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A B S T R A C T

Exacerbations are a main characteristic of asthma. In childhood, the risk is increasing with severity.
Exacerbations are a strong phenotypic marker, particularly of severe and therapy-resistant asthma. These early-
life events may influence the evolution and be involved in lung function decline.

In children, asthma attacks are facilitated by exposure to allergens and pollutants, but are mainly triggered by
microbial agents. Multiple studies have assessed immune responses to viruses, and to a lesser extend bacteria,
during asthma exacerbation. Research has identified impairment of innate immune responses in children, related
to altered pathogen recognition, interferon release, or anti-viral response. Influence of this host-microbiota
dialog on the adaptive immune response may be crucial, leading to the development of biased T helper (Th)2
inflammation. These dynamic interactions may impact the presentations of asthma attacks, and have long-term
consequences.

The aim of this review is to synthesize studies exploring immune mechanisms impairment against viruses and
bacteria promoting asthma attacks in children. The potential influence of the nature of infectious agents and/or
preexisting microbiota on the development of exacerbation is also addressed. We then discuss our understanding
of how these diverse host-microbiota interactions in children may account for the heterogeneity of endotypes
and clinical presentations. Finally, improving the knowledge of the pathophysiological processes induced by
infections has led to offer new opportunities for the development of preventive or curative therapeutics for acute
asthma. A better definition of asthma endotypes associated with precision medicine might lead to substantial
progress in the management of severe childhood asthma.

1. Introduction

Childhood asthma is a major public health issue in industrialized
countries. Development and progression of the disease is marked by
exacerbations, also called asthma attacks, which are one of the most
prevalent causes of hospitalization in children with consequently

significant costs worldwide [1–3]. They constitute key events in the
natural history of childhood asthma and are major markers of its het-
erogeneity [4]. Mechanisms leading to asthma attacks are not fully
understood and may differ between children, according to their age
range or phenotype.

Pediatric literature on asthma usually distinguishes preschool
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recurrent wheeze/also called preschool asthma in children aged 5 years
and younger; from school-age children asthma, in those aged
6–11 years; and adolescent asthma, in those aged 12–17 years [3,5,6].
During preschool years, these events can be isolated, with few or no
interval symptoms, and their persistence despite conventional main-
tenance treatment, such as inhaled corticosteroids (ICS), is a marker of
severity [6,7]. Although viral infections are the main triggers of acute
asthma, early and multiple allergic sensitization is a strong risk factor of
presenting severe and frequent exacerbations [7,8]. In school-age
children and adolescents, acute asthma attacks are usually less fre-
quent, and not only triggered by lung infections, but also by exposure to
allergens and pollutants [3,9,10]. Exacerbations rates increase with the
severity of the disease, which is defined according to treatment pressure
to obtain asthma control [4,5]. Repetition of frequent and severe epi-
sodes under high doses of ICS associated with another maintenance
treatment (mainly long acting beta2 agonists) is a criteria of severe
asthma in these age-groups [11,12], as demonstrated in pediatric
asthma cohorts [13,14]. Additionally, it is now recognized that patients
prone to exacerbations constitute a distinct susceptibility phenotype,
possibly associated with different endotypes, including specific airway
inflammation patterns, or inflammatory mechanisms in response to
infectious agents [15]. In some individuals, the severity of the disease
and propensity to develop acute asthma may also vary throughout the
course of childhood [16]. These early-life events can influence the long-
term evolution at adult-age, in terms of asthma persistence, phenotype
and alterations of lung function, that may lead to early chronic ob-
structive pulmonary disease (COPD) [17]. Early interventions could
modify the natural history of the disease. However, in children with
severe asthma, conventional maintenance therapies may be insufficient
to prevent asthma attacks [7,18], and repeated or prolonged oral cor-
ticosteroids are associated with many side effects, such as defective
growth [19]. New treatment strategies are now needed. Interestingly,
some studies have shown the efficacy of biologics in pediatric asthma,
mainly on severe exacerbations, and suggested disease-modifying
properties of some of them, making it a particularly attractive strategy
in children [20].

Viruses are closely linked to wheezing illnesses during early child-
hood [21]. Respiratory syncytial virus (RSV), and rhinoviruses (RV),
both RNA viruses, are among the most common causes of lower re-
spiratory tract infections, i.e. bronchiolitis and/or pneumonia, with a
predominance of RSV in the first 12 months of life and then RV in the
following years [22]. Birth cohort studies and other epidemiological
studies have shown a strong association between early RV-induced
wheeze, and to a lesser extent, RSV-induced wheeze, and subsequent
development of childhood asthma [23–26]. Moreover, pediatric asthma
attacks are mainly triggered by respiratory viruses, particularly RV,
both in the preschool and school-age [10,27–31]. The question of
whether asthma-associated underlying inflammation promotes the pa-
thogenic effect of viral infection or whether the virus induces ex-
aggerated inflammation is still under debate and has been the subject of
many research studies over the past 25 years.

Alongside viruses, there is also a growing interest on the impact of
bacteria in the onset of asthma attacks and the perpetuation of in-
flammation. Neonatal airway colonization with bacteria including
Haemophilus influenzae, Moraxella catarrhalis and/or Streptococcus
pneumoniae, has been associated with persistence of asthma [32]. In-
deed, Kloepfer, et al. have shown frequent viral and bacterial co-in-
fection in asthmatic children aged 2–18 years [33]. It is well known that
viral infection can predispose to bacterial secondary infection. A few
studies have begun to describe inflammatory phenotypes linked with
altered microbiota, known as dysbiosis, within the airways [34,35].
Interactions between viruses and bacteria, personal risk factors (e.g.
genetic background and atopy), and environmental exposures may
promote more severe acute asthma episodes that will influence the
progression of asthma [21]. However, the precise role of each of these
factors and their interplay with the host immune defenses remains to be

elucidated.
The aim of this review was to synthesize studies exploring human

innate immune mechanisms responses against viruses and bacteria
during asthma attacks and to provide hypotheses to decipher how they
may contribute to the phenotypes observed in childhood asthma. We
will then discuss how therapeutic strategies targeting these pathways
may improve the management of acute asthma in children.

2. Impact of viruses on the onset of asthma attacks: chicken or
egg?

Up to now, mechanisms explaining susceptibility to develop acute
asthma upon respiratory viruses, in particular RV and to a lesser extend
RSV, in asthmatic children prone to exacerbation are not fully under-
stood. As innate immune cells play a central role in the onset of anti-
viral defenses, they have been the focus of many studies in pediatric
and adult asthma, conducted both ex-vivo and in-vivo, contributing to
the identification of new asthma endotypes. The original studies pre-
sented in this review have been summarized in Table 1.

2.1. Virus recognition during asthma attack is mainly driven by airway
epithelial cells

Before addressing the viral infections impact on asthma attacks, we
will briefly describe the virus-induced anti-viral responses. Airway
epithelial cells (AEC) are the main cellular targets of pathogens, and act
as sentinel cells in response to infection (Fig. 1) [36–38]. These struc-
tural cells are a central part of innate immune response [39]. They first
act as a complex physicochemical barrier, via the presence of tight in-
tercellular junctions and the muco-ciliary escalator, clearing foreign
particles out. If not cleared, Pathogen Associated Molecular Patterns
(PAMP) on the surface of infectious agents, will then be recognized
through Pattern Recognition Receptors (PRR), in particular Toll-Like
Receptors (TLR) and intracellular RNA helicases, which will trigger
innate immune responses. Although AEC play an early and central role
in orchestrating innate immune defenses, innate immune cells including
alveolar macrophages (AM) and dendritic cells (DC), especially plas-
macytoid DC (pDC), are also involved in innate immune responses
against pathogens [40–44].

