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Abstract

Background: In metazoans, Piwi-related Argonaute proteins play important roles in maintaining germline integrity
and fertility and have been linked to a class of germline-enriched small RNAs termed piRNAs. Caenorhabditis elegans
encodes two Piwi family proteins called PRG-1 and PRG-2, and PRG-1 interacts with the C. elegans piRNAs (21U-RNAs).
Previous studies found that mutation of prg-1 causes a marked reduction in the expression of 21U-RNAs, temperature-
sensitive defects in fertility and other phenotypic defects.

Results: In this study, we wanted to systematically demonstrate the function of PRG-1 in the regulation of small RNAs
and their targets. By analyzing small RNAs and mRNAs with and without a mutation in prg-1 during C. elegans development,
we demonstrated that (1) mutation of prg-T leads to a decrease in the expression of 21U-RNAs, and causes 35 ~ 40% of
miRNAs to be down-regulated; (2) in C elegans, approximately 3% (6% in L4) of protein-coding genes are differentially
expressed after mutating prg-1, and 60 ~ 70% of these substantially altered protein-coding genes are up-regulated; (3)
the target genes of the down-regulated miRNAs and the candidate target genes of the down-regulated 21U-RNAs are
enriched in the up-regulated protein-coding genes; and (4) PRG-1 regulates protein-coding genes by down-regulating
small RNAs (miRNAs and 21U-RNAs) that target genes that participate in the development of C. elegans.

Conclusions: In prg-T-mutated C. elegans, the expression of miRNAs and 21U-RNAs was reduced, and the protein-coding

underlying PRG-1 function.
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targets, which were associated with the development of C. elegans, were up-regulated. This may be the mechanism

Background

Small non-coding RNAs, including microRNAs (miR-
NAs), Piwi-interacting RNAs (piRNAs), endogenous-
siRNAs (endo-siRNAs) and others, play important roles
in controlling gene expression. These small RNAs inter-
act with different types of Argonaute proteins to form
complexes, such as the RNA-induced silencing complex
(RISC) [1-4]. These complexes recognize target genes
via complementary base pairing and regulate the target
genes’ expression. The Caenorhabditis elegans genome is
currently known to encode 24 Argonaute proteins [5],
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which are divided into three subcategories based on ho-
mology and the small RNAs with which they interact: (1)
PIWIs, which interact with the 21U-RNAs, or piRNAs; (2)
Argonautes, two of which have been shown to interact
with miRNAs, and two of which have been shown to
interact with 26G-RNAs; and (3) the worm Argonautes
(WAGQOs), which interact with 22G-RNAs [6-16].

In C. elegans, two Piwi-related proteins, PRG-1 and
PRG-2, have been identified. Loss of PRG-1 can cause
germline defects and temperature-sensitive sterility [8,17].
21U-RNAs, the piRNAs of C. elegans, are precisely 21 nu-
cleotides long which are shorter than piRNAs in flies and
mammals, have a bias for uracil 5° monophosphate and
have a modified 3" end that resists periodate-degradation
[7,8,18-22]. 21U-RNAs are expressed in the germline.
Their genomic loci disperse in two broad regions of
chromosome IV [18], and their accumulation depends on
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the wild-type activity of PRG-1. Mutation of prg-1 causes
decreased expression of 21U-RNAs [8,17].

C. elegans has complex interactions within its regula-
tory network. We would therefore expect, that some small
RNAs other than 21U-RNAs, such as miRNAs and endo-
siRNAs, are influenced directly or indirectly by PRG-1. To
study whether PRG-1 can influence the expression of
other small RNAs and regulate protein-coding genes via
small RNAs, we extracted small RNAs from six develop-
mental stages (embryo, L1, L2, L3, L4 and young adult)
and mRNAs from four developmental stages (L1, L2, L3
and L4) of prg-1-mutant C. elegans for high-throughput
sequencing. We obtained wild-type data of small RNAs
and mRNAs from the corresponding stages from the
NCBI database [8,23]. We analyzed the wild-type and mu-
tant prg-1 data and demonstrated the function of PRG-1.

Results

We extracted small RNAs from six developmental stages
(embryo, L1, L2, L3, L4, and young adult) and mRNAs
from four stages (L1, L2, L3 and L4) of prg-1 mutants.
High-throughput sequencing of small RNA samples pro-
duced 52,363,338 reads that mapped to the C. elegans gen-
ome. Sequencing of mRNA samples produced 48,257,011
mappable reads. The numbers of small RNA and mRNA
reads there were generated at each stage are shown in
Table 1.

The influence of PRG-1 on the composition of small RNAs
In C. elegans, small RNAs can be classified by their
Argonaute-binding partners [24]. The expression of small
RNAs, including miRNAs and 21U-RNAs, changes during
development [25]. To test whether the composition of
small RNAs in different stages are affected by PRG-1, we
analyzed the composition of small RNAs with and without
a prg-1 mutation.

In wild-type C. elegans (Figure 1A), the percent of small
RNAs that are 21U-RNAs gradually increased along with
development, from 0.72% in L1 to 7.16% in young adults.
However, the expression of 21U-RNAs decreased from L1

Table 1 Summary of the RNA-seq data

Mappable reads

Stage Small RNA mRNA
Embryo 8,056,943
L1 8,867,568 11,794,170
L2 8,632,646 11,842,726
L3 8,970,579 12,222,134
L4 8,941,933 12,397,981
Young adult 8,893,669
Total reads 52,363,338 48,257,011

The reads of small RNAs for six stages (embryo, L1, L2, L3, L4, and young
adult) and mRNAs for four stages (L1, L2, L3, and L4) in the prg-1 mutant.

Page 2 of 11

to L2; and the reasons behind this differential expression
are described below. Like the 21U-RNAs, the proportion
of 22G-like small RNAs, which are 22 nucleotides long
and have a 5'-G, gradually increased from 0.08% in L1 to
0.37% in young adults. Along with the development, 21U-
RNAs and 22G-like small RNAs Spearman’s rank corre-
lation is 0.771. This indicated that 21U-RNAs and 22G-
like small RNAs may have a positive correlation.

