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Sensory processing is disrupted in several psychiatric disorders, including schizophrenia,

bipolar disorder, and autism spectrum disorder. In this review, we focus on the

electrophysiological auditory steady-state response (ASSR) driven by high-frequency

stimulus trains as an index for disease-associated sensory processing deficits. The

ASSR amplitude is suppressed within the gamma band (≥30Hz) among these patients,

suggesting an imbalance between GABAergic and N-methyl-D-aspartate (NMDA)

receptor-mediated neurotransmission. The reduced power and synchronization of the

40-Hz ASSR are robust in patients with schizophrenia. In recent years, similar ASSR

deficits at gamma frequencies have also been reported in patients with bipolar disorder

and autism spectrum disorder. We summarize ASSR abnormalities in each of these

psychiatric disorders and suggest that the observed commonalities reflect shared

pathophysiological mechanisms. We reviewed studies on phase resetting in which a

salient sensory stimulus affects ASSR. Phase resetting induces the reduction of both the

amplitude and phase of ASSR. Moreover, phase resetting is also affected by rare auditory

stimulus patterns or superimposed stimuli of other modalities. Thus, sensory memory

and multisensory integration can be investigated using phase resetting of ASSR. Here,

we propose that ASSR amplitude, phase, and resetting responses are sensitive indices

for investigating sensory processing dysfunction in psychiatric disorders.

Keywords: ASSR, gamma-band oscillation, phase resetting, electroencephalography, magnetoencephalography,

schizophrenia, bipolar disorder, autism spectral disorder

INTRODUCTION

Recent studies have identified multiple shared genetic associations and other commonalities
among psychiatric disorders. For example, genome-wide association studies suggest shared
molecular pathomechanisms between schizophrenia and bipolar disorder (1, 2), whereas
large-scale imaging analyses have revealed similar white matter abnormalities (3) in patients with
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schizophrenia and bipolar disorders. Recent genetic (2, 4)
and neuroimaging studies (5, 6) have also demonstrated
shared molecular and neurostructural abnormalities between
schizophrenia and autism spectrum disorder. Currently,
psychiatric disorders continue to be classified based on observed
symptoms rather than underlying pathogenic mechanisms.
Classifications such as the International Classification of Diseases
(ICD) (7) and the Diagnostic and Statistical Manual of Mental
Disorders (DSM) (8) have contributed to the standardization
of diagnoses and treatment in clinical practice; however,
they provide little information regarding neurobiological
mechanisms and treatment targets. Indeed, overemphasis on
differential diagnosis according to symptom clusters and clinical
history has revealed little about the pathological mechanisms
underlying these psychiatric disorders. Therefore, it is important
to investigate common biological abnormalities across multiple
psychiatric disorders. To address this issue, the National Institute
of Mental Health is currently attempting to construct a biological
framework for understanding the etiology and symptomology of
psychiatric disorders (9).

A common symptom of multiple psychiatric disorders is
sensory processing dysfunction (10, 11). Neurophysiological
approaches such as magnetoencephalography (MEG) and
electroencephalography (EEG) can reveal the electrical activity
of neuronal ensembles at high temporal resolution, thereby
providing quantitative indices of illness that also reflect disease-
associated abnormalities at the cellular level. In this review,
we focus on the auditory steady-state response (ASSR), an
electrophysiological response driven by a train of stimuli
delivered at a sufficiently high rate. ASSR recorded using
MEG or EEG has been reported to reach maximum amplitude
at approximately 40Hz (12, 13). Previous MEG (14) and
positron-emission tomography (15) studies have reported that
ASSR originates in the primary auditory cortex and associated
subcortical areas (16). The ASSR has been interpreted as
a reflection of oscillatory gamma-band activity representing
auditory objects (17–19). Moreover, neural oscillations in the
gamma frequency band are believed critical for information
processing across cortical networks (20, 21). For example,
gamma-band activity increases in the visual (22, 23), auditory
(24, 25), and somatosensory cortices (26) in response to
modality-specific sensory stimuli. Gamma-band activity is also
related to working memory and increases in the hippocampus
and prefrontal cortex during memory processing (27–29).
Therefore, gamma-band activity is involved in a wide range
of brain activities, from low-level sensory processing to higher
cognitive functions. Further, ASSR amplitude and phase are
believed to reflect the balance between inhibitory GABAergic
activity and excitatory glutamatergic activity mediated by the
N-methyl-D-aspartate (NMDA) receptor (30–32). Thus, ASSR
abnormalities as measured by MEG and EEG can reveal aspects
of aberrant neurotransmission and neuronal excitation within
specific brain circuits.