Studies aiming to explore PRR recognition by epithelial cells and
innate immune cells from asthmatic children are multiple but hetero-
geneous. In cultures of primary AEC from children with severe therapy
resistant asthma (STRA), lower expression levels of extracellular and
intracellular PRR than healthy controls were observed at baseline [45].
Expression of PRR was also decreased upon infection with RV on these
cultures and in those from adult asthmatics, suggesting a persistent
defect in adulthood [45,46]. Hence, in AM from adults with severe
asthma, Rupani, et al. also showed a reduction of TLR7 expression after
RV infection compared with healthy subjects, with an effect potentially
mediated by microRNAs [47]. Conversely, in ex vivo cultures of cells
from broncho-alveolar lavages (BAL) cells and peripheral blood
mononuclear cells (PBMC) from adults with mild-to-moderate asthma,
no impairment of PRR expression (TLR, RNA-helicases) was observed
[48]. This discrepancy was also illustrated by our in vivo real-life study
conducted in 72 school-age children with allergic asthma hospitalized
for severe exacerbation, associated with viral infection in 64% (RV:
51%) [49]. Whereas viral infection did not modulate PRR expression
and function on PBMC as compared with non-infected asthmatic pa-
tients, a reduced expression of PRR was reported in a sub-group of
children prone to reinfection outside an exacerbation (steady state
8 weeks later), and displaying neutrophilic airway inflammation away
from exacerbation [10,49]. Although present both at exacerbation and
steady state, this impairment of PRR expression as well as the in-
flammatory profile was not associated with the clinical evolution and
risk of exacerbations in the year following exacerbation [50].

Altogether, these data suggest that impairment of PRR recognition
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in asthmatic children could be limited to a subpopulation of patients,
potentially severe, and may persist into adulthood. Rather than an al-
tered baseline expression or synthesis of PRR, a down-regulation of the
expression and activation of the co-receptors, and/or enzymes involved
in signaling may be determinant. Longitudinal in vivo studies could
provide more insights into these mechanisms and allow studying their
dynamics during the course of the disease.

2.2. Modulation of anti-viral responses

Activation of PRR on AEC and innate immune cells will onset var-
ious signaling pathways, such as interferon regulatory factors (IRF) 3
and 7, and nuclear factor-kappa B pathway (NF-kB). This will lead to
the production of anti-viral molecules such as interferons (IFN) and
anti-microbial peptides, including interferon-stimulated genes (ISG) as
well as cathelicidins and defensins [51]. Anti-microbial peptides have
immunomodulatory activities and can alter host cellular responses. LL-
37, also called human cationic antimicrobial peptide is the only human
peptide of the cathelicidin family and one of the most-studied [52,53].
In in vitro models, LL-37 has the ability to reduce virus replication,
notably for RSV [53,54]. In a population of 77 asthmatic children,
Arikoglu, et al. have shown that children prone to develop acute asthma

attacks displayed higher blood levels of cathelicidins and lower levels of
vitamin D at baseline than children with controlled asthma, suggesting
a role for anti-microbial peptides in acute asthma [55]. However, the
evolution of these baseline levels during acute asthma attacks and their
impact on the anti-viral and inflammatory response remain unknown.

The majority of studies conducted in asthmatic subjects have had
the aim to explore anti-viral IFN response upon viral infection. They
have observed a defect of production of type I IFN. In response to RV,
most ex-vivo studies have demonstrated an impairment of IFN-α and
IFN-β production in AEC from pediatric asthmatic patients compared to
levels observed in cells from healthy controls [45,56–58]. This im-
pairment was also demonstrated in adult cells [59–61]. Interestingly,
similar results have been observed in ex-vivo cultures of PBMC. As early
as 2002, Bufe, et al. have shown in an ex-vivo model a defective pro-
duction of IFN-α in PBMC from pediatric asthmatic patients compared
to healthy controls, upon Newcastle disease virus (NDV) infection, an
avian respiratory virus belonging to the Paramyxoviridae family and
well-known potent inductor of IFN-α [62]. They later extended these
observations in whole blood cells cultures from adult asthmatics, upon
infection with either NDV of RSV [63]. In the later years, similar results
have been shown in pediatric studies [64,65] but also in adult studies
[45,48,66]. So far, only a few studies have been conducted upon in vivo

Fig. 1. Summary of the main mechanisms favoring asthma development and involved in asthma attack. These mechanisms (in red) involve: (1) Impairment of innate
immune responses; (2) Influence of the host-microbiota dialog on Th2 inflammation; (3) Pathogen characteristics; (4) Airway leukocyte inflammation. These dynamic
interactions may impact the presentations of asthma attacks, and have long-term consequences. AM: Alveolar macrophages; AEC: airway epithelial cells; DC:
dendritic cells; IFN: Interferon; IL: Interleukin; ILC2: type 2 innate lymphoid cells; IRF: interferon regulatory factor; PAMP: Pathogen-associated molecular pattern;
PRR: pattern recognition receptor; RV: Rhinovirus; TSLP: Thymic stromal lymphopoietin.
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inoculation and natural infection. In a cohort of preschool children,
IFN-α systemic levels were reduced at the time of RV-induced exacer-
bation in asthmatics, as compared with healthy controls during an
asymptomatic RV infection [30]. In our recently published cohort of
preschool asthmatic children with natural virus-induced exacerbation
(RV: 73%), the most severe children, who were prone-to-exacerbation,
displayed lower plasma concentrations of IFN-β at exacerbation than
the others, suggesting a defect of production in response to viruses
limited to this sub-population [8]. In another study conducted in older
children, we did not observe altered IFN responses in sputum, plasma
and cultures of stimulated-PBMC of patients presenting a virus-induced
exacerbation, compared with those with a non-virus-induced exacer-
bation [49]. In adult asthmatics, a significant type I IFN defect was
demonstrated in bronchial epithelium and sub-epithelium obtained
from bronchial biopsies compared with healthy controls, after experi-
mental infection with RV-A16 [67]. In contrast, Schwantes, et al. de-
scribed elevated rather than low RNA levels of type I IFN in sputum
from adult asthmatic patients, compared to those observed in healthy
subjects, early in the course of a virus-induced exacerbation.[68].

Following their discovery in 2003, there has been increasing
knowledge regarding the implication of type III IFN implication in anti-
viral responses [69]. Ex-vivo studies conducted in AEC from asthmatic
subjects have suggested a parallel impairment of IFN-λ1 and IFN-λ2/3
production upon RV infection in pediatric patients [45,56,57], and this
impairment seemed to persist in adult patients [46,59]. In vivo, this
defective response was not observed at the time of asthma exacerbation
in sputum and/or PBMC from atopic asthmatic children [30,49,70], nor
in adults [68,71], suggesting that there are compensatory mechanisms
or other sources of IFN, supplementing the defect observed in resident
cells.

A few studies have explored the potential pathways leading to a
defect of IFN production in asthmatic patients. Downregulation of IRF3
or IRF7, following virus infection in asthmatic cells, has been suggested
[57,59]. Gielen, et al. have also demonstrated a role of the molecule
suppressor of cytokine signaling 1 (SOCS1), exercising a negative-
feedback on IFN production following viral infection in children with
STRA [57].

Collectively, these studies suggest a potential impairment of anti-
viral IFN response, in particular type I IFN, during asthma attack.
Rather than explained by immaturity in the first years of life, this de-
fective response could also be limited to a sub-phenotype of patients
who are prone-to-exacerbation, from early childhood to adulthood. The
effect of age, the kinetics of the IFN response following viral infection
and the impact of viral load in the airways remain to be addressed.