However, 21U-RNAs could barely be detected in prg-1
mutants (Figure 1B), which was consistent with previous
reports. Interestingly, 22G-like small RNAs also tended
to increase throughout the growth period, but the rate
of increase was smaller than in the wild type.

miRNAs were highly expressed and had absolute dom-
inance in all developmental stages in the wild type and
prg-1 mutant. The proportion of small RNAs that were
26 nucleotides long and had a 5°-G, termed 26G-like
small RNAs, decreased gradually during early develop-
ment. Inversely, these RNAs exhibited a slight increase
in late development. In wild type, the Spearman’s corre-
lation of 22G-like small RNAs and 26G-like small RNAs
is 0.486, so there is weaker correlation between 22G-like
small RNAs and 26G-like small RNAs.

Mutation of prg-1 induced a decrease in 35 ~ 40% of
miRNAs

miRNAs are well characterized in C. elegans [18,24-29].
Mature miRNAs associate with the Argonautes proteins
ALG-1 and ALG-2 [9]. However, it is not clear whether
PRG-1 affects miRNAs. To explore whether mutation of
prg-1 affected miRNAs, we used the miRDeep2 program
[30] to identify known miRNAs from all developmental
stages. DEGseq [31] and GFOLD [32] were used to analyze
miRNA expression at the same developmental stages in the
presence or absence of a prg-1 mutation, and the differen-
tial expression miRNAs were defined in ‘Methods’.

Approximately 50% of the known miRNAs exhibited
changes in expression at the same stage when in the pres-
ence and absence of a prg-1 mutation (Additional file 1:
Table S1). At each stage, 35% ~ 40% of miRNAs showed a
decrease (Figure 2A). The results indicated that PRG-1 af-
fects miRNA expression. Many known miRNAs were de-
creased in the prg-1 mutant. Therefore, PRG-1 plays an
important role in regulating miRNA expression.

The read count of each miRNA differs between develop-
mental stages; therefore it is reasonable to conclude that
miRNA expression is stage-specific [25]. As mentioned
above, some miRNAs exhibited a decrease in each stage
after mutation of prg-1. The decreased miRNAs were
stage-specific or general. To determine whether the effect
of PRG-1 on miRNAs at different stages was specific, we
performed further analysis of the decreased miRNAs in
six stages. As exhibited in Figure 2B, most down-regulated
miRNAs are shown to decrease in all developmental



Wang et al. BMC Genomics 2014, 15:321
http://www.biomedcentral.com/1471-2164/15/321

Page 3 of 11

0.0003%
0.0203%
0.0247%

0.9666%

1.0119%

2.4326%

0.0144%
0.0225%
0.0217%

0.0526%

0.1113%

A Embryo L1 L2
3.4018%
0.2625% 0.3251%
0.7235%
0.5864% 0.32755%
8'(1333%" 0.0876%
0.3307% 0:1082% 0.0621%
10, ()
1.1797% 1.0560% 0.8023%
wild type
L3 L4 Young adult
4.7212% 7.1554%
0.1006% o, 0.0541%
0.8612% 0.2799% 0.3789%
0.1228%
gagggze 0.1915% 0.0976%
1.1660% - ° 0.5720% 0.5306%
= miRNAs m others m 21U-BRNAs m NRDE-siRNA-like m 22G-like 26G-like
B Embryo L1 L2

prg-1 mutant

L3 L4

Figure 1 The small RNA compositions of each stage in wild type and the prg-1 mutant. (A) The proportion of different types of small RNAs
in six developmental stages of the wild type. (B) The proportion of different types small RNAs in six developmental stages of the prg-1 mutant.
“others” include rRNAs, tRNAs, snoRNAs and small RNA precursors and degradation products.
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stages or in five stages. That is, in different developmental
stages, the down-regulated miRNAs were almost identical.
This result indicated that the influence of PRG-1 on miR-
NAs was independent of the developmental stage.

We selected the targets of the miRNAs which were
down-regulated in all developmental stages and analyzed
the functions of these targets by DAVID [33,34]. We
found that these targets were related with the growth
and mitochondrion (Additional file 2: Figure S1), and
the outcome was similar to GO analysis section below.

21U-RNAs are expressed at low levels in the prg-17 mutant
21U-RNAs, another class of C. elegans non-coding small
RNAs, specifically bind PRG-1 to form a complex that is
important for germline function and fertility [8]. There
have been reports that PRG-1 was required for the accu-
mulation of 21U-RNAs [8]. In our data, known 21U-
RNAs were identified based on the list of 21U-RNAs by
Bagijn et al. [35], and novel 21U-RNAs (Additional file
3) were predicted using the criteria described by Bagijn
et al. [35]. The levels of nearly all 21U-RNAs at each
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Figure 2 Differential expression of miRNAs and 21U-RNAs in each stage with and without the prg-1 mutation. (A) The proportion of
changed miRNAs in six stages. “up” indicates that the expression was up-regulated more than twofold after prg-1 mutation; and “down” indicates
that the expression was down-regulated more than twofold after prg-1 mutation. (B) All miRNAs were classified by the number of times (1 ~ 6)
that a miRNA was decreased in different stages. The time distribution of the down-regulated miRNAs is shown for each stage. For example, the
red bar shows the number of the down-regulated miRNAs that were down-regulated in five stages. Most of the down-regulated miRNAs were
down-regulated in five or six stages after mutation of prg-1. Thus, the decrease in the miRNA levels was independent of the developmental stage.
(C) The numbers of expressed 21U-RNAs in six stages of wild type and prg-1 mutant.
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stage were dramatically reduced by the prg-1 mutation. As
presented in Figure 2C, 21U-RNAs are expressed at low
levels in six stages after the mutation of prg-1. Especially
in L3-L4, when 21U-RNAs accumulate, 21U-RNA expres-
sion could not be detected. This result demonstrated that
PRG-1 affected the expression and accumulation of 21U-
RNAs, which supported previously published results.

