be sensitive to gaps and biases in the GBIF records to a much higher degree than both

simple latitudinal and longitudinal extent and the main occupancy-based measure based on

GBIF data. In a well-recorded arthropod group (the sphingid moths), range estimates based

on simple latitudinal and longitudinal extent have been shown to correlate strongly (R2 = 0.94)

with those based on minimum convex polygons [57].

Records in the GBIF database are biased geographically [22], biasing relative estimates of

range size, and possibly also comparisons of average assemblage range sizes among land uses.

For comparison with our GBIF occupancy and extent estimates, we also used expert-derived

estimates of extent, based on expert-drawn extent-of-occurrence maps for amphibians [58],

mammals [58], and birds [59]. Three steps were used to process the extent-of-occurrence

maps, using the arcpy Python module associated with ArcMap Version 10.3 [60] (steps 1 and

2) and using R Version 3.1.2 [56] (step 3). First, the polygon maps were projected onto a Behr-

mann equal-area projection using the ‘Project_management’ function. Second, the area of

each polygon within a species’ range map was calculated using the ‘CalculateAreas_stats’ func-

tion. Finally, for each species, the areas for every polygon were summed.

The average range size of species within assemblages was measured in two ways: first, as the

community-weighted mean (log10-transformed) range size (the average log10-transformed

range size of species in an assemblage, weighted by the species’ raw untransformed abundance

within the assemblage), which we refer to as RCAR; and second, as the simple average of log10-

transformed range size of species in an assemblage, unweighted by abundance, which we refer

to as RAR. The second measure was used to test whether the observed patterns in the abun-

dance-weighted metric were driven by a few very abundant species.

Sensitivity analyses

In addition to using different measures of range size, we also tested the sensitivity of our main

measure (GBIF-based occupancy, on a 110-km grid) to variation in estimated completeness of

the underlying GBIF data. To estimate the completeness of range-size estimates for particular

Land-use effects on widespread and narrow-ranged species

PLOS Biology | https://doi.org/10.1371/journal.pbio.2006841 December 4, 2018 13 / 24

http://www.thematicmapping.org
http://www.thematicmapping.org
https://doi.org/10.1371/journal.pbio.2006841


taxonomic groups across particular geographic regions, we took grid-based (110 km × 110 km

grid) estimates of inventory completeness for trachaeophytes [61], amphibians, mammals, and

birds [22]. These inventory completeness estimates indicate the percentage of those species

estimated to be present within a grid cell—as inferred from overlaid extent-of-occurrence

maps (vertebrates) or a co-kriged environment-richness model (trachaeophytes)—that are

represented by GBIF records. The grid-based estimates for each taxonomic group were spa-

tially averaged across broad biogeographical regions (combinations of biogeographic realm

and biome). Note that, even with perfect sampling, the completeness estimates based on

overlaid range maps are not always expected to reach 100% because, even at the coarse grid

resolution used, a species’ area of occupancy will regularly be overestimated by its extent of

occurrence [62]. Nevertheless, we anticipate that they will provide a reasonable, broad-scale

approximation of the relative completeness of GBIF data.

For each study in our dataset that focused on one of the 4 taxonomic groups with estimates

of inventory completeness, we matched each site to the mean inventory completeness of all

grid cells within the combination of biogeographical biome and realm where that site’s loca-

tion is situated. We then constructed models, first based on sites with any nonzero estimate of

inventory completeness, and then with successively reduced sets of sites with inventory com-

pleteness exceeding 5%, 10%, 15%, 20%, and 25% (this last value was exceeded by only 18% of

the sites in our dataset).

For the sensitivity analyses, the reduced dataset for trachaeophytes and vertebrates, and then

the successive reductions in the size of the dataset for increasingly stringent estimates of com-

pleteness, meant that we had to employ a coarser land-use classification than used for the main

results: secondary vegetation in all stages of recovery was combined into a single class, and all

human land-use types (plantation forest, cropland, pasture, and urban) were aggregated.