2.3. Cytokines and epithelial-derived alarmins (IL-25, IL-33 and TSLP)
response against viral infection

Airway epithelial cells display immunoregulatory properties by
producing pro-inflammatory cytokines, including alarmins interleukin
(IL)-25, IL-33 and thymic stromal lymphopeietin (TSLP), released upon
viral infection, and implicated in the recruitment of macrophages, DC,
T cells and granulocytes, such as eosinophils and neutrophils. This will
promote the adaptive immune response through DC maturation and
migration to draining lymph nodes associated with the airways.
Dendritic cells will thus induce naïve T cell differentiation into antigen-
specific T cells. This will drive the adaptive immune response within the
airways to clear the virus out. The alarmins also contribute to a biased T
helper (Th)2 immune response by activating type 2 innate lymphoid
cells (ILC2) and polarizing DC in order to promote T cells differentia-
tion (Fig. 1). This specific cytokine environment in asthmatic patients
favor naïve T cells polarization into Th2 cells, producing IL-4, IL-5, IL-
13, as opposed to Th1 cells, producing IFN-γ and TNF-β [37,72]. These
cytokines are responsible for the type 2 inflammation and induce the
pathophysiological features of asthma, including eosinophil

mobilization, mucus hypersecretion, smooth muscle hyperplasia and
airflow obstruction [3,73]. Under the influence of IL-5, eosinophils will
enter the airways and perpetuate type 2 inflammation [49,74]. They
will also contribute to resolution of immune responses, including tissue
repair [75]. Other cytokines, such as type 17 cytokines: IL-17, IL-21, IL-
22, can also promote mucus hypersecretion and production of cytokines
and chemokines by AEC. They will favor the recruitment of neutrophils,
through the induction of C-X-C chemokines, conducting to a state of
chronic inflammation [67]. In the longer term, IL-17 may contribute to
the development of airway remodeling during asthma by enhancing the
production of profibrotic cytokines, proangiogenic factors, proteases
and collagen [76,77].

In children, the influence of respiratory viruses and innate immune
mechanisms on the adaptive immune response development may be
crucial. First, some respiratory viruses may induce the release of alar-
mins, and thus favor the development of Th2 inflammation. A recently
published study showed that children with RV-positive-bronchiolitis
displayed increased IL-4/IFN-γ ratio in nasopharyngeal aspirates [78].
Upon RSV infection, Lee, et al. observed a higher production of TSLP by
AEC from asthmatic children compared to healthy controls [79]. Hence,
some respiratory viruses may induce Th2 inflammation in the airways
of children and this may be increased in an asthmatic environment. In a
cohort of preschool asthmatic children, ILC markers, such as soluble
ST2, were induced in vivo following RV infection in preschool asthmatic
children, and were correlated with nasal levels of IL-33 [80]. In our
study of school-age children, at exacerbation, airway inflammation in
infected patients was characterized by significantly higher IL-5 con-
centration and eosinophil count than in non-infected patients [49]. This
may not be specific to childhood, as Jackson, et al. have also demon-
strated an induction of IL-4, IL-5 and IL-13 in BAL following RV in-
oculation in asthmatic subjects, associated with exacerbation severity
[81]. Additional in vitro experiments showed that IL-33 directly induced
Th2 cytokine production by T cells and ILC2. However, this RV-induced
Th2 inflammation could be limited to an asthmatic environment in
adults, as suggested by an in vitro study reproducing the induction of IL-
4 and IL-13 by asthmatic PBMC after co-exposition with RV and IL-33,
but showing no effect on PBMC from healthy donors [82]. In addition,
exposure to respiratory viruses has also been associated with an in-
crease in Th17 cytokines, as demonstrated in co-cultures of RSV-in-
fected AEC with T cells [83].

Interferon production is also closely linked to Th2 and inflammatory
cytokines. In asthmatic preschool children prone to exacerbation, we
observed simultaneously lower production of Th1 cytokines (IFN-γ),
Th2 cytokines (IL-5), pro-inflammatory cytokines (TNF-α), regulatory
cytokines (IL-10), and type 1 IFN (IFN-β) during virus-induced ex-
acerbation in a subgroup of preschool children with characteristics of
severe asthma and a history of frequent exacerbations [8]. This asso-
ciation seems to persist in adults, as suggested by Parsons, et al. re-
porting a parallel decrease of type III IFNs and of IL-6, (C-X-C motif)
ligand (CXCL)8 and CXCL10 in adult asthmatic AEC inoculated with RV
[46]. In a murine model of allergic asthma, IRF3 controlled the parallel
evolution of IFN and Th2 cytokines during acute episodes induced by
allergen exposure [84]. Some adult studies have suggested bi-direc-
tional influences during viral infection. Upon RV infection, pre-treat-
ment with Th2 cytokines in cultures of AEC may impair TLR3 and IRF3
signaling pathway [59], or type 1 and 3 IFN expression [57]. Lower
production of type I IFN, displayed by some children, could also reduce
the apoptosis of neighbored-infected cells and increase viral loads,
consequently amplifying airway inflammation, inflammatory cytokine
production and thus, asthma attack severity [58,60].

Altogether, these studies confirm close interactions between innate
and adaptive immune mechanisms against viruses in an asthmatic en-
vironment. Modulating airway inflammation, particularly Th2 in-
flammation, could therefore directly improve anti-viral responses
during asthma attacks in some children.
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2.4. Viral behavior during asthma attack

Although the impairment of anti-viral responses plays a key role in
asthma attack, characteristics of the microorganisms are also im-
portant. First, pathogenicity of RV strongly differs according to sub-
types, probably because of the implication of different cellular targets.
Indeed, infection with RV-C strains, which use cadherin-related family
member 3 (CDHR3) as a receptor, may be associated with higher
clinical severity [10,31,85], whereas B serotypes seem to be responsible
for milder symptoms. Interestingly, single nucleotide polymorphism in
the CDHR3 gene, which influences the efficiency of RV-C to infect its
target cells, has been associated with childhood asthma susceptibility
[86]. Moreover, different viral strains could have different replication
rates and thus induce higher viral loads [87]. Rhinovirus C strains could
also modulate the airways inflammation, and induce higher levels of
Th2 and/or Th17 cytokines, as shown in preschool children with RV-C-
induced wheeze [88]. Second, systemic viremia has been observed in
children infected with respiratory viruses, such as RV-C, and young age
was found to be a risk factor associated with viremia [89]. This state
could induce an enhanced inflammation in children by interaction of
viruses with systemic immune cells. Finally, viral-coinfection has been
frequently observed at exacerbation in asthmatic children, particularly
in the preschool years [30,31]. The combined effects of several viruses
within the airways may modulate both the innate and adaptive re-
sponses.

These data demonstrate that, in susceptible children, the nature of
respiratory viruses, their spreading, as well as their interactions with
the host cells may directly impact the inflammation and the severity of
asthma exacerbations.

