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R E V I E W

Emerging role of MAP kinase pathways as 
therapeutic targets in COPD

Abstract: Studies examining the cellular mechanisms of infl ammation and protease 

production in the lung tissue and airways of COPD patients have shed light on the important 

role of kinase-based signaling cascades. These pathways can be activated by environmental 

stimuli such as tobacco smoke, and by endogenous signals such as cytokines, growth 

factors, and infl ammation-derived oxidants. The three most widely characterized cascades 

are those directed by the classical mitogen activated protein (MAP) kinase (ERK1/2), 

stress activated protein kinase/c-Jun N-terminal protein kinase, and p38 enzymes. These 

phosphorylation cascades transmit and amplify extracellular, receptor-mediated signals 

through the cytoplasm of the cell to activate nuclear transcription factors which bind and 

induce expression of target genes. The result is tight control of diverse cellular events, and 

rapid responses to external stimuli. However, recent research suggests that constitutive or 

aberrant activation of MAP kinases contributes to several COPD-associated phenotypes, 

including mucus overproduction and secretion, infl ammation, cytokine expression, apoptosis, 

T cell activation, matrix metalloproteinase production, and fi brosis. This review explores 

the biological functions of the MAP kinase pathways in the pathogenesis of COPD, their 

activation by cigarette smoke, and discusses the potential role of MAP kinase inhibitors in 

COPD therapy.

Keywords: cigarette smoke, cytokines, airway, infl ammation, phosphorylation, transcription, 

inhibitors, apoptosis, pharmaceutical targets

Introduction
COPD is a debilitating lung disorder that kills over 110 000 individuals each year, 

making it the fourth largest cause of death in the US. Multiple initiating events 

including infl ammation, protease–antiprotease imbalance, and oxidant–antioxidant 

imbalance damage the parenchyma and airways, leading to tissue remodeling. 

An emerging hypothesis in the fi eld is that subsequent changes in epithelial gene 

expression and cellular function result in permanent airway injury and destruction 

of lung matrix. Many of these events are mediated in part by MAP kinase signal 

transduction pathways. Five distinct MAP kinase pathways have been identifi ed in 

eukaryotes. These cascades are activated by distinct stimuli (including cigarette 

smoke) and direct a variety of biological events. While it is unlikely that an indi-

vidual signaling cascade mediates a disease with such complex pathologies, recent 

research efforts have greatly improved our understanding of the activation of MAP 

kinase pathways and how these pathways direct cellular responses in the lung of 

COPD patients.

A remarkable feature of these pathways is that different stimuli (environmental 

toxins, oxidants, steroid hormones, mitogens, UV light, heat shock, or changes in pH, 

osmolarity, and nutrient supply) can activate the same pathway, which impressively 

induces diverse cell behaviors through reversible phosphorylation of transcription 

factor targets. For example, although interleukin (IL)-8 expression typically occurs 

through p38, ERK1/2 and SAPK/JNK have recently been found to mediate increased 
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Table 1 Overview of the components of the ERK1/2, p38, and SAPK/JNK MAP kinase pathways    

MAPK pathway
 ERK1/2 p38 SAPK/JNK 

External stimuli EGF, NGF, PDGF, FGF, hormones,  TGF-β , FasL, LPS, IL-1β , LFA-1, UV, γ radiation, insulin, FasL,
 phorbol esters, insulin, neuropeptides,  hyperosmolarity, heat shock,cytokines, LFA-1,cytokines, GFs, 
 TGF-β  death stimuli, anisomycin hyperosmolarity, oxidative stress

Membrane receptor Gq-coupled R, RTKs, BCR, integrins,  GPCR, Fas/CD95, BCR RTKs, Fas/CD95, G12/13-
 ion channels, TCR/CD3 complex,   coupled R, TNFR-2, DR3, BCR
 InsulinR   

MAPKKK (ser/thr kinase) Raf MLK3, TAK, DLK Mekk1,4, MLK3, ASK1 

MAPKK (dual specifi city  MEK1/2 MKK3/4/6 MKK4/7
kinase)  

MAPK ERK1/2 p38 SAPK/JNK 

Transcription factors Elk-1, Fra-1, TCF, ELK-1, Fos, Jun, AP-1,  ATF2, Elk-1, MEF-2C, CHOP, ETS1, 
 p90RSK, Ets, Smad2/3, Stat1/3, c-Myc,  STAT1, p53, Pax6, CREB, Fos c-Jun, ATF2, Elk-1, p53, SMAD4,
 Pax6, PPARγα   NFAT4, STAT3 