Human pressure data

We used 5 pressure variables related to human land use and hypothesized as potentially influ-

encing the average range size of species within ecological assemblages: land-use type, land-use

intensity, land-use history, human population density, and distance to the nearest road. Land-

use type was classified into one of 8 categories: primary vegetation, mature secondary vegeta-

tion, intermediate secondary vegetation, young secondary vegetation, plantation forest, crop-

land, pasture, and urban (see S3 Table and ref. [21] for full definitions). Within each of these

classes, each site was assigned a 3-level ordinal measure of intensity, depending on the extent

and magnitude of human use of the site (S4 Table and ref. [21]). Criteria for classifying land-

use intensity varied according to land-use type. For example, increased intensity in natural

(primary and secondary) vegetation could reflect logging or bushmeat hunting, whereas

increased intensity in agricultural sites reflected, for example, reduced crop diversity, increased

chemical inputs, and increased livestock density (see S4 Table for full criteria).

Land-use history was measured as the number of years since 30% of the land surface within

the 5-arc-minute grid cell containing the site became converted to human land uses (cropland,

pasture, or urban). We used this threshold because the effects of loss of natural habitat on bio-

diversity appear to accelerate above 30% [63]. We inferred historic land use from the HYDE

model, Version 3.1, at 5-arc-minute spatial resolution [64]. Therefore, the available estimates

of land-use history were at much coarser spatial resolution than the local-scale classification of

land-use type, which was based on habitat information in the papers that sampled biodiversity.

Human population density, at 30-arc-second resolution, was derived from the Global Rural-

Urban Mapping Project Version 1 dataset [65]. Distance to the nearest road was calculated

from the Global Roads Open Access Data Set Version 1 [66], using the arcpy Python module
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for ArcMap Version 10.3 [60]: the roads maps was first projected onto an equal-area (Behr-

mann) projection using the ‘Project_management’ function; then, distance to nearest road (in

metres) for each site was calculated using the ‘Near_analysis’ function.

Statistical analysis

We conducted all statistical analyses in R Version 3.3.2 [67]. Each measure of mean range size

(RCAR and RAR) was modelled as a function of the pressure variables using linear mixed-effects

models in the lme4 package Version 1.1–14 [68]. We included random intercepts for study iden-

tity (to account for among-study differences in sampling methods, sampling effort, measure of

abundance used, climatic conditions, and average range-size estimates) and spatial block within

study (to account for the spatial structure of sites). It was not feasible to include random slopes

in this analysis because of model-convergence issues. Fixed effects considered were each of the 5

pressure variables described above, the two-way interaction between land-use type and land-use

intensity, all two-way interactions among the 3 continuous pressure variables (land-use history,

human population density, and distance to nearest road), and all two-way interactions between

land-use type and each of the continuous pressure variables. Range sizes might show elevational

patterns, and it is likely that land use is nonrandom with respect to elevation in some of the sur-

veys. To account for any biases caused by elevational effects, we fitted elevation as an additional

fixed effect in the models. The variables describing human population density, distance to near-

est road, land-use history, and elevation were loge-transformed prior to analysis. The best fixed-

effects structure for explaining variation in community-weighted mean range size was obtained

by backward stepwise model selection based on likelihood-ratio tests.

To assess whether spatial autocorrelation might bias modelled estimates, we used Moran’s I

tests for spatial autocorrelation—implemented in the ‘spdep’ package Version 0.7–4 [69]—on

the model residuals associated with each study from which data were obtained. By chance, we

expect significant (P< 0.05) spatial autocorrelation in the residuals for 5% of studies. To test

whether the observed percentage of studies with significant spatial autocorrelation was signifi-

cantly greater than 5%, we used a one-sided test for equality of proportions, using the ‘prop.

test’ function in R. Average range sizes vary geographically for reasons unrelated to land use.