2.5. Emerging role of the airways virome

The role of viral carriage and/or asymptomatic infection at steady
state, i.e. outside an exacerbation, in asthmatic patients has also been
hypothesized. Hence, pediatric studies have shown a frequent virus
shedding in children, with RV positive samples observed in 19–29% of
unselected asthmatic children and in 15–23% of healthy children
[10,28,90,91]. In the previously-cited cohort of preschool children
prone to exacerbation, we observed even higher rates, with 67% of
positive PCR (51% for RV) at steady state [8]. In 78 school-age chil-
dren, we also observed that 10% of children had positive RV sampling
at exacerbation and steady state, and that RV serotypes were system-
atically different at both time points, pointing toward reinfection rather
than persistence [10]. Consistent with these observations, Bergauer,
et al. also found 54% of RV at steady state in preschool children with
asthma, vs 45% in healthy controls [30]. Interestingly, RV carriage in
both asthmatics and healthy controls was found to be associated with
higher levels of type III IFN at baseline than in subjects without virus.
This increase in baseline inflammation seems to persist in adulthood.
Hence, in sputum cells from 57 asthmatic adults, da Silva, et al. have
shown higher baseline levels of IFN and anti-viral molecules compared
with healthy subjects [92]. In all, one could hypothesize that RV per-
sistence in asthmatic patients could induce a pro-inflammatory state
and/or a desensitization of PRR, which could reduce the response
against pathogens within the airways upon new infection.

Alongside RV, other respiratory viruses, could also take part in these
processes. Metagenomic analyses have made it possible to identify
hundreds of viral species within the airways, constituting the re-
spiratory tract virome [93]. In non-asthmatic children, Wang, et al.
have shown multiple common epidemic respiratory viruses in children
with severe acute respiratory infection, whereas, the virome was less
diverse and mainly dominated by the Anelloviridae family in healthy
children [94]. Anelloviruses are major components of the virome and
display immunomodulatory properties on both innate and adaptive
immunity [95]. Although their presence has been associated with an
impaired lung function in asthmatic children [96], to our knowledge,

no study has evaluated their association with asthma attacks. Thus, the
contribution of these viruses and their interactions with both patho-
genic infectious agents, as well as commensal bacteria from the pul-
monary microbiota on chronic inflammation and the onset of acute
asthma remain to be determined.

3. The emerging role of pathogenic bacteria and microbiota in
asthma

Increasing evidence indicates that the respiratory micro-
biota, including bacterial and viral microorganisms has an important
role in respiratory health and disease [97,98]. In addition, recent data
underline the role of bacterial infections in the development and pro-
gression of asthma, as summarized in Table 2.

During the first weeks of life, the respiratory tract begins to develop
a niche-specific community pattern, where Staphylococcus aureus and
Corynebacterium replace the originally colonizing bacteria and become
the dominant microorganisms [98]. The most dramatic changes occur
during the first 2 months. In the following six months, the respiratory
microbiota continues to mature; relative abundance of S. aureus de-
clines, and an increase in Moraxella, Streptococcus, Haemophilus, Dolo-
sigranulum, Alloiococcus, and Prevotella sp. is observed. This period is
crucial and alterations of the microbiota have been implicated in the
development and the manifestations of chronic lung diseases.

3.1. Bacteria and asthma development

Using bacterial culture techniques, it has been demonstrated that
neonates born to asthmatic mothers with upper airway colonization
with S. pneumoniae, M. catarrhalis, and/or H. influenzae were at higher
risk of presenting asthma at the age of 5 years [32]. This was associated
with an aberrant immune response, with increased IL-5 and IL-13
synthesis in PBMC obtained at the age of 6 months [99]. Interestingly,
evaluation of the gut microbiota in infants included in the Canadian
(CHILD) study showed that infants at risk of asthma exhibited transient
alterations of the microbiota, known as dysbiosis, in neonates [100].
More specifically, the relative abundance of the commensal bacterial
genera Lachnospira, Veillonella, Faecalibacterium, and Rothia was sig-
nificantly decreased in children at risk of asthma. Furthermore, anti-
biotic-induced gut dysbiosis has been shown to facilitate the develop-
ment of allergic asthma in experimental murine models and clinical
studies [101]. In a population-based cohort, it has been reported that
pre- and post-natal antibiotic exposure was associated with a higher
asthma risk [102]. No significant difference in bacterial diversity was
observed between samples from those with wheeze and healthy con-
trols. Age and attendance at day care or kindergarten were important
factors in driving bacterial diversity whereas wheeze and viral infection
were not found to be significantly associated to the bacterial commu-
nities. In the Avon Longitudinal Study of Parents and Children (AL-
SPAC) cohort, children for whom antibiotics course was reported before
the age of 2 years were more likely to have asthma at age 7, although
microbiota was not characterized [103]. Similarly, in British Columbia
(Canada), “controlled” antibiotic use during infancy was associated
with a reduction in the incidence of pediatric asthma, and was related
with the preservation of gut microbial communities [104]. Altogether,
these data confirm the need to preserve the microbiota in early infancy
in order to limit the development of asthma.

3.2. Relationship between bacteria and asthma attack

Bacterial infections potentially contribute to the severity of symp-
tomatic respiratory viral infections and asthma attacks in children.
Indeed, there are bidirectional interactions between viruses and airway
bacteria that appear to modulate the severity of illness and the like-
lihood of asthma attack [20]. Pediatric studies have shown that upper
respiratory tract colonization with Streptococcus, Haemophilus, and/or
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Staphylococcus genus during RSV and RV infection increases the risk of
hospitalization independently of age and of the presence of asthma
[105,106]. In our previously-cited cohort of preschool children, asthma
attacks were frequently associated with viral infection (94%, mostly
RV). Pathogenic bacteria were isolated in induced sputum in 56%,
mainly H. influenza, M. catharralis or S. pneumoniae [21]. In adult
asthmatics, asymptomatic RV infection was associated with increased
abundance of Dolosigranulum and Corynebacterium, whereas sympto-
matic RV infection seemed to be related with a higher frequency of
Moraxella [107]. In another adult study, co-infection with virus and
bacteria induced higher levels of cytokine/chemokine than bacterial
infection [108]. Interestingly, circulating CCL2 and CCL5 concentra-
tions were increased in infected asthmatic patients compared with non-
asthmatic patients. Streptococcus species may also influence the course
of asthma exacerbation, as shown by Kama, et al. in preschool children
[109]. Indeed, patients with S. pneumoniae colonization in the phar-
yngeal microbiota had significantly shorter wheezing episodes and re-
duced lung inflammation (including lower levels of TNF-α).

In summary, these data suggest an ability for bacteria to promote
asthma attacks and modulate the inflammation during childhood.
Targeting bacterial infections during asthma attacks could thus be an
alternative strategy in some children.

3.3. Dysbiosis and impact on asthma natural history

Early-life dysbiosis of the microbiota, in particular lung microbiota,
may have long-term consequences on asthma natural history. During
viral infection in children less than two years old, detection of
Moraxella was found to be associated with current wheeze at 5 years old
and presence of Streptococcus, Moraxella, or Haemophilus was associated
with a high risk of asthma development [110]. Mansbach, et al. showed
in a joint modeling analysis adjusting for 16 covariates, including viral
trigger, that a higher relative abundance of Moraxella or Streptococcus
species 3 weeks after day 1 of hospitalization for severe bronchiolitis
was associated with an increased risk of recurrent wheezing [111]. In
contrast, no significant difference in microbiota composition was ob-
served between oro-pharyngeal microbiota from children with acute
wheezing (0–14 years old) and healthy controls [112]. In this study, the
large range of patient ages and day care attendance were important
confounding factors, since the microbiota evolves throughout child-
hood.