The expression of miRNAs and 21U-RNAs during
development

During C. elegans development, individual miRNAs have
dynamic expression patterns [25]. The expression of
21U-RNAs also changes during development [8,25]. To
examine the entire range of expression of miRNAs and
21U-RNAs during C. elegans development in the wild
type and the prg-1I mutant, we parsed the expression
changes of miRNAs and 21U-RNAs between adjacent
developmental stages.

As observed in Figure 3A and B, ~68% of known miR-
NAs did not show a change between adjacent develop-
ment stages, approximately 205 miRNAs were expressed
in both adjacent periods (Additional file 1: Table S2).
Moreover, in the prg-1I mutant, expression of ~87% of
the miRNAs did not differ significantly during develop-
ment. The adjacent stages expressed approximately 214
miRNAs (Additional file 1: Table S2).

The expression of 21U-RNAs increased during deve-
lopment in wild-type C. elegans (Figure 2C). However,
some 21U-RNAs were not expressed from the L4 to
young adult stage. This phenomenon suggested that
some 21U-RNAs were not needed in the mature organ-
ism; therefore, 21U-RNAs ceased being expressed and
were gradually degraded. In the prg-1 mutant, few 21U-
RNAs could be detected, and those that were detected
were low.

The general trend of 21U-RNAs is that the types grad-
ually increase and that their expression increases during
development in the wild type.

Of the 3% of protein-coding genes that were substantially
altered, approximatley 60 ~ 70% were up-regulated

PRG-1 influences the C. elegans reproductive phenotype,
and phenotypic changes are directly dependent on the
expression of protein-coding genes. Therefore, we ex-
pected to find some changes in gene expression in the
prg-1 mutant. To study whether PRG-1 affected the ex-
pression of protein-coding genes, the mRNA expression
in four stages (L1-L4) with and without a mutation in
prg-1 were analyzed. We found that in L1-L4, 3.62%,
3.58%, 3.53% and 6.00%, respectively, of protein-coding
genes were differentially expressed (Additional file 1:
Table S3). Approximately 60 ~70% of the differentially
expressed genes were up-regulated at each stage (Figure 4).

The target genes of down-regulated small RNAs were
up-regulated
miRNAs are small RNAs that regulate protein-coding
genes, and 21U-RNAs are reported to participate in
regulating protein-coding genes [35]. In our study,
miRNA and 21U-RNA expression was reduced after mu-
tation of prg-1, and we speculated that the reduction in
small RNA expression led to the elevation of expression
of protein-coding genes. To verify whether the target
genes of the down-regulated small RNAs were up-
regulated, we analyzed the target genes of the down-
regulated miRNAs and 21U-RNAs in four stages.

The results (Figure 5 includes P values from T-tests)
indicated that the target genes of the down-regulated
miRNAs and 21U-RNAs had higher expression in the
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same stages after mutation of prg-1. These findings sug-
gest that PRG-1-dependent small RNAs affect the
expression of protein-coding genes.

Significantly up-regulated genes were enriched with the
substantially altered target genes of the down-regulated
miRNA and 21U-RNAs
The prg-1 mutation led to a significant increase in the ex-
pression of some protein-coding genes. Meanwhile, the
target genes of the down-regulated miRNA and 21U-
RNAs were up-regulated. Therefore, we explored whether
the up-regulated genes were induced by the down-
regulated miRNAs and 21U-RNAs. The enrichment of the
differentially expressed target genes that were regulated
by the down-regulated miRNAs and 21U-RNAs within
the substantially up-regulated protein-coding genes was
calculated.

As seen in Figure 6A, the substantially up-regulated
protein-coding genes were enriched with the differentially
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Figure 4 Differentially expressed protein-coding genes after
prg-1 mutation. The proportion of up- and down-regulated protein-
coding genes that were significantly changed (P < 0.05, g < 001 of Storey)
after prg-1 mutation is shown.

Percent of genes

expressed target genes of the down-regulated miRNAs
and 21U-RNAs (P values from Fisher’s exact test are
shown in the figure). Of the up-regulated protein-coding
genes, ~30% (Figure 6B) were up-regulated target genes.
Namely, the prg-1 mutation increased gene expression,
and the down-regulation of miRNAs and 21U-RNAs was
the cause of the increased gene expression in 1/3 of the
substantially up-regulated protein-coding genes.

PRG-1-dependent small RNAs participated in C. elegans
development

Mutation of prg-1 can affect small RNAs, thereby influ-
encing the expression of their target genes. Alterations
in the expression of target genes may change certain
biological processes. To study how prg-1 affects the C.
elegans biological phenotype, GO analysis [33,34] was
performed for the up-regulated genes that were targets
of the down-regulated miRNAs and 21U-RNAs in
each stage.

The results (Figure 7) indicated that these target genes
from different stages were all enriched in the biological
processes related to growth and development. For ex-
ample, some target genes were enriched in ‘determi-
nation of adult life span’ in L1. Target genes were also
enriched in ‘regulation of multicellular organism growth’
in L2 and L4, as well as in ‘larval development’ in the L2
stages. Together, these findings illustrated that PRG-1-
related protein-coding genes were involved in C. elegans
development. If PRG-1 was expressed at normal levels,
miRNAs and 21U-RNAs would be expressed normally,
and their target genes would maintain normal levels of
expression. Under these conditions, C. elegans would de-
velop into a typical mature individual. In L3 and L4,
these up-regulated genes were also enriched in the bio-
logical processes of transcription and RNA metabolism.
In L3 in C. elegans, a large number of small RNAs, such
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Figure 5 The cumulative distribution of the targets of the down-regulated miRNAs and 21U-RNAs. The cumulative distribution of the
target and non-target genes of the down-regulated miRNAs and 21U-RNAs in L1-L4 indicated that the expression of the target genes was

as 21U-RNAs and 22G-RNAs, are produced, and the
regulatory functions of small RNAs are reinforced. Both
of these behaviors require a large number of transcrip-
tional events. Therefore, these requirements explain the
enrichment of genes involved in transcription- and RNA
metabolism-related biological processes in the L3 and L4
stages.