This biogeographical variation should be accounted for by the random intercept of study iden-

tity in our models, coupled with the fact that most individual studies span only a small geo-

graphic area. To check that this was the case, we conducted a spatial analysis of all of the

residuals from the main model of RCAR. We tested for an effect of both longitude and latitude

(both fitted as cubic polynomials) and their interaction.

To test whether the responses of RCAR and RAR to land use varied geographically or taxo-

nomically, we conducted separate analyses dividing sites between the tropical and temperate

realms and dividing species into major taxonomic groups. Tropical sites were defined as those

falling between the tropics of Cancer and Capricorn (23.5˚N and 23.5˚S, respectively), with all

other sites considered ‘temperate’ (21 sites fell north of the Arctic Circle at 66.5˚N). Taxo-

nomic groups were defined as follows: ‘plants’ for all species in the Kingdom Plantae, ‘inverte-

brates’ for all annelids, arthropods, and molluscs; and separate divisions for each of the

vertebrate Classes, which have more complete range-size estimates (‘amphibians’, ‘birds’,

‘mammals’, and ‘reptiles’).

Any tropical-temperate differences in responses of RCAR and RAR to land use may reflect

differences in average climatic variability and topographic heterogeneity between tropical and

temperate sites. A previous study using the PREDICTS data showed that turnover in species

composition between natural and human land uses is stronger in areas with lower climatic

seasonality [7], and other studies have shown that climatic seasonality and topographic
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heterogeneity are important in determining the range sizes of species [31]. Therefore, we tested

whether the strength of the responses of RCAR and RAR to human land use are determined

by climatic seasonality and topographic heterogeneity. To do so, we first estimated response

strength by fitting mixed-effects models of RCAR and RAR as a function of land-use type,

where land-use type was divided simply into natural (primary and secondary vegetation) or

human-dominated (plantations, cropland, pasture, and urban sites). As in the main models

(see above), we fitted study identity as a random intercept, but in this case also with a random

slope of land-use type nested within study identity. These random slopes for human land use

were used as the estimate of response strength and were modelled (using simple multiple

regression) as a function of the same variables considered in [7]: temperature and precipitation

seasonality, derived from WorldClim Version 1.4 [70]; and topographic heterogeneity as the

topographic ruggedness index [71], using elevation data from WorldClim Version 1.4 [70].

Both linear and quadratic terms were considered for each of these continuous variables. The

simple classification of sites as tropical or temperate was also considered in this analysis but

was found to be nonsignificant alongside the more refined variables for both RCAR and RAR

(see Results).

To test whether any changes in the average range size of ecological communities (RCAR

and RAR) were driven by increases in the abundance of wide-ranging species or by decreases

in the abundance of narrow-ranged species (or both), we divided the sampled species within

each underlying study—and within taxonomic Classes where studies sampled more than one

Class—into 3 equally sized groups based on their range sizes. We then constructed separate

generalized linear mixed-effects models of the total (loge-transformed) sampled abundance

(with a Gaussian error distribution) or species richness (with a Poisson error distribution) of

each of these 3 groups as a function of land-use type and land-use intensity. As with the models

of RCAR, random intercepts of study identity and spatial block within study were included.

We used within-study and within-Class divisions of range size to control, to some extent, for

geographic and taxonomic variation in the quality of range-size estimates, and also because

the distribution of actual range sizes will vary geographically and taxonomically, and we were

interested in whether relatively more widespread species in a given locality respond more posi-

tively than more narrow-ranged related species. Only 10% of species in the analysis appear in

different range-size categories across studies, and the results were very robust to the exclusion

of these species (results not shown).