In school-age asthmatic children, Zhou, et al. assessed by long-
itudinal measurements the relationship between nasal airway micro-
biota and either loss of asthma control, or risk of severe exacerbations
[113]. Whereas the commensal Corynebacterium/Dolosigranulum cluster
characterized the patients with the lowest risk of disease progression, a
switch towards the Moraxella cluster was associated with the highest
risk of severe asthma exacerbations. Similarly, in another cohort of
school-age asthmatic children, nasal microbiota dominated by Morax-
ella species was associated with increased exacerbation risk, and eosi-
nophil activation at exacerbation [35]. Staphylococcus or Cor-
ynebacterium species–dominated microbiota were linked with reduced
respiratory illness and exacerbation event rates, whereas Streptococcus
species-dominated microbiota increased the risk of RV infection. In-
terestingly, using unbiased airway microbiome-driven clustering,
Abdel-Aziz, et al. recently described in adult asthmatics two distinct
robust severe asthma phenotypes that were associated with airway
neutrophilia, and not related to the presence ofMoraxella species [114].
Robinson, et al. assessed the lower airway microbiota by performing
BAL at steady state in severe preschool wheezers [34]. They reported
two profiles: a Moraxella species “dysbiotic” cluster, associated with
airway neutrophilia and a “mixed microbiota” cluster associated with
macrophage- and lymphocyte-predominant airway inflammation, thus
suggesting that bacteria might influence the characteristics of lung in-
flammation.

Altogether, these data show that airway dysbiosis in early life might
contribute to recurrent wheeze and asthma, and to the severity of the
disease. Among bacterial species, the early presence of M. Catharralis
and H. influenzae during childhood seems to be a marker of evolution
toward a severe disease, through the modulation of the inflammatory
reaction. In contrast, colonization with S. pneumoniae might have some
anti-inflammatory effects. However, the role of bacteria is often ex-
acerbated or modulated by intrinsic (atopy, inflammation character-
istics) or extrinsic factors, such as viral infections and antibiotics.

4. Consequences on asthma phenotypes and endotypes

It is now clear that phenotyping and even more so, endotyping
asthmatic patients is an essential step to understand the diversity of
immune responses at the time of an asthma attack. We will review the
commonly described endotypes of childhood asthma, successively
based on airway leukocyte infiltrate, profiles of allergic sensitization
and nature of asthma trajectories.

Among airway inflammatory phenotypes, neutrophilic asthma ap-
pears to be a distinct endotype, associated with asthma severity in
adults, and possibly involved in corticosteroid insensitivity [76]. In
children, several studies have shown that association of airway neu-
trophilia with severity is inconstant [115–118], and may not persist
throughout the course of the disease [116,119]. However, neutrophils
present in the airways of severe asthmatic children may have enhanced
survival and proinflammatory functions that could increase baseline
inflammation [120]. As previously stated, airway neutrophilia has also
been associated with a different IFN response, at baseline and at the
time of asthma attack, both in adults [66,92] and pediatric studies [49].
This could have an impact on lung infections. Thus, we have shown that
a subgroup of school-aged children with positive viral PCR both at
baseline and exacerbation displayed airway neutrophilia [49]. In severe
adult asthmatics, airway neutrophilia has also been associated with
lesser microbiota diversity in BAL [114,121]. Finally, experimental RV
infection in adult asthmatic subjects directly induces bronchial mucosal
neutrophilia [122]. Therefore, the neutrophilic endotype may be
characterized by an alteration of airway microbiota and association
with viral infections.

Airway eosinophilia is highly frequent in asthmatic children, ob-
served in severe and non-severe asthma, often but not always associated
with response to ICS, thus highlighting the diversity of eosinophilic
profiles in pediatric asthma [116,118,123]. Mouse models and adult
studies have suggested a role of IL-5 induced airway eosinophilia as a
positive regulator of RV receptor intercellular adhesion molecule
(ICAM)-1 on AEC, and a negative regulator of PRR and antiviral re-
sponses [124,125]. However, in children, it remains unclear whether
airway eosinophils are involved in the pathophysiology of severe
asthma, and in the propensity to develop acute asthma attacks [126]. In
addition, peripheral blood eosinophilia, currently used as the basis for
selection of eosinophil-targeted biologics, may not be representative of
airway eosinophilia in children [127]. Most importantly, it has been
reported that eosinophilia is not necessarily associated with higher le-
vels of Th2 cytokines [118], and other cells such as alarmin-stimulated
ILC2 may have a greater biological importance in the pathophysiology
of asthma attacks [128]. Eosinophils can also have beneficial effects in
childhood asthma, as they display regulatory functions and contribute
to lung repair and mucosal homeostasis [75]. Peripheral blood eosi-
nophilia has recently been identified has a biomarker predicting the
decrease of severity throughout the adolescent years [16]. Finally, it
remains to be determined whether eosinophil-targeted biologics, such
as anti-IL-5 mepolizumab, are efficient in reducing asthma attacks in
children [129]. Overall, as opposed to adults, airway eosinophilia does
not appear as the preferential biomarker to classify pediatric patients
nor to assess their risk of acute asthma attacks.

Rather than through the recruitment of eosinophils, type 2
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inflammation may play a key role in some children’s susceptibility to
develop acute asthma attacks through IgE sensitization. Hence, atopy,
defined as allergic sensitization, is a key feature associated with risk of
asthma attacks in childhood [7,8,14]. As shown by latent-class ana-
lyses, atopy is also one of the main factors that may account for the
heterogeneity of the disease, especially in the preschool years
[130,131] and could drive response to treatment [3]. Pre-existing atopy
may play a role in the modulation of IFN response upon viral infection
in children, although studies have shown conflicting results [59,61,65].
Durrani, et al. have suggested a direct implication of the high-affinity
IgE receptor (FcεRI) in this defect, as its cross-linking on pDC from
asthmatic allergic patients is associated with reduced IFN secretion
upon RV infection [65]. Following virus-induced exacerbation in atopic
children, upregulation of FcεRI receptor on monocytes and DC was
observed, associated with a concomitant upregulation of pro-in-
flammatory cytokines, including IL-4 and IL-13 [132], suggesting that
respiratory viral infection in atopic children may initiate an atopy-de-
pendent cascade that amplifies virus-induced airway inflammation.
This could initiate long-term remodeling and inflammation. Hence, IgE
sensitization, especially if occurring early in life and multiple, has been
identified as the main factor associated with long-term asthma risk
(recurrence of exacerbations, persistence of asthma, impaired lung
function) in neonatal cohorts, including MAAS (Great Britain), MAS
(Germany), PARIS (France) and PASTURE (Europe) [133–136].

Describing asthma trajectories in neonatal longitudinal cohorts may
precisely allow identifying novel endotypes. For instance, in a birth
cohort of children at high risk of atopy, cord blood cells were tested for
their ability to produce IFN after exposure to polyinosinic-polycytidylic
acid (Poly I:C), a double stranded RNA that mimics viral PAMP [137]. A
group of low producers of type I and III IFN response upon stimulation
representing 24% of the patients was identified. They displayed higher
risk of lower respiratory tract infection and persistent wheeze at the age
of 5, suggesting that these clinical outcomes are partly determined by
constitutional mechanisms.

Altogether, beyond airway leukocyte and type 2 inflammation,
childhood asthma endotypes seem to be associated with the char-
acteristics of airway microbiota and of the associated immune response.
Because these might involve dynamic processes, the study of asthma
trajectories throughout childhood is crucial. A better characterization
of asthma endotypes will be an essential step in order to achieve a
personalized medicine.

5. In the future: machine learning and systemic biological
approaches

Digital tools provide an innovative way to study the integrated
immune response in asthmatic patients. For instance, Custovic, et al.
used machine learning in an in vitro model of RV-A16 infection on
PBMC extracted from 11 years old children and described 6 clusters of
cytokine response to infection [138]. One cluster, with patients from
whom PBMC displayed low IFN responses, high pro-inflammatory cy-
tokines, low Th2 responses and moderate regulatory responses, was
associated with early-onset asthma and the highest risk of asthma ex-
acerbations and hospitalizations for lower respiratory tract infection.