In 1999, Kwon et al. first demonstrated that patients with
schizophrenia showed reduced power and synchronization of
the 40-Hz ASSR (33), and subsequent studies by other groups
replicated this finding (34–37). A meta-analysis also concluded

that 40-Hz ASSR deficits are robust in schizophrenia (38). These
ASSR deficits are consistent with anatomic abnormalities of
the auditory cortex observed by magnetic resonance imaging
(39, 40). Such ASSR deficits at gamma frequencies have
also been discovered in bipolar disorder (41–43) and autism
spectrum disorder (44). In this review, we first summarize
ASSR abnormalities in each of these psychiatric disorders
and discuss the potential commonalities in pathophysiology
suggested by these observations. Second, we review studies
suggesting that modulation of ASSR amplitude and phase
by rare auditory patterns or addition of multimodal stimuli,
termed phase resetting, also yield useful index for psychiatric
disorders. We propose that ASSR is a sensitive index for
investigating sensory memory and multisensory integration
deficits in psychiatric disorders.

ASSR Deficits in Psychiatric Disorders
Schizophrenia
Most studies documenting ASSR deficits in schizophrenia have
been conducted in the chronic disease phase, suggesting a
relationship with symptom expression. Intriguingly, however,
reduced evoked power and phase locking of the 40-Hz ASSR
have also been documented in first-episode patients (35), high-
risk individuals before the onset of psychosis (37), and in first-
degree relatives (45, 46). In contrast, individuals with schizotypal
personality disorder did not exhibit ASSR deficits (46, 47). These
findings suggest that these ASSR deficits reflect pathological
development independent of disease course or the side effects of
long-term antipsychotic medication.

These ASSR deficits are most consistently observed at 40Hz,
whereas responses are usually intact at 20 and 30Hz [although
reduced ASSR at 30Hz (35) and enhanced ASSR at 20Hz (48)
have been reported]. Recent studies have also reported impaired
evoked ASSR power and phase locking at 80Hz in schizophrenia
(36, 49), and these abnormalities were associated with the severity
of hallucinations (36) and negative symptoms, such as flat affect,
anhedonia, and poverty of speech (49). Tada et al. reported
that deficits in the 40-Hz ASSR during a 300–500ms train were
associated with more severe clinical symptoms and cognitive
deficits (37). Moreover, patients with schizophrenia taking new
generation antipsychotics exhibited significantly increased 40-Hz
ASSR synchronization (45). Collectively, these findings indicate
that ASSR may also be a useful quantitative index for current
clinical symptoms and treatment response.

Bipolar Disorder
Patients with bipolar disorder show a pattern of ASSR deficits
similar to that of patients with schizophrenia. To our knowledge,
O’Donnell et al. first reported reduced evoked ASSR power at
20, 30, 40, and 50Hz as well as reduced phase synchronization
at 20, 40, and 50Hz among patients with unmedicated bipolar
disorder during manic or mixed episodes using EEG (41). Such
ASSR deficits have also been documented in depressive (42),
euthymic (43), and manic (41) states in the first episode (35) and
the chronic state (41–43) and in both medicated (42, 43) and
unmedicated patients (41).
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In contrast to a comparative group of patients with bipolar
disorder, no ASSR deficits were observed in a parallel group
with major depressive disorder (50). In fact, to our knowledge,
only one study has reported ASSR deficits in major depressive
disorder (51), and reduced ASSR power was found at 30Hz but
not at 40Hz as observed in patients with bipolar disorder and
schizophrenia (51). These findings suggest that major depressive
disorder and bipolar disorder have distinct neurophysiological
bases and further that 40-Hz ASSR can be used to distinguish
bipolar disorder from major depressive disorder (50).