Spatial homogenization of biodiversity, which will manifest in our models as an increase in

the average range size of species within ecological communities, is one possible explanation

that reconciles the large observed declines in global biodiversity despite relatively small (or

even no) changes in local species richness [5,25]. If this were the case, we would expect species

richness changes and changes in average range size not to be strongly coupled. To test this, we

fitted a model with only land-use type as a fixed effect, using a coarser classification of land-

use type into natural (primary and secondary vegetation) or human (plantation forests, crop-

lands, pastures, and urban habitats). We fitted in this model a random slope of land-use type

nested within study identity to obtain an estimate of how strongly average range size responds

to human land use. We also fitted a separate model with the same structure but with species

richness as a response variable. We then correlated, across studies, the strength of the response

of RCAR in human land uses with the strength of the response of species richness.

Supporting information

S1 Fig. Locations of surveys, and taxonomic and geographic representativeness of the data.

The location of each survey whose data were included in the analysis (A), shown in the
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Lambert cylindrical equal area projection. Point diameters are proportional to the (loge) num-

ber of sites sampled by each survey and are translucent so areas of opaque color indicate over-

lapping points. The outline map is based on the World Bank map of river basins (https://bit.ly/

2J86Kbq), which is published under a CC-BY 4.0 license. The total number of species in the

analysed dataset in major taxonomic groups (B), in relation to estimated numbers of described

species in the same groups (422). The distribution of sites among terrestrial biomes in relation

to the distribution of total terrestrial Net Primary Production (C). The grey line in panel C

shows the 1:1 relationship. Letters in this plot indicate the biomes as follows: A, tundra; B,

boreal forests and taiga; C, temperate conifer forests; D, temperate broadleaf and mixed forests;

E, montane grasslands and shrublands; F, temperate grasslands, savannahs, and shrublands; G,

Mediterranean forests, woodlands, and scrub; H, deserts and xeric shrublands; J, tropical and

subtropical grasslands, savannahs, and shrublands; K, tropical and subtropical coniferous for-

ests; M, tropical and subtropical dry broadleaf forests; N, tropical and subtropical moist broad-

leaf forests; P, mangroves. The site-level data underlying this figure are freely available (DOI:

10.6084/m9.figshare.7262732).

(TIF)

S2 Fig. Correspondence between estimates of RCAR based on different estimates of spe-

cies’ range size. Estimates of range occupancy derived from records in the GBIF database

were gridded at spatial resolutions of 110 km × 110 km, 55 km × 55 km, and 11 km × 11 km

(A–C). A measure of range extent (a conceptually different measure of range size compared

with the occupancy measure featured in the main text) was also calculated using GBIF records

gridded at the same spatial resolutions (D–F). Finally, we extracted range-size estimates from

expert-drawn extent-of-occurrence maps for birds, mammals, and amphibians (G–I), the

groups whose ranges are best known. The red lines show 1:1 relationships.

(TIF)

S3 Fig. Effects of proximity to roads, human population density, and length of landscape

use by humans on RCAR. Separate effects are shown for each land use because interaction

terms were significant (all P< 0.05). For clarity, shading shows ±0.5 × standard error rather

than the 95% confidence interval. Distance to the nearest road is shown here as the raw values

rather than the inverse ‘proximity to road’ shown in Fig 1 The site-level data underlying the

models shown here are freely available (DOI: 10.6084/m9.figshare.7262732).

(TIF)

S4 Fig. Comparison of the effects of human land use on RCAR and on species richness, for

individual underlying studies. Separate models were fitted for species richness and RCAR as

a function of land use. For these models, land use was classified coarsely as either natural (pri-

mary or secondary vegetation) or human (plantation forests, croplands, pastures, and urban

environments). A random slope of land use nested within study identity was fitted for each

model. The random slope coefficients for human land use were extracted as an estimate of the

relative strength of effect of human land use on species richness and RCAR within each indi-

vidual study. The relationship between the estimates for species richness and RCAR are shown

here (black points). A linear model was fitted to test the correspondence, showing a significant

but weak negative relationship (R2 = 0.014; P = 0.008; solid red line = mean fitted relationship;

dashed red lines = 95% confidence intervals). The site-level data underlying the models shown

here are freely available (DOI: 10.6084/m9.figshare.7262732).