Three cases of verified, decreased miRNA targets
We systematically analyzed the function of the predicted
target genes of the down-regulated miRNAs via DAVID

and found that these target genes were related to develop-
ment. Then, we downloaded the verified miRNA targets
from the miRTarBase website [36] and selected three ex-
amples of target genes of the decreased miRNAs for ana-
lysis. miR-63-3p, miR-66-5p, miR-87-3p, miR-233-3p and
miR-234-3p were decreased in the L1-L4 stages in the prg-
1 mutant. At the same time, their target, K0O6A9.1, dis-
played more than two-fold up-regulation (Figure 8). GO
identified KO6A9.1 as an intrinsic component of the mem-
brane (GO:0031224). miR-60-3p was decreased in L1, L3
and L4, and its target, K12H4.4, had a greater than two-
fold increase in the corresponding stages. miR-80-3p was

13 W up target enrichment
1.25 P=3.78E-06
‘GE) 12
E .
P=8.73E-03
g 1.15 P=2.79E-06
<
o 11 P=4.36E-02
(<}
s
1.05
1
L1 L2 L3 L4

35
30

25 ]
. _—
15
10
)
L1 L2 L3 L4

o

Up targets in up genes (%)
o

Figure 6 The substantially increased protein-coding genes were enriched with targets of the down-regulated miRNAs and 21U-RNAs.
(A) The up-regulated genes were enriched with the differentially expressed target genes of the down-regulated miRNAs and 21U-RNAs at the
corresponding stages. P values were calculated using Fisher's exact test. (B) The percentage of up-regulated targets among the up-regulated
protein-coding genes in the corresponding stages.
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Figure 7 GO analysis for the up-regulated targets of the down-regulated miRNAs and 21U-RNAs. GO analysis was performed for the up-
regulated target genes (P < 0.05, g < 0.01 of Storey) of the down-regulated miRNAs and 21U-RNAs. The GO terms were selected from clusters with
a cluster enrichment score greater than 1 and P < 0.05. Counts indicate the genes in GO terms. Each color indicates one cluster.

down-regulated in L2-L4, and the expression of its target, Discussion

B0361.9, increased more than two-fold after the mutation =~ Composition of other small RNAs

of prg-1. K12H4.4 and B0361.9 are both implicated in the = Our results included small RNAs that were not the focus
development of C. elegans. of the current study, such as rRNAs (ribosomal RNAs),
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4] I
L1 L2 L3 L4

Figure 8 Fold change of a target, KO6A9.1, in L1-L4. miR-63-3p,
miR-66-5p, MiR-87-3p, MiR-233-3p and miR-234-3p were decreased
after mutation of prg-1. Their target, KO6A9.1, showed an increase of
more than twofold of that in L1-L4. prg-T mutant and wild type indicate
the expression of KO6A9.1 in the prg-T mutant and wild type, respectively.

w

log 2 (prg-1 mutant/wild type)
n

—_

tRNAs (transfer RNAs), and snoRNAs (small nucleolar
RNAs), as well as small RNA precursors and degradation
products. In Figure 1, these RNAs (termed “other”) in
the prg-1 mutant had remarkable decreases in all stages
relative to the wild-type C. elegans. It is likely that our
results included types of small RNAs that have not yet
been recognized, and these unknown small RNAs may
have disappeared in the prg-1 mutant. Alternately, the
difference may be explained by the processes for prepar-
ing the small RNAs and sequencing.

22G-like and 26G-like small RNAs
In wild-type C. elegans (Figure 1A), the proportion of
21U-RNAs was reduced between the L1 and L2 stages.
This phenomenon could be explained by an absence of
expression of novel 21U-RNAs and prioritizing the deg-
radation of 21U-RNAs during that period or to the fact
that the rate at which 21U-RNAs were generated was
less than the speed of their degradation. Either explan-
ation would lead to an overall reduction in 21U-RNAs.
The present report has demonstrated that 21U-RNA-
mediated silencing in the C. elegans germline results in
secondary siRNA-dependent silencing of a ‘piRNA sen-
sor’ [35]. Thus, the 21U-RNA-mediated silencing path-
way completes the supervisory function through a
secondary siRNA, known as 22G-RNAs which are RNA-
dependent RNA polymerase (RdRP)-generated RNAs
[35,37]. 22G-RNAs are predominantly 22 nt in length
and contain a 5'-G that is triphosphorylated [38]. As our
data indicate, we only obtained 5'-monophosphate small
RNAs; and no 22G-RNAs were detected, so we defined
these 22 nt small RNA which selected by the targets of
22G-RNAs as 22G-like small RNA. 26G-like small RNAs
also defined in a similar method. However, as the wild-
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type results show in Figure 1A, the expression of 22G-
like small RNAs gradually increased during develop-
ment, as did the expression of 21U-RNAs. Therefore, it
was probable that some 5’-monophosphate 22G-RNAs
were present and participated in downstream regulation
of the 21U-RNA-mediated pathway.