Other targets Synapsins, cPLA2, p70S6K, MNK, cPLA2, MAPKAPK2, HSP27,Tau, MNK IRS-1, Bax 
 MAPKAPK2, Bad, β-arrestin 

Genes induced c-myc, c-fos, c-Jun, Bcl-2, CREB, Ets, Egr-1 TNF-α, IL-1 c-Jun, TGF-β, IFN, IL-2 

Biological events Proliferation, differentiation, growth Infl ammation, apoptosis, cytokine- Infl ammation, apoptosis, survival 
  induced mRNA stability 

Text in italics indicates the factor is inhibited.    

    

expression of this cytokine (Brand et al 2005). Therefore, the 

“specifi city” of MAP kinase signaling depends not only on 

the cellular environment, but also on the cell type involved. 

The diversity of stimuli and biological responses associated 

with MAP kinase signaling is detailed in Table 1.

The classical MAP kinase cascade 
(Ras/ERK)
The best-characterized mammalian MAP kinase pathway is 

the Ras/ERK or classical MAP kinase pathway, composed 

of two genes with 90% sequence identity: ERK-1 (p44) and 

ERK-2 (p42) (Boulton et al 1991). Additional ERK pathways 

include the less-often studied ERK-3 and ERK-5 cascades, 

which will not be reviewed here. Homologs for the ERK1/2 

pathway are the pheromone-regulated kinases KSS1 and 

FUS3 in the yeast Saccharomyces cerevisiae, with similar 

modules in Drosophila melanogaster and Caenorhabditis 

elegans (Treisman 1996). The phosphorylation substrate for 

ERK1/2 MAP kinases has a core motif with the short amino 

acid sequence serine/threonine-proline (S/T-P) (Cruzalegui 

et al 1999). The ERK1/2 MAP kinase pathway is typically 

activated, as the name suggests, by mitogenic stimuli, such 

as peptide growth factors EGF or PDGF (Table 1). Binding 

of growth factor to its cell surface receptor tyrosine kinase 

leads to receptor dimerization and autophosphorylation. 

Phosphorylation of the intracellular domain of the receptor 

activates GEFs, such as sos, which are attached to the 

cytoplasmic receptor tail by adaptor molecules grb-2 or shc. 

GEFs facilitate the activation of the monomeric GTPase 

Ras, via exchange of GDP to GTP. Ras-GTP recruits and 

activates the serine–threonine MAP kinase kinase kinase 

kinase (MKKK) c-Raf at the membrane, leading to Raf-

mediated phosphorylation of the dual-specifi city MAP kinase 

kinase-1 and -2 (MKKs or MEKs), MEK1/2. Next, MEK1/2 

phosphorylates threonine and tyrosine amino acid residues 

on MAP kinases ERK1/2. Active transit of ERK1/2 through 

the nuclear membrane pore allows ERK1/2 to phosphorylate 

a variety of transcription factors such as the TCF member 

ELK-1, mediating DNA binding and gene transcription. As 

a result of these molecular events cell proliferation usually 

occurs. For this reason the Ras/ERK pathway is best stud-

ied for its direct role in tumorigenesis. In vitro (Vicent et al 

2004), animal (Sebolt-Leopold et al 1999), and human stud-

ies (Han et al 2005) have shown correlations between cancer 

incidence and increased Ras activation, ERK1/2 activity, or 

DNA binding by ERK1/2 transcription factor targets. Activa-

tion of ERK1/2 is shown in Figure 1.

Studies of mice with targeted deletion of ERK genes 

have shown that ERKs are essential for normal develop-

ment and survival. Erk1 knockout mice (Pages et al 1999) 
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Figure 1 The ERK1/2 pathway in airway epithelial cell responses to cigarette smoke. Cigarette smoke exposure has been shown to activate the EGFR in lung epithelial 
cells. Following dimerization and autophosphorylation of EGFR, a cascade of adaptor molecules and GTPases leads to the recruitment of Raf1 to the plasma membrane 
and its activation. Raf1 is a MAP kinase kinase kinase, which phosphorylates the MAP kinase kinase MEK1/2. MEK1/2 activation leads to phosphorylation of ERK1/2 MAP 
kinase, which can translocate to the nucleus and phosphorylate transcription factors which bind to regulatory elements in the promoters of target genes, inducing their 
expression. Transcription factors that are phosphorylated by ERK1/2 include Sp1, Ets1, AP-1, and ELK-1. Cigarette smoke-mediated activation of this cascade in lung 
epithelial cells is associated with hyperplasia, MMP-1 expression, MUC5AC expression, and release of EGF ligand. The list of transcription factors and cell responses is not 
comprehensive.