Omic technologies, known as genomic, epigenomic, transcriptomic,
proteomic, single-cell omics, metabolomics, microbiomics, exposomics,
are others fast-developing tools, generating a massive amount of data
reflecting the biological state of cell populations at a given time, that
will certainly make possible in the future to identify new endotypes and
their biomarkers [139,140]. For instance, with the development of the
Human Genome Project, genome-wide association studies have allowed
to link childhood asthma with association signals in or near genes in-
volved in innate immune response pathways, such as the TLR1 locus,
and the IL-33 locus [141,142]. Transcriptomics analyses, which aim at
investigating all RNA transcripts in a biological sample, will certainly
enable the identification of a large quantity of genes modulated in

certain conditions. A recent study has described 94 distinct gene-ex-
pression modules between virus-induced and non-virus-induced ex-
acerbation in nasal and sputum cells from a large cohort of school-age
children [143]. In asthma attacks, this tool may also provide informa-
tion on the activated pathways linked with inflammatory and anti-mi-
crobial response [144,145]. RNA sequencing in nasal lavage cells from
asthmatic children at exacerbation led to identify some genes over-
expressed as relevant “nodes” linking genes of the inflammatory re-
sponse, such as IRF7 [144]. Transcriptomic analyses have also been
used to identify genes associated with different phenotypes of asthmatic
patients [146]. Finally, metabolomics, the study of the metabolites
produced in living systems (both humans and microbiota) represents
another promising strategy in the upcoming years to address the role of
immuno-metabolism as well as lung and gut microbiota in asthma pa-
thophysiology [147,148].

To sum up, systemic approaches integrating all biologic pathways
are now increasingly used to study the mechanisms leading to sus-
ceptibility to acute asthma attacks in children. They may facilitate the
identification of novel multimodal biomarkers linked with specific en-
dotypes and therapeutic targets.

6. Therapeutic strategies modulating innate immune defenses
during asthma attacks

Conventional maintenance treatment, such as ICS, may be in-
sufficient to prevent attacks in children, especially in severe asthma.
Severe therapy-resistant asthma is precisely characterized by repeated
severe exacerbations despite high dose daily treatment. As the knowl-
edge about infection-underlying pathophysiological processes grows,
new therapeutic approaches that may contribute to either improve in-
nate immune responses or limit the occurrence and consequences of
infections during asthma attacks have been recently explored (Fig. 2).

6.1. Immunostimulatory therapeutics

As we have shown earlier, asthmatic children may display an im-
pairment of PRR signaling that leads to susceptibility to infection-in-
duced asthma attacks. One of the strategies to enhance their anti-viral
responses could involve stimulation of PRR. This strategy has only been
tested in pre-clinical and adult studies. Following promising results
from pre-clinical studies [149], Silkoff, et al. reported results of a
clinical trial assessing the effect of CNTO3157, a TLR3 agonist, upon in
vivo inoculation of RV-A16 in adult subjects with mild-to-moderate
asthma [150]. The molecule was ineffective in blocking the effect of
RV-16 challenge on the onset of asthma exacerbation, without effect on
asthma symptoms nor lung function. Additionally, all post-inoculation
exacerbations occurred in the CNTO3157 group, and two were severe,
thus pointing toward a lack of efficacy and safety of the TLR3 targeting
drugs.

Another way of activating PRR and associated signalling pathways
could therefore be the administration of PAMP-like adjuvants or par-
ticles. Some teams have hypothesized that Poly I:C, a double stranded
RNA that activates TLR3 and intracellular receptors, might modulate
anti-viral responses. Preclinical studies have shown contrasting results,
with promising effect in the context of Influenza A virus infection
[52,151], but concerns regarding its safety. Indeed, Tian, et al. have
described, in a mouse model, a prolonged IFN response upon S. pneu-
monia and S. aureus infection, inducing an impaired bacterial clearance
[152]. We have also demonstrated in a murine model of allergic asthma
that TLR3 ligands can enhance the Th2 response [153]. Thus, the exact
consequences of administering exogenous TLR ligands (including TLR7-
8) in humans are still unknown and their potential role in bacterial
secondary infections in the lungs need to be addressed.

Another immunomodulatory strategy, particularly appealing in pe-
diatric asthma, could rely on the administration of bacterial lysates
[154]. Two main therapies have been described: polyvalent mechanical
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bacterial lysates (PMBL®) and Broncho-Vaxom OM-85 BV. They contain
lysates of 8 pathogenic bacteria including H. influenzae and S. pneu-
moniae. Both PMBL® and OM-85 administration have proven to be ef-
ficient in preventing respiratory tract infections in adult and pediatric
patients with chronic bronchitis and/or history of recurrent chronic
infections [155–159]. Interestingly, in a trial conducted in elderly
COPD patients, Ricci, et al. observed a reduced number of ser-
oconversion against numerous viral pathogens in patients treated with
PMBL®, as well as a better control of the number of all infectious epi-
sodes and COPD exacerbations, suggesting that the preventing effect of
PMBL® on acute infections was not only on bacterial infections, but also
on viral infections [160]. In 152 school-aged children with allergic
asthma, Emerick, et al. have described a reduction of exacerbations
after 12 weeks of treatment with PMBL®, and no serious adverse event,
although no improvement of asthma control scores were achieved
[161]. In 75 preschool children with recurrent wheeze, Razi, et al.
demonstrated that OM-85 BV reduced the rate and duration of
wheezing episodes in the 12 months following the treatment initiation,
and reduced the number of acute respiratory tract illnesses [162]. Fi-
nally, in toddlers aged 6–18 months, a clinical trial is ongoing to assess
the preventive effect of OM-85V on the onset of first wheeze episode
related to lower respiratory tract infection during a 3 years observa-
tional period [163]. Regarding the mechanisms of action, prevention of

acute respiratory infections was not induced by purified LPS or bac-
terial DNA, suggesting that other PAMP contained in bacterial lysates
would activate innate immunity and lead to promotion of type 1 in-
flammation by DC [164–166].

Altogether, immunostimulatory therapeutics may represent a pro-
mising strategy as additional treatments to prevent asthma attacks but
their safety and efficacy need to be properly addressed. Because mul-
tiple microorganisms may be involved in acute asthma, it remains also
unclear whether they would have an impact on the onset and severity of
acute asthma attacks in children.