There are two distinct classes of 26G-RNAs in C. ele-
gans. One class is enriched in oocytes and embryos and
associates with ERGO-1 [12,15,39]. The other class asso-
ciates with ALG-3 and ALG-4 during spermatogenesis
[10,15]. Both classes are thought to function by trigger-
ing the formation of 22G-RNAs and subsequent silen-
cing of target mRNAs [24,40]. In wild-type C. elegans,
the expression of 26G-like small RNAs first decreased
and then increased as development progresses. A similar
expression pattern was also observed in the prg-1 mu-
tant; however, the expression was lower than that of the
wild type. Interestingly, in the prg-1 mutant, the expres-
sion of 22G-like small RNAs increased during develop-
ment (Figure 1B). If the prg-1 mutation is present, the
21U-RNA-mediated pathway should be blocked, and the
expression of 22G-like small RNAs, which are expressed
downstream of this pathway, should decrease. However,
the prg-1 mutation did not affect the 26G-RNA-
mediated pathway because the expression pattern of the
26G-RNAs did not change. The downstream 22G-like
small RNAs were expressed normally and increased dur-
ing development in the prg-1 mutant.

PRG-1-dependent, down-regulated miRNAs and 21U-RNAs
are responsible for 1/3 of the expression of the substan-
tially up-regulated genes

Approximately 60 ~70% of the significantly altered
genes exhibited up-regulation after the mutation of prg-
1. Of these, 1/3 were induced by the down-regulated
miRNAs and 21U-RNAs. The remaining substantially
up-regulated protein-coding genes might be directly reg-
ulated by the PRG-1 protein; the target genes of the
small RNAs could regulate the other mRNAs. The in-
ternal control network of C. elegans is complex and can-
not be fully explained by the prg-1 pathway alone.

Conclusions

We analyzed small RNAs (from embryo, L1, L2, L3, L4,
and young adult) and mRNAs (from L1, L2, L3, and L4) in
a prg-1 mutant using high-throughput sequencing. By ana-
lyzing wild-type small RNAs and mRNAs of the corre-
sponding stages found in the NCBI database, we found
decreased miRNA and 21U-RNA levels in six stages after
mutation of prg-1. In the prg-1 mutant, approximately 3%
of the protein-coding genes showed differential expression,
of which approximately 60 ~70% exhibited up-regulation.
Approximately 1/3 of the substantially up-regulated protein-
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coding genes were target genes of the down-regulated
miRNAs and 21U-RNAs.

Methods

Small RNA and mRNA preparation and high-throughput
sequencing

The nematode strain used in this study was the C. ele-
gans prg-1 mutant (wmli61). Worms were cultured with
the bacterial strain OP50 on nematode growth medium.
All strains were grown at 20°C.

As described by Deng et al. [41], we collected small RNAs
(embryo, L1, L2, L3, L4, and young adult) and mRNAs (L1-
L4) at different stages. Total RNA was extracted from each
of the six different developmental stages using the Trizol
protocol. Small RNAs were size-selected by gel electrophor-
esis, and we used poly(A) to extract L1-L4 mRNA. Then,
we submitted small RNAs from six stages and mRNA from
four stages for high-throughput sequencing.

Small RNA classification

First, we removed the sequences with lengths <18 nt and
removed the simple repeat sequences that had a single-
base content greater than 85%. Then, small RNAs were
mapped to the C. elegans genome (cel0), with allow-
ances for 0 mismatches using the software Bowtie.

The known miRNAs were selected from the perfectly
mapped small RNAs using miRDeep2 [30]. 21U-RNAs
were assessed using perfect matching to known 21U-
RNAs from the perfectly matched small RNAs. We pre-
dicted the novel 21U-RNAs as Bagijn et al. described
[35]. We also selected type 2 21U-RNAs [42].

The small RNAs that remained after we removed the
miRNAs and 21U-RNAs were classified as described by
Zhang et al. [38]. Briefly, published targets of different
class siRNAs were parsed. The target genes of WAGO-
1-12-associated 22G-RNAs [11] and of CSR-1-associated
22G-RNAs [14] were used to select 22G-like small
RNAs. The target genes of ERGO-1 [12] and of ALG-3/
4-associated 26G-RNAs [10,15] were used to select the
26G-like small RNAs. The NRDE-like small RNAs were
those that were identical to the NRDE-3-associated siR-
NAs [38]. The remaining perfectly mapped small RNAs
were called ‘others’.

We used DEGseq [31] and GFOLD [32] to analyze
miRNAs expression. We chose miRNAs which had more
than two-fold difference in expression (P <0.001, q<
0.01 of Storey) from DEGseq, and miRNAs which had
more than two-fold difference in expression (GFOLD
score >0 for up-regulation and GFOLD score<0 for
down-regulation) from GFOLD outcomes. Then we ob-
tained the intersection of up-regulated miRNAs and
down-regulated miRNAs for each stage from the chosen
miRNAs, respectively. 21U-RNAs (known 21U-RNAs)
reads were normalized to the total known miRNA reads.
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Almost all of 21U-RNAs could not be detected after prg-
1 mutation, so we considered these 21U-RNAs were
down-regulated. We considered 21U-RNAs expression if
the expression is greater than 1 after normalization.

mRNA data analyses and target gene screening

We used eight sets of mRNA data. The wild-type mRNAs
(L1-L4) were downloaded from the NCBI database
(GSE22410) [23]. The other four sets consisted of our se-
quencing data. Tophat and Cufflinks [43] were used to as-
semble the wild-type and prg-I-mutant mRNAs. Cuffdiff
and DEGseq [31] were used to calculate the differential
expression of protein-coding genes with and without the
prg-1 mutation, and we selected genes which had more
than two-fold difference in expression (P <0.05, q<0.01
of Storey) from DEGseq outcomes. The intersection of
genes which we selected from DEGseq outcomes and
genes which had more than two-fold difference in expres-
sion (P < 0.05) from Cuffdiff outcomes was defined as dif-
ferentially expressed genes. The following analyses were
based on P < 0.05 and q < 0.01 of Storey.

The list of miRNA target genes was downloaded from
microRNA.org. The target genes of the down-regulated
miRNAs were chosen when five or more miRNAs had
the same target genes. We predicted 21U-RNA candi-
date target genes in the C. elegans mRNAs and allowed
for up to three mismatches [35].