Autism Spectrum Disorder
Wilson et al. first reported reduced 40-Hz ASSR power in 7–17-
year-old children and adolescents with autism using MEG (52),
with a greater reduction in the left hemisphere. Thereafter, Rojas
et al. found reduced evoked power and phase locking of left and
right 40-Hz ASSRs among both adults with autism and parents of
children with autism (53), suggesting that ASSR is a useful index
for diagnosis and risk evaluation. However, utility may be limited
to adults as ASSR amplitude increases from childhood through
adolescence and plateaus in early adulthood (54). Further, no
significant deficits in 20- and 40-Hz ASSRs were found among
5–7-year-old children with autism spectrum disorder (55).

Shared Pathophysiology Among Psychiatric

Disorders
Patients with schizophrenia, bipolar disorder, and autism
spectrum disorder demonstrate similar patterns of ASSR
deficits, suggesting shared neural circuit dysfunction. One
emerging hypothesis is that ASSR deficits reflect dysfunction
of the GABAergic and/or NMDAergic systems. Blockers of
NMDA receptors, such as phencyclidine and ketamine, evoke
psychotic symptoms in healthy individuals, exacerbate positive
symptoms in patients with schizophrenia, and induce various
schizotypic electrophysiological and behavioral abnormalities in
experimental animal models (56). For instance, Sohal et al.
demonstrated that optogenetic downregulation of parvalbumin-
positive GABAergic interneuron activity in mice reduced
gamma-band oscillations (57), whereas Sivarao et al. reported
that the 40-Hz ASSR in awake rats depended on the degree
of NMDA receptor channel blockade (30). Collectively, these
findings are consistent with evidence implicating GABA (58)
and/or NMDA (59) transmission impairment in schizophrenia.

Post-mortem brain studies of patients with schizophrenia and
bipolar disorder have also reported reduced interneuron density
in the cerebral cortex and hippocampus (60). Similar to the
GABAergic dysfunction in bipolar disorder is the therapeutic
efficacy of the mood stabilizer valproate, which has been shown
to increase GABA turnover in rat brain (61). Moreover, valproate
has been reported to increase GABA levels in human plasma,
suggesting that it enhances GABA activity in the central nervous
system (62). However, poor understanding of the mechanism
of action of valproate in bipolar disorder is a limitation
(63), and valproate is not effective in treating schizophrenia
or autism spectrum disorder, despite sharing the GABAergic
dysfunction hypothesis. A recent study of induced pluripotent
stem cell-derived organoids from patients with schizophrenia
and bipolar disorder found enhanced GABAergic specification

(64), suggesting that the reduction in GABAergic neurons
observed after disease onset is a compensatory response to
maintain the excitatory/inhibitory balance within neural circuits
during cortical development.

Conversely, 40-Hz ASSR deficits have not been observed in
patients with major depressive disorder. Hirano et al. showed
that spontaneous gamma band activity is high in patients with
schizophrenia and that the degree of 40-Hz ASSR deficits was
associated with increased spontaneous gamma-band activity
(65). Moreover, ketamine, an NMDA receptor antagonist, was
effective in treating depression (66) and increases resting-
state gamma-band activity (67). Therefore, patients with major
depressive disorder, in contrast to those with schizophrenia,
may have reduced spontaneous gamma-band activity, and
consequently, ASSR deficits may not have been observed.
However, spontaneous gamma-band activity has not yet been
investigated in patients with major depressive disorder. The
number of reports on ASSR in major depressive disorder is small,
and similarities and differences with other diseases that have
ASSR deficits need to be discussed in the future.