6.2. Therapeutics enhancing anti-viral responses

Anti-microbial peptides, among which LL-37, are key molecules of
the innate immune responses against both viruses and bacteria. Thus, it
has been hypothesized that supplementing with LL-37 or inducing its
production among AEC could enhance anti-infectious defenses. Sousa,
et al. have tested the effect of exogenous cathelicidin on RV-1B re-
plication after inoculation on cultures of AEC [167]. They reported that
exogenous LL-37, as well as homologous porcine cathelicidins, either
administered prior or after infection, displayed antiviral activity against
RV by reducing the metabolic activity of infected cells. However, one
preclinical study in a mouse model of asthma showed in vivo a

Fig. 2. Possible therapeutics strategies to limit asthma development/progression and attacks. These strategies (in green) target: (1) Enhancement of the innate
immune responses; (2) Anti-infectious therapeutics and strategies to modulate the microbiota; (3) Alarmins and anti-Th2 biologics. AM: Alveolar macrophages; AEC:
airway epithelial cells; DC: dendritic cells; IFN: Interferon; IL: Interleukin; ILC2: type 2 innate lymphoid cells; IRF: interferon regulatory factor; PAMP: Pathogen-
associated molecular pattern; PRR: pattern recognition receptor; RV: Rhinovirus; SCFA: Short Chain Fatty Acid, TSLP: Thymic stromal lymphopoietin.
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deleterious effect of exogenous cathelicidin-related antimicrobial pep-
tide in airway inflammation and responsiveness [168], and to our
knowledge, there is no published study in vivo in humans. Nevertheless,
promising results regarding vitamin D supplementation on the release
of LL-37 by AEC in in vitro experiments have been published [169–171].
In clinical studies, there is evidence toward a protective effect of vi-
tamin D supplementation on risk of acute respiratory infections in
children [172]. Although there are other effects of vitamin D that might
explain its clinical efficacy [80,173], there is a well-studied biological
link between vitamin D and host microbial peptides, via the translo-
cation of vitamin D to the nucleus of AEC, where it activates Vitamin D
responsive elements in promoter regions of anti-microbial peptide
genes such as LL-37 [52,171,174]. Hence, targeting the vitamin D/ca-
thelicidin axis could represent a promising strategy during acute
asthma in children.

As studies have shown deficient IFN responses in asthmatic patients,
it has been hypothesized that IFN supplementation upon viral infection
could enhance anti-viral responses and reduce asthma attacks severity.
Interferon therapies (pegylated IFN-α in association with ribavirin)
have first been developed in other diseases such as in hepatitis C and
human immunodeficiency virus [175,176]. Ribavirin is a synthetic
guanosine nucleoside that impairs the synthesis of viral mRNA [52]. Its
clinical utility, upon respiratory virus infection, has been shown in RSV,
Adenovirus, RV, or in (SARS)-CoV immunocompromised patients
[177–180]. Since exogenous IFNs reduced RV replication in in vitro
cultures of RV-infected AEC from asthmatic patients [181], a trial was
initiated in 147 adult asthmatic patients developing symptoms of viral
infection (68% RV) to evaluate the efficacy of inhaled IFN-β treatment
for 14 days [182]. Overall, it did not improve asthma symptoms, but it
enhanced morning peak expiratory flow recovery and reduced the need
for additional treatment, i.e. oral corticosteroids or antibiotics. In an
exploratory analysis of the subset of more difficult-to-treat patients, IFN
supplementation improved asthma control questionnaires. In addition,
it boosted anti-viral innate immunity with persistent elevated serum
levels of CXCL10, and decreased levels of pro-inflammatory molecules
such as CCL4 and CXCL8. In the INEXAS phase 2 trial, designed to as-
sess efficacy of inhaled IFN-β1a for 14 days to prevent asthma ex-
acerbations in adults, McCrae, et al. also reported improvement in the
morning peak expiratory flow in the treated arm compared with pla-
cebo, but the study stopped early [183,184]. No study has yet been
conducted in pediatric patients.

Collectively, anti-viral therapies could represent potential therapies
in the treatment of acute asthma attacks in children. However, the exact
timing of administration upon viral infection and onset of acute asthma,
and the population of children who might benefit from these strategies
remain to be determined.

6.3. Role of anti-microbial therapeutics

Apart from ribavirin, other anti-viral therapies, such as capside-
targeting molecules pleconaril, BTA-798 and V-073 have been studied
in enteroviruses infections. However, none of these compounds have
proven sufficient efficacy and safety in clinical trials [185]. In parti-
cular, a phase 2 clinical trial with intranasal pleconaril in children aged
6 years and older, and adults, showed no impact of treatment on the
onset of RV-induced cold symptoms or acute asthma exacerbation
[186]. Although their efficacy needs to be addressed in clinical trials,
DNAzyme therapies could also be promising strategies, as recently
suggested by an in vitro study showing good catalytic activity of 2
candidates (Dua-01 and Dua-02) on various RV strains [187].

As described above, bacteria and microbiota may be associated with
asthma development and attacks, and antibacterial therapies have
emerged as alternative strategies to prevent and/or to treat asthma
exacerbation [154,188,189]. Treatments aiming to influence the com-
position of the microbiota are presently tested in different clinical si-
tuations and recent data have suggested that these methods might have

some interest in asthma. Transplantation of healthy microbiota seems a
promising alternative as demonstrated in gut inflammatory diseases
[190]. In preclinical study, Arrieta, et al. demonstrated that oral in-
oculation with four bacterial species previously identified as associated
with risk of childhood asthma to germ-free mice improved allergic
airway inflammation in their adult offspring [100]. Several studies have
also evaluated the benefit of prebiotic and probiotic but their interest
during childhood asthma attack has yet to be evaluated [191,192].
Another option may be to administer bacteria metabolites, which can
mimic the effect of normal microbiota. Thus, feeding pregnant mice
with short chain fatty acid (SCFA), such as acetate, was associated with
modulation of the maternal microbiota and protection from developing
allergic airway disease in the offspring [193]. Finally, an increasing
number of studies in experimental models of lung infections has de-
monstrated the potential interest of fecal microbiota transplantation
and/or SCFA supplementation, suggesting that they might be efficient
in bacteria- and virus-induced exacerbations [194–196].

The potential modulatory effects of some antibiotics on asthma at-
tacks in children are subject of intense research. First, in terms of
prevention, Schwerk, et al. observed a positive impact of long-term
antibiotics (mainly amoxicillin and amoxicillin-clavulanic acid) in
preschoolers with severe wheeze who had positive bacterial infection
on BAL samples, with reduced rates of exacerbations and hospitaliza-
tions at 6 months follow-up compared with rates before treatment
[197]. Second, immunomodulatory effects of macrolides are well-de-
scribed [198], and have been evaluated in the treatment of acute
asthma in children. Hence, in the Early Administration of Azithromycin
and Prevention of Severe Lower Respiratory Tract Illnesses in Preschool
Children (APRIL) study, Bacharier, et al. conducted a pacebo-controlled
trial in 607 preschool children with recurrent wheeze and no controller
medication, testing the efficacy of azithromycin started prior to the
development of lower respiratory tract illness [199]. Macrolide ad-
ministration reduced the risk of progressing to severe lower respiratory
tract illness (i.e requiring a course of oral steroids), without evidence for
induction of azithromycin-resistant organisms, nor adverse events. In
the Copenhagen Prospective Studies on Asthma in Childhood 2010
(COPSAC2010) cohort, children with recurrent asthma-like symptoms,
some of whom under maintenance treatment, were randomly assigned
to receive either azithromycin or placebo in case of episode of asthma-
like symptoms, lasting at least 3 days [200]. Children treated with
azithromycin displayed a significant reduction of episode length, and
the effect size increased with early administration of treatment. More-
over, Mandhane, et al. conducted a placebo-control trial in preschool
children aged 12 to 60 months, presenting to the emergency depart-
ment with wheeze, to assess the effect of azithromycin [201]. They did
not show a reduction of duration of respiratory symptoms in the treated
group, neither in the time to the next exacerbation upon 6 months
follow-up. Thus, there is still limited evidence on the use of azi-
thromycin as a preventive treatment of acute asthma attacks [202]. In
addition, studies have been conducted in adult patients to test the effect
of azithromycin as a preventive strategy, with conflicting results
[203–205]. Notably, Gibson, et al. described in a placebo-controlled
trial that 48 weeks maintenance treatment with azithromycin decreased
the frequency of asthma exacerbations and improved asthma-related
quality of life in symptomatic asthma despite current maintenance
treatment [204]. In a meta-analysis of the three main studies conducted
in adult patients [203–205], maintenance treatment with azithromycin
was associated with a reduced rate of exacerbations in asthma as well as
in all subgroups (non-eosinophilic, eosinophilic and severe asthma),
and a good tolerance [206]. Examining each exacerbation type sepa-
rately, patients with eosinophilic asthma reported fewer oral corticos-
teroid courses, and patients with non-eosinophilic and severe asthma
reported fewer antibiotic courses. Additionally, a specific effect of
macrolides in neutrophilic asthma had been reported previously by
Simpson, et al. in adult subjects with severe refractory asthma, treated
with clarithromycin for 8 weeks [207]. Clarithromycin therapy reduced
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sputum concentrations of IL-8 and neutrophil numbers leading to lower
levels of neutrophil elastase and Matrix metallopeptidase (MMP)-9
concentrations versus placebo. Finally, a decrease of inflammatory cy-
tokines, notably IL-1β, IL-6 and IL-33, was observed in vitro in cultures
of human AEC from asthmatic patients pretreated with clarithromycin,
in a context of RV14 infection, suggesting a direct anti-viral effect
[208]. Consistent with this hypothesis, another in vitro study showed an
effect of azithromycin to reduce RV replication after inoculation in
AEC, associated with an increase in IFN and interferon-stimulated genes
mRNA expression and protein production [209].