Gene ontology analyses

The up-regulated genes with P <0.05 (q<0.01 of Storey)
were selected from the target genes of the down-regulated
miRNAs and 21U-RNAs. The selected genes were input
into DAVID [33,34], which sorted these genes into func-
tionally related clusters. The clusters with an enrichment
score greater than 1 were chosen. The P < 0.05 GO terms
were selected from the high enrichment score clusters.

Availability of supporting data

The small RNAs and mRNAs data of wild type used in
this study were downloaded from NCBI gene Expression
Omnibus (http://www.ncbinlm.nih.gov/geo/) under ac-
cession number: GSE22410 and GSE11738; and small
RNAs and mRNAs data of the prg-1 mutant were depos-
ited in the Gene Expression Omnibus with the following
accession number: GSE56274. The additional files and
information are available at the website: http://www.reg-
ulatoryrna.org/pub/cel_smallRNA/index.html.

Additional files

Additional file 1: Table S1. — miRNA expression after prg-T mutation.
Table S2 — miRNA expression during development. Table S3 - Expression
of protein-coding genes after prg-1 mutation (P < 0.05, g < 0.01 of Storey).
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Additional file 2: Figure S1. GO analysis for the targets of down-regulated
miRNAs in all developmental stages. We selected the targets of the miRNAs
which are down-regulated in all developmental stages and analyzed the
functions of these targets by DAVID. Counts indicated the genes in GO terms.

Additional file 3: The novel 21U-RNAs.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

RC, SH and DH conceived and designed the study. DC and TX performed
the experimental work. JW carried out data analysis. DC, XS and PZ contributed
to the transcriptome data analysis. JW, DC and TX drafted the manuscript. SH
reviewed the manuscript. RC and DH supervised the study. All authors read and
approved the final manuscript.

Acknowledgements

The strain prg-1 mutant (wm167) that was used in this study was obtained
from the Caenorhabditis Genetic Center. We thank our labmates for many
helpful discussions and comments on the manuscript. This project was
supported by the National Key Basic Research & Development Program
under Grant No. 2011CB504605, by the National High Technology Research
and Development Program under Grant No. 2014AA021103, by the National
Natural Science Foundation of China (NSFC grant no. 31090253, 31210103912),
partially by a grant (No. 0529YX5105) from the Key Laboratory of the Zoological
Systematics and Evolution of the Chinese Academy of Sciences, and by National
Science Fund for Fostering Talents in Basic Research (Special subjects in animal
taxonomy, NSFC-J1210002). The computing resource was supported by HPC
Platform, Scientific Information Center, Institute of Zoology, CAS, China.

Author details

'School of Life Science, Hebei University, Hebei 071002, People’s Republic of China.
Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology,
Chinese Academy of Sciences, Beijing 100101, People’s Republic of China.
3Laboratory of Bioinformatics and Noncoding RNA, Institute of Biophysics,
Chinese Academy of Sciences, Beijing 100101, People’s Republic of China.
“College of Life Science, Yuncheng University, Yuncheng, Shanxi 044000,
People’s Republic of China.

Received: 30 January 2014 Accepted: 24 April 2014
Published: 30 April 2014

References

1. Tomari Y, Du T, Haley B, Schwarz DS, Bennett R, Cook HA, Koppetsch BS,
Theurkauf WE, Zamore PD: RISC assembly defects in the Drosophila RNAi
mutant armitage. Cell 2004, 116(6):831-841.

2. Pham JW, Pellino JL, Lee YS, Carthew RW, Sontheimer EJ: A Dicer-2-
dependent 80s complex cleaves targeted mRNAs during RNAi in
Drosophila. Cell 2004, 117(1):83-94.

3. Chendrimada TP, Gregory R, Kumaraswamy E, Norman J, Cooch N,
Nishikura K, Shiekhattar R: TRBP recruits the Dicer complex to Ago2 for
microRNA processing and gene silencing. Nature 2005, 436(7051):740-744.

4. Liu Q Rand TA, Kalidas S, Du F, Kim HE, Smith DP, Wang X: R2D2, a bridge
between the initiation and effector steps of the Drosophila RNAi
pathway. Science 2003, 301(5641):1921-1925.

5. Grishok A: Biology and Mechanisms of Short RNAs in Caenorhabditis
elegans. Adv Genet 2013, 83:1-69.

6. Yigit E, Batista PJ, Bei Y, Pang KM, Chen CC, Tolia NH, Joshua-Tor L, Mitani S,
Simard MJ, Mello CC: Analysis of the C. elegans Argonaute family reveals that
distinct Argonautes act sequentially during RNAI. Cell 2006, 127(4):747-757.

7. Das PP, Bagijn MP, Goldstein LD, Woolford JR, Lehrbach NJ, Sapetschnig A,
Buhecha HR, Gilchrist MJ, Howe KL, Stark R, Matthews N, Berezikov E,
Ketting RF, Tavaré S, Miska EA: Piwi and piRNAs act upstream of an
endogenous siRNA pathway to suppress Tc3 transposon mobility in the
Caenorhabditis elegans Germline. Mol Cell 2008, 31(1):79-90.

8. Batista PJ, Ruby JG, Claycomb JM, Chiang R, Fahlgren N, Kasschau KD,
Chaves DA, Gu W, Vasale JJ, Duan S, Conte D Jr, Luo S, Schroth GP,
Carrington JC, Bartel DP, Mello CC: PRG-1 and 21U-RNAs interact to form
the piRNA complex required for fertility in C. elegans. Mol Cell 2008,
31(1):67-78.

20.

22.

23.

24.

25.

26.

27.

28.

29.

Page 10 of 11

Grishok A, Pasquinelli AE, Conte D, Li N, Parrish S, Ha |, Baillie DL, Fire A,
Ruvkun G, Mello CC: Genes and mechanisms related to RNA interference
regulate expression of the small temporal RNAs that control C. elegans
developmental timing. Cell 2001, 106(1):23-34.