(TIF)

S5 Fig. Sensitivity of the estimated effect of land use on RCAR to variation in quality of

underlying range-size estimates. Because sample size was much reduced in the most stringent
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subsets of the data, land use in these models was classified more coarsely than in the main

models into primary vegetation, secondary vegetation, and human land uses (combining plan-

tation forests, croplands, pastures, and urban environments). Open triangles show the results

based on the complete dataset. Solid triangles of increasing size show results from increasingly

stringent subsets of the data, with increasing data quality. Data quality reflected variation in

the quality of species’ range-size estimates, and was measured as the estimated inventory com-

pleteness of GBIF records for each of 4 taxonomic groups (trachaeophytes, amphibians, mam-

mals, and birds) across different biogeographic regions (combinations of biogeographic realm

and biome). Note that inventory completeness is not expected to reach 100% (see Materials

and methods, above). Inventory completeness exceeded 25% for only 18% of sites in our data-

set. Error bars show 95% confidence intervals. The site-level data underlying the models

shown here are freely available (DOI: 10.6084/m9.figshare.7262732).

(TIF)

S6 Fig. Sensitivity of the estimated effect of land use on the abundance of widely and nar-

rowly distributed species to variation in quality of underlying range-size estimates. Because

sample size was much reduced in the most stringent subsets of the data, land use in these mod-

els was classified more coarsely than in the main models, into primary vegetation, secondary

vegetation, and human land uses (combining plantation forests, croplands, pastures, and

urban environments). Open triangles show the results based on the complete dataset. Solid

triangles of increasing size show results from increasingly stringent subsets of the data, with

increasing data quality. Data quality reflected variation in the quality of species’ range-size esti-

mates, and was measured as the estimated inventory completeness of GBIF records for each of

4 taxonomic groups (trachaeophytes, amphibians, mammals, and birds) across different bio-

geographic regions (combinations of biogeographic realm and biome). Note that inventory

completeness is not expected to reach 100% (see Materials and methods, above). Inventory

completeness exceeded 25% for only 18% of sites in our dataset. Error bars show 95% confi-

dence intervals. The site-level data underlying the models shown here are freely available

(DOI: 10.6084/m9.figshare.7262738).

(TIF)

S7 Fig. Locations of sites for subsets of the data of increasing stringency in terms of the

quality of underlying range-size estimates. Data quality reflected variation in the quality of

species’ range-size estimates and was measured as the estimated inventory completeness of

GBIF records for each of 4 taxonomic groups (trachaeophytes, amphibians, mammals, and

birds) across different biogeographic regions (combinations of biogeographic realm and

biome). Note that inventory completeness is not expected to reach 100% (see Materials and

methods, above). Inventory completeness exceeded 25% for only 18% of sites in our dataset.

The outline maps are based on the World Bank map of river basins (https://bit.ly/2J86Kbq),

which is published under a CC-BY 4.0 license. The site-level data underlying the models

shown here are freely available (DOI: 10.6084/m9.figshare.7262732).

(TIF)

S8 Fig. Effects of land use on RCAR, estimated based on GBIF-based measures of range

size gridded at different resolutions. Effects of land use and land-use intensity using RCAR

based on range occupancy using GBIF records, gridded at a spatial resolution of 110 km × 110

km (A), 55 km × 55 km (B), and 11 km × 11 km (C). Based on range extent using GBIF records

at 110 km × 110 km (D), 55 km × 55 km (E), and 11 km × 11 km (F) resolution. Error bars

show 95% confidence intervals. Land use was classified into primary vegetation, mature sec-

ondary vegetation, intermediate secondary vegetation, young secondary vegetation, plantation
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forest, cropland, pasture, and urban. Each land-use class was subdivided into 3 levels of

human intensity of use—minimal, light, and intense. The plots show the interaction between

land use and land-use intensity, with increasing intensity shown toward the right-hand side

for each land use. The site-level data underlying the models shown here are freely available

(DOI: 10.6084/m9.figshare.7262732). ISV, intermediate secondary vegetation; MSV, mature

secondary vegetation; Plantation, plantation forest; Primary, primary vegetation; YSV, young

secondary vegetation.