Dysfunction of the GABAergic system has also been
implicated in autism spectrum disorder. For example, multiple
mouse models of autism established via toxins or manipulation
of associated genes exhibit reduced number of neocortical
parvalbumin-positive inhibitory neurons (68). A post-mortem
study also reported reduced GABA-synthesizing enzymes in
parietal and cerebellar cortices of patients with autism spectrum
disorder (69), whereas a protonmagnetic resonance spectroscopy
study reported reduced GABA concentration in the auditory and
frontal cortices of living patients (70). These GABAergic deficits
may result in a relative excess of glutamatergic activity. Indeed,
Fatemi’s hyper-glutamatergic hypothesis of autism spectrum
disorder posits that deficits in GABA-synthesizing enzymes and
increased GABA uptake by astrocytes led to excess cortical
glutamate (71).

Autism spectrum disorder and schizophrenia also share
behavioral symptoms such as difficulties with social cognition,
social interaction, and executive functions (72). In fact, autism
spectrum disorder was initially believed to be an early
stage of schizophrenia (73). Furthermore, an altered ratio of
excitatory to inhibitory cortical activity has been reported
in both autism spectrum disorder and schizophrenia (74).
Yizhar et al. demonstrated that psychosocial dysfunction, a
trait common to both disorders, was associated with increased
excitation/inhibition ratio in mouse prefrontal cortex (75).
Therefore, understanding the causes of excitation/inhibition
imbalance could provide clues to the pathophysiology of these
disorders as well as to novel treatment strategies. Further, ASSR
could be a sensitive electrophysiological indicator reflecting the
excitation/inhibition imbalance common among schizophrenia,
bipolar disorder, and autism spectrum disorder.

Perspectives on Neurophysiological
Research Using Phase Resetting of ASSR
Phase resetting is a phenomenon that occurs when a stimulus
perturbs the phase within a neural oscillation. Resetting the
phase of ongoing neural oscillation induces the synchronization
of different neurons or brain regions (76). Phase resetting
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FIGURE 1 | Phase resetting of the auditory steady-state response (ASSR). (A) Modulation of the ASSR by stimulus intensity (sound pressure). Repeated presentation

of a 25-ms pure tone (upper middle) elicits the 40-Hz ASSR. An abrupt increase in sound pressure at 700ms causes a reduction in amplitude and phase

(Continued)
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FIGURE 1 | (phase resetting). The location of estimated dipoles (left panel), source-strength waveforms (middle), and enlarged waveforms on an expanded time axis

(right) are also shown. (B) Increasing sound pressure reduces ASSR latency. The Y-axis shows changes in the peak latency interval over time relative to the control

condition. The control stimulus is a 1,000-ms train of clicks at 40Hz. The test stimuli are a 500-ms train of clicks identical to the control stimulus and a subsequent

500-ms click-train of the same frequency but altered sound pressure compared with the control stimulus (−5, −10, −15, 5, 10, or 15 dB). The degree of phase

resetting depends on the magnitude of the sound pressure change. (C) Modulation of the ASSR by deviant stimuli (odd ball condition). The Y-axis shows changes in

the peak latency interval over time compared with the control-only (left) and test-only (right) conditions. The control stimulus is a 1,200-ms train of 25-ms pure tones.

The test stimulus is a similar train of pure tones in which the tone sound pressure at 700ms is increased by 15 dB. Under an oddball paradigm, phase resetting is

observed when either the control or test stimulus is rare (deviant). (D) Modulation of the ASSR by multimodal stimulation. The Y-axis shows changes in the peak

latency interval over time compared with the control condition. As the test stimulus, an electrical pulse is presented to the dorsum of the left or right hand at 700ms

during the train of 25-ms pure tones. Tactile stimulation causes phase resetting of the ASSR, and this cross-modal effect is observed from approximately 50–125ms

after the onset of tactile stimulation.

is the fundamental mechanism underlying synchronization,
and neural synchronization is believed to play a role in
information processing (77), neuronal communication (78),
motor coordination (79), and memory (80). For example,
in clinical research, epilepsy is considered a disease that
results from neuronal hyper-synchronization (81). The
generation of resting tremor in Parkinson’s disease has
been suggested to be owing to abnormal synchronization
of neuronal activity (82). In schizophrenia, the disruption of
neural synchronization is believed to be related to fragmented
cognitive experience (83).