Conine CC, Batista PJ, Gu W, Claycomb JM, Chaves DA, Shirayama M, Mello
CC: Argonautes ALG-3 and ALG-4 are required for spermatogenesis-
specific 26G-RNAs and thermotolerant sperm in Caenorhabditis elegans.
Proc Natl Acad Sci U S A 2010, 107(8):3588-3593.

Gu W, Shirayama M, Conte D Jr, Vasale J, Batista PJ, Claycomb JM, Moresco
JJ, Youngman EM, Keys J, Stoltz MJ, Chen CC, Chaves DA, Duan S, Kasschau
KD, Fahlgren N, Yates JR, Mitani S, Carrington JC, Mello CC: Distinct
argonaute-mediated 22G-RNA pathways direct genome surveillance in
the C. elegans germline. Mol Cell 2009, 36(2):231-244.

Vasale JJ, Gu W, Thivierge C, Batista PJ, Claycomb JM, Youngman EM,
Duchaine TF, Mello CC, Conte D Jr: Sequential rounds of RNA-dependent
RNA transcription drive endogenous small-RNA biogenesis in the ERGO-1/
Argonaute pathway. Proc Natl Acad Sci U S A 2010, 107(8):3582-3587.
Shirayama M, Seth M, Lee HC, Gu W, Ishidate T, Conte D Jr, Mello CC:
piRNAs initiate an epigenetic memory of nonself RNA in the C. elegans
germline. Cell 2012, 150(1):65-77.

Claycomb JM, Batista PJ, Pang KM, Gu W, Vasale JJ, van Wolfswinkel JC,
Chaves DA, Shirayama M, Mitani S, Ketting RF, Conte D Jr, Mello CC: The
Argonaute CSR-1 and its 22G-RNA cofactors are required for holocentric
chromosome segregation. Cell 2009, 139(1):123-134.

Han T, Manoharan AP, Harkins TT, Bouffard P, Fitzpatrick C, Chu DS, Thierry-Mieg
D, Thierry-Mieg J, Kim JK: 26G endo-siRNAs regulate spermatogenic and
zygotic gene expression in Caenorhabditis elegans. Proc Natl Acad Sci U S A
2009, 106(44):18674-18679.

Wedeles CJ, Wu MZ, Claycomb JM: A multitasking Argonaute: exploring the
many facets of C. elegans CSR-1. Chromosome Res 2013, 21(6-7):573-586.
Wang G, Reinke V: A C. elegans Piwi, PRG-1, regulates 21U-RNAs during
spermatogenesis. Curr Biol 2008, 18(12):861-867.

Ruby JG, Jan C, Player C, Axtell MJ, Lee W, Nusbaum C, Ge H, Bartel P
Large-scale sequencing reveals 21U-RNAs and additional microRNAs and
endogenous siRNAs in C. elegans. Cell 2006, 127(6):1193-1207.

Ohara T, Sakaguchi Y, Suzuki T, Ueda H, Miyauchi K, Suzuki T: The 3’ termini
of mouse Piwi-interacting RNAs are 2"-O-methylated. Nat Struct Mol Biol
2007, 14(4):349-350.

Saito K, Sakaguchi Y, Suzuki T, Suzuki T, Siomi H, Siomi MC: Pimet, the
Drosophila homolog of HEN1, mediates 2"-O-methylation of Piwi- inter-
acting RNAs at their 3’ ends. Genes Dev 2007, 21(13):1603-1608.

Horwich MD, Li C, Matranga C, Vagin V, Farley G, Wang P, Zamore PD: The
Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs
and single-stranded siRNAs in RISC. Curr Biol 2007, 17(14):1265-1272.
Kirino Y, Mourelatos Z: Mouse Piwi-interacting RNAs are 2-O-methylated
at their 3' termini. Nat Struct Mol Biol 2007, 14(4):347-348.

Lamm AT, Stadler MR, Zhang H, Gent JI, Fire AZ: Multimodal RNA-seq using
single-strand, double-strand, and CircLigase-based capture yields a
refined and extended description of the C. elegans transcriptome.
Genome Res 2011, 21(2):265-275.

Shi Z, Montgomery TA, Qi Y, Ruvkun G: High-throughput sequencing
reveals extraordinary fluidity of miRNA, piRNA, and siRNA pathways in
nematodes. Genome Res 2013, 23(3):497-508.

Kato M, de Lencastre A, Pincus Z, Slack FJ: Dynamic expression of small
non-coding RNAs, including novel microRNAs and piRNAs/21U-RNAs,
during Caenorhabditis elegans development. Genome Biol 2009, 10(5):R54.
Lau NG, Lim LP, Weinstein EG, Bartel DP: An abundant class of tiny RNAs
with probable regulatory roles in Caenorhabditis elegans. Science 2001,
294(5543):858-862.

Lee RC, Ambros V: An extensive class of small RNAs in Caenorhabditis
elegans. Science 2001, 294(5543):862-864.

Lim LP, Lau NC, Weinstein EG, Abdelhakim A, Yekta S, Rhoades MW, Burge
(CB, Bartel DP: The microRNAs of Caenorhabditis elegans. Genes Dev 2003,
17(8):991-1008.

Gerstein MB, Lu ZJ, Van Nostrand EL, Cheng C, Arshinoff BI, Liu T, Yip KY,
Robilotto R, Rechtsteiner A, lkegami K, Alves P, Chateigner A, Perry M, Morris
M, Auerbach RK, Feng X, Leng J, Vielle A, Niu W, Rhrissorrakrai K, Agarwal A,
Alexander RP, Barber G, Brdlik CM, Brennan J, Brouillet JJ, Carr A, Cheung
MS, Clawson H, Contrino S, et al: Integrative analysis of the Caenorhabditis
elegans genome by the modENCODE project. Science 2010,
330(6012):1775-1787.


http://www.biomedcentral.com/content/supplementary/1471-2164-15-321-S2.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-15-321-S3.xlsx

Wang et al. BMIC Genomics 2014, 15:321
http://www.biomedcentral.com/1471-2164/15/321

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

42.