(TIF)

S9 Fig. Spatial autocorrelation in the model residuals. A Moran’s I test was applied to the

residuals from the final models, dividing the residuals into the individual underlying surveys.

The distribution of P values across the tests for each of the surveys is shown here, for measures

of RCAR and RAR based on different underlying estimates of range size—range occupancy

based on GBIF records (A and B), range extent based on GBIF records (C and D), range occu-

pancy based on GBIF records for vertebrates (E and F), and range extent based on expert-

drawn range maps for vertebrates (G and H); and for measures of average range size both

weighted (i.e., RCAR; A, C, E, and G) and unweighted (i.e., RAR; B, D, F, and H) by species’

recorded abundances. The red line shows P = 0.05. The site-level data underlying the models

shown here are freely available (DOI: 10.6084/m9.figshare.7262732).

(TIF)

S10 Fig. Spatial patterns in the residuals of the final model of RCAR as a function of

human pressures. A map of each site included in the final model, where point colours repre-

sent the value of the model residuals for each site (blue = low; red = high), showing no discern-

ible spatial pattern (A). The outline map is based on the World Bank map of river basins

(https://bit.ly/2J86Kbq), which is published under a CC-BY 4.0 license. Model residuals for

each site as a function of latitude (B). There was no significant relationship between the value

of the model residual for a site and either longitude, latitude, or their interaction. The site-

level data underlying the models shown here are freely available (DOI: 10.6084/m9.figshare.

7262732).

(TIF)

S1 Table. Statistics explaining geographical variation in the strength of the response of

RCAR to human land use. Linear models were used to explain the strength of the response of

RCAR as a function of variables hypothesized to drive observed tropical-temperate differences.

Variables considered were geographic zone (tropical versus temperate) itself, and 3 more

refined measures of climatic or topographic variability: temperature seasonality, precipitation

seasonality, and the topographic ruggedness index. Both linear and quadratic terms were con-

sidered for all of the continuous variables (i.e., all variables except geographic zone). Quadratic

terms are denoted in this table by a superscript 2. The final model was obtained by backward

stepwise model selection, with the significance of terms assessed using analysis of variance. PS,

precipitation seasonality; TRI, topographic ruggedness index; TS, temperature seasonality.

(DOCX)

S2 Table. Statistics explaining geographical variation in the strength of the response of

RAR to human land use. Linear models were used to explain the strength of the response of

RAR as a function of variables hypothesized to drive observed tropical-temperate differences.

Variables considered were geographic zone (tropical versus temperate) itself, and 3 more

refined measures of climatic or topographic variability: temperature seasonality, precipitation

seasonality, and the topographic ruggedness index. Both linear and quadratic terms were con-

sidered for all of the continuous variables (i.e., all variables except geographic zone). Quadratic
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terms are denoted in this table by a superscript 2. The final model was obtained by backward

stepwise model selection, with the significance of terms assessed using analysis of variance. PS,

precipitation seasonality; TRI, topographic ruggedness index; TS, temperature seasonality.

(DOCX)

S3 Table. Definitions of the major land-use classes. Each site was classified into one of these

classes based on the description of the habitat where the biodiversity sample was taken, as

given in the underlying papers from which the biodiversity data were obtained (see S1 Text).

(DOCX)

S4 Table. Criteria used to classify land use and land-use intensity. The classification was

made based on the description of the habitat given in the underlying papers from which the

data were obtained (see S1 Text).

(DOCX)

S1 Text. List of all references for underlying community data. These references are a subset

of those in the PREDICTS database [21].

(DOCX)
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