A salient sensory stimulus on ASSR causes phase resetting
that modulates the amplitude and phase (Figure 1A) Rohrbaugh
et al. first reported that a foreground auditory stimulus reduced
both the amplitude and latency of a 40-Hz ASSR evoked by
a background rhythmic probe stimulus (84–86). In addition,
phase resetting of the 40-Hz ASSR has been reported following
a sudden change in stimulus frequency or intensity (87). In a
study using an oddball paradigm, button pressing in response to a
rare stimulus also caused phase resetting of the 40-Hz ASSR (88).
Furthermore, Ross et al. reported that the ASSR was modulated
by changing stimulus onset (19), violating the periodicity of a
sound stimulus (89), and introducing an interfering stimulus
(90). These findings suggest that perturbing stimuli reset the
oscillations and shift the ASSR phase back to that of the
driving source (90).

Our recent study indicated that increasing the sound
pressure can induce a proportionate reduction in ASSR latency
(Figure 1B) (91). We also demonstrated that ASSR latency
can be shortened without changing the physical characteristics
of the peripheral input (92). Using an oddball paradigm,
we found that a control stimulus with unchanging sequence
shortened the ASSR latency when presented with a low
probability among other stimulus patterns (Figure 1C). These
findings indicate that ASSR phase resetting can be induced
by an intrinsic comparison process based on sensory memory.
Sensory memory impairment has been reported in several
neurological and psychiatric disorders, primarily using mismatch
negativity (MMN) (93), a negative component of the event-
related potential elicited by a deviant stimulus embedded
in repetitive stimuli (an oddball paradigm), with maximum
negativity at Fz and positivity at the mastoid (94). Mismatch
negativity reflects the automatic change detection process based
on short-term sensory memory and thus serves as an index
of sensory memory disruption (95). For example, patients

with schizophrenia (96, 97), autism spectrum disorder (98),
and Alzheimer’s disease (99) have all demonstrated smaller
auditory MMN waveforms than healthy controls. Although
previous studies have reported that ASSR is modulated by
selective attention (100, 101), our paradigms (91, 92), such as
oddball paradigms which are typically used to detect MMN,
do not require conditions of attention. Changes in ASSR
during such odd ball paradigms (91, 92) may facilitate efficient
assessment of sensory memory impairments in psychiatric
disorders because such measurements do not require multiple
stimulus repetitions, thereby reducing experimental time and
patient burden.

We also recently demonstrated reduced ASSR latency
by simultaneous tactile stimulation (Figure 1D) (102),
strongly suggesting that cross-modal input increases the
speed of ongoing auditory processing. This cross-modal ASSR
paradigm may thus permit the assessment of multimodal
sensory integration with high test–retest reliability (103).
Moreover, the 40-Hz ASSR is considered superior for
providing information on processing speed compared with
other sensory paradigms because peak latency can be measured
reliably every 12.5ms. Indeed, our findings of reduced ASSR
latency during multimodal stimulation are consistent with
previous studies demonstrating faster object recognition
using both auditory and visual features compared with either
modality alone and with the appearance of unique early-onset
multimodal ERP waveforms originating from both sensory
and frontal cortex (104, 105). Although previous studies have
shown impaired multisensory integration in patients with
schizophrenia (106) and autism spectrum disorder (107),
psychophysical rather than neurophysiological indicators
were assessed. We suggest that the ASSR serves as a robust
electrophysiological index of multisensory integration deficits in
psychiatric disorders.

CONCLUSION

Patients with schizophrenia, bipolar disorder, and autism
spectrum disorder all exhibit deficits in the ASSR at gamma-
band frequencies, suggesting shared pathomechanisms including
dysregulation of cortical excitatory/inhibitory balance.Moreover,
ASSRmagnitude and phase reflect auditorymemory, multimodal
sensory integration, and the comparison of incoming sensory
stimuli with previous memory traces. Thus, ASSR could be
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a sensitive electrophysiological index for sensory processing
deficits in psychiatric disorders.
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