To sum up, although macrolides and more particularly azithromycin
constitute an appealing strategy in acute asthma, further studies are
needed to identify the phenotypes of potential responders and the
possible adverse events. Since antibiotics have the potential limitation
of eliminating commensal bacteria that protect from asthma develop-
ment, it must be emphasized that their use should only be considered in
particular clinical situations [188].

6.4. Potential role of biologics targeting type 2 inflammation in anti-
microbial response

We have highlighted the close interactions between underlying
airway inflammation, host anti-microbial responses and microorgan-
isms leading to asthma attacks. Therefore, novel therapeutics targeting
inflammatory pathways in asthma, such as anti-Th2 inflammation
biologics, may have a specific impact on lung infections.

Omalizumab is an anti-IgE monoclonal antibody, targeting the ef-
fector mechanisms of Th2 inflammation. After proof of efficacy in pe-
diatric clinical trials, it has been widely prescribed in severe asthmatic
atopic children aged older than 6 years, providing more insights on the
longer-term evolution [210]. In real-life studies, we have observed
higher levels of asthma control after its initiation, and a significant
decrease of asthma attacks in children previously prone to exacerbation
[211]. Hence, a direct effect of omalizumab on RV-induced exacerba-
tions in children has been suggested [212,213]. In the Preventative
Omalizumab or Step-up Therapy for Severe Fall Exacerbations (PROSE)
study, a placebo-controlled trial conducted among 478 inner-city
asthmatic children aged 6–17 years with 1 or more recent exacerba-
tions, Esquivel, et al. observed a decrease of the duration of RV infec-
tions, viral shedding, and risk of RV-induced illnesses in omalizumab-
treated patients [212]. A recently published adult study including re-
sults from two clinical trials has compared the effect of omalizumab on
the response to an experimental inoculation with RV-16 in allergic
asthmatic adults [214]. Omalizumab-treated patients displayed a re-
duction of symptoms of lower respiratory tract infection, more pro-
nounced in the four first days following inoculation, suggesting that the
protective effect of omalizumab on virus-induced exacerbations occurs
in the early stages of infection. Teach, et al. described other results from
the PROSE study that compared omalizumab with placebo and omali-
zumab with an inhaled corticosteroid boost with regard to fall exacer-
bation rates when initiated 4–6 weeks before return to school [215].
They recorded 86 exacerbations, among which 89% were associated
with a respiratory tract virus detection, most commonly RV (81%).
More importantly, they observed a significantly lower fall exacerbation
rate in the omalizumab group, but no difference between omalizumab
and inhaled corticosteroid boost except in the subgroup of patients with
exacerbation during the run-in phase. In an ex vivo study of PBMC taken
during the intervention phase, the authors observed increased IFN-α
responses following RV-A16 inoculation in the omalizumab-treated
group, suggesting that the mechanism of Omalizumab protection
against exacerbations could involve IFN-α dependent antiviral effect
[20]. Another study in children with exacerbation-prone asthma before
and during omalizumab treatment described the effect of ex vivo in-
oculation of RV and Influenza A virus on PBMC and blood pDC, after
IgE cross-linking on cell-surface FcεRI [216]. The authors observed that
omalizumab increased both virus-induced IFN-α responses in PBMCs

and pDC, and subsequently reduced FcεRI expression on pDC. Alto-
gether, the lower asthma exacerbation rates consecutive to omalizumab
treatment were related to IFN-α responses and attenuated FcεRI ex-
pression on pDC.

Omalizumab remains the most-studied biologic in pediatric asthma
but others have been experimented in the past years [217]. Mepoli-
zumab, an anti-IL-5 antibody therapy, has proven to be efficient in
reducing the exacerbation rate in adults and is now available in chil-
dren older than 6 years old with eosinophilic asthma in Europe and the
US [218]. As previously stated, its efficacy in reducing exacerbation
rates in pediatric clinical trials and real-life studies remain to be de-
termined [129]. However, adult studies suggest it may have a mod-
ifying effect on RV-induced inflammatory response. Hence, a placebo-
controlled trial was conducted in adult patients with mild asthma,
randomized to receive mepolizumab versus placebo, followed by RV-16
inoculation, to study its impact on anti-viral responses [219]. The au-
thors showed that mepolizumab attenuated baseline blood eosinophils
numbers and activation status, but did not prevent the activation of
remaining eosinophils upon RV infection. However, after infection, it
enhanced levels of airway B lymphocytes and AM and modified BAL
levels of CCL20 and IL-1RA. Effects of other drugs targeting Th2 cyto-
kines and alarmins, including lebrikizumab (anti IL-13), dupilumab
(anti IL-4R), reslizumab (anti-IL-5), benralizumab (anti-IL-5R), tezepe-
lumab (anti-TSLP), or anti-IL-33 monoclonal antibodies are currently
studied in pre-clinical and clinical studies [217].

In the next years, new studies are needed regarding these novel
treatments, both in allergic and non-allergic asthmatic children, to
provide new evidence on their immunological effects and potential
disease-modifying properties, and to fully determine the phenotypes/
endotypes of good responders. Most importantly, specific studies in the
youngest children need to be carried out, with appropriate end-points
[129]. This effort will contribute to enter the era of precision medicine
in pediatric asthma.

7. Conclusion

In conclusion, asthma attacks are a main feature of pediatric
asthma, especially of severe asthma. We have highlighted studies sug-
gesting impairment of the mucosal anti-microbial immune responses
during acute asthma and/or at steady state. Interestingly, these al-
terations seem to inconstantly persist into adulthood. These various
altered pathways may reflect different endotypes underlying asthma
heterogeneity and consequently, constitute targets for new treatment
approaches. Preventing, understanding and efficiently managing acute
asthma attacks remain one of the unmet needs in severe childhood
asthma, especially in the youngest children. At the era of precision
medicine, early interventions targeting mucosal immune responses,
lung infections, and microbiota, in early childhood, could have disease-
modifying properties and positive impact on the trajectory of childhood
asthma.

8. Capsule summary

Characteristics of host-microbiota interactions in asthmatic children
favor asthma attacks and may allow to define asthma endotypes. This
knowledge offers promising perspectives to treat asthmatic children
using precision medicine.
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