43.

Friedlander MR, Mackowiak SD, Li N, Chen W, Rajewsky N: miRDeep2
accurately identifies known and hundreds of novel microRNA genes in
seven animal clades. Nucleic Acids Res 2012, 40(1):37-52.

Wang L, Feng Z, Wang X, Wang X, Zhang X: DEGseq: an R package for
identifying differentially expressed genes from RNA-seq data.
Bioinformatics 2010, 26(1):136-138.

Feng J, Meyer CA, Wang Q, Liu JS, Shirley Liu X, Zhang Y: GFOLD: a
generalized fold change for ranking differentially expressed genes from
RNA-seq data. Bioinformatics 2012, 28(21):2782-2788.

da Huang W, Sherman BT, Lempicki RA: Systematic and integrative
analysis of large gene lists using DAVID bioinformatics resources.

Nat Protoc 2000, 4(1):44-57.

da Huang W, Sherman BT, Lempicki RA: Bioinformatics enrichment tools:
paths toward the comprehensive functional analysis of large gene lists.
Nucleic Acids Res 2009, 37(1):1-13.

Bagijn MP, Goldstein LD, Sapetschnig A, Weick EM, Bouasker S, Lehrbach NJ,
Simard MJ, Miska EA: Function, targets, and evolution of Caenorhabditis
elegans piRNAs. Science 2012, 337(6094):574-578.

Hsu SD, Lin FM, Wu WY, Liang C, Huang WC, Chan WL, Tsai WT, Chen GZ,
Lee CJ, Chiu CM, Chien CH, Wu MC, Huang CY, Tsou AP, Huang HD:
miRTarBase: a database curates experimentally validated microRNA-
target interactions. Nucleic Acids Res 2011, 39(Database issue):D163-D169.
Lee HC, Gu W, Shirayama M, Youngman E, Conte D Jr, Mello CC: C. elegans
piRNAs mediate the genome-wide surveillance of germline transcripts.
Cell 2012, 150(1):78-87.

Zhang C, Montgomery TA, Gabel HW, Fischer SE, Phillips CM, Fahlgren N,
Sullivan CM, Carrington JC, Ruvkun G: mut-16 and other mutator class
genes modulate 22G and 26G siRNA pathways in Caenorhabditis
elegans. Proc Natl Acad Sci U S A 2011, 108(4):1201-1208.

Fischer SE, Montgomery TA, Zhang C, Fahlgren N, Breen PC, Hwang A,
Sullivan CM, Carrington JC, Ruvkun G: The ERI-6/7 helicase acts at the first stage
of an sikRNA amplification pathway that targets recent gene duplications.
PLoS Genet 2011, 7(11):¢1002369.

Kamminga LM, van Wolfswinkel JC, Luteijn MJ, Kaaij LJ, Bagijn MP,
Sapetschnig A, Miska EA, Berezikov E, Ketting RF: Differential impact of the
HEN1 homolog HENN-1 on 21U and 26G RNAs in the germline of
Caenorhabditis elegans. PLoS Genet 2012, 8(7):21002702.

Deng W, Zhu X, Skogerbo G, Zhao Y, Fu Z, Wang Y, He H, Cai L, Sun H, Liu
C, Li B, Bai B, Wang J, Jia D, Sun S, He H, Cui Y, Wang Y, Bu D, Chen R:
Organization of the Caenorhabditis elegans small non-coding transcrip-
tome: genomic features, biogenesis, and expression. Genome Res 2006,
16(1):20-29.

Gu W, Lee HC, Chaves D, Youngman EM, Pazour GJ, Conte D Jr, Mello CC:
CapSeq and CIP-TAP Identify Pol Il start sites and reveal capped small
RNAs as C. elegans piRNA precursors. Cell 2012, 151(7):1488-1500.
Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H,
Salzberg SL, Rinn JL, Pachter L: Differential gene and transcript expression
analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc
2012, 7(3):562-578.

doi:10.1186/1471-2164-15-321
Cite this article as: Wang et al: The influences of PRG-1 on the expression
of small RNAs and mRNAs. BMC Genomics 2014 15:321.

Page 11 of 11

~
Submit your next manuscript to BioMed Central
and take full advantage of:
e Convenient online submission
¢ Thorough peer review
* No space constraints or color figure charges
¢ Immediate publication on acceptance
¢ Inclusion in PubMed, CAS, Scopus and Google Scholar
* Research which is freely available for redistribution
Submit your manuscript at ) -
www.biomedcentral.com/submit ( BiolVied Central
J




	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	The influence of PRG-1 on the composition of small RNAs
	Mutation of prg-1 induced a decrease in 35 ~ 40% of miRNAs
	21U-RNAs are expressed at low levels in the prg-1 mutant
	The expression of miRNAs and 21U-RNAs during development
	Of the 3% of protein-coding genes that were substantially altered, approximatley 60 ~ 70% were up-regulated
	The target genes of down-regulated small RNAs were up-regulated
	Significantly up-regulated genes were enriched with the substantially altered target genes of the down-regulated miRNA and 21U-RNAs
	PRG-1-dependent small RNAs participated in C. elegans development
	Three cases of verified, decreased miRNA targets

	Discussion
	Composition of other small RNAs
	22G-like and 26G-like small RNAs
	PRG-1-dependent, down-regulated miRNAs and 21U-RNAs are responsible for 1/3 of the expression of the substantially up-regulated genes

	Conclusions
	Methods
	Small RNA and mRNA preparation and high-throughput sequencing
	Small RNA classification
	mRNA data analyses and target gene screening
	Gene ontology analyses
	Availability of supporting data

	Additional files
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