develop normally and are fertile, likely due to the com-

pensatory function of ERK2, but demonstrate behavioral 

hyperactivity (Selcher et al 2001) and a defect in T cell 

proliferation and differentiation (Pages et al 1999). Erk2 

null mice die at embryonic day 6.5, prior to lung formation, 

with signifi cant apoptosis occurring in all tissues, and im-

paired angiogenesis (Yao et al 2003). Erk5 null animals die 

at embryonic day 9.5–10.5 from impaired heart and vessel 

development (the heterozygous animals grow to adulthood 

normally and are fertile) (Regan et al 2002). These models 

demonstrate the role for ERKs during organogenesis, but 

conditional knockout animals are still needed to understand 

the role of ERKs in specifi c adult tissues and during adult-

onset injury.

p38 MAP kinase cascades
The p38 MAP kinase family comprises four enzymes: 
p38α, p38β, p38γ, and p38δ. Early studies identifi ed a 
38 kDa protein that is tyrosine phosphorylated during 
lipopolysaccharide exposure or hyperosmolarity (Han et al 
1994). These enzymes have been studied for their ability to 
regulate TNF-α-induced infl ammation (Lee et al 1994; Lee 
et al 2000). In particular, the p38 pathway is well character-
ized for its role in cytokine production in immune cells. This 
pathway can be activated not only by cellular stress such as 
osmotic shock, but also by growth factors, UV light, GPCR 
ligands, and hormones. Activation of p38 occurs through 
dual tyrosine phosphorylation on a motif (TGT) distinct 

from that of ERKs and SAPK/JNKs. The activation loops 
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in which these tyrosines rest is 6 amino acids shorter than 

in the other MAP kinases. These differences suggest that 

the mechanism of phosphorylation of p38 is distinct from 

that for ERKs and JNKs. In addition, the upstream MKK3 

is specifi c for p38 (Table 1). Knockout mice have been gen-

erated for the p38α, p38β, and p38γ MAP kinases. Similar 

to the ERK5 null mice, the p38α null mice are embryonic 

lethal due to severe cardiac malformations, resulting from 

impaired placental angiogenesis (Adams et al 2000). There 

are no obvious phenotypes reported for the p38β and p38γ 

null mice (Kuida and Boucher 2004).

SAPK/JNK signaling
The SAPK/JNK pathway (p46, p54, and p55) is most notably 

involved in the control of apoptosis (Tournier et al 2000). 

This pathway is activated by UV light, cell stress, TNF-α, 

IL-1, and osmotic shock, and typically targets the transcrip-

tion factor c-Jun. Additional stimuli include inhibition of 

protein translation (which stresses the cell), growth factors, 

and shifts in temperature. Activation of this pathway leads to 

phosphorylation of several additional substrates, including 

those of the early-response proto-oncogene family c-fos, 

which leads to the formation of Jun-fos heterodimers or Jun 

homodimers to create the AP-1 transcription factor (Angel 

and Karin 1991). The binding activity of Jun is tightly con-

trolled by phosphorylation of residues near the DNA-binding 

domain, but the role of the upstream SAPK/JNK molecules 

is not clear (Binetruy et al 1991).

The JNK proteins phosphorylate a variety of substrates, 

including paxillin and mitochondrial Bcl-2. Much informa-

tion on the biological roles of JNK signaling was obtained 

from JNK null mice. Individual JNK1, JNK2, or JNK3 null 

mice are generally normal, but the compound (JNK1/JNK2) 

knockout animals exhibit serious defects, dying in utero 

due to neural tube malformation (Kuan et al 1999). JNK3 

is expressed in the nervous tissue and, interestingly, loss 

of JNK3 protects mice from kainic acid-induced neuronal 

death (Yang et al 1997; Kuan et al 2003). The JNK1/JNK3 

and the JNK2/JNK3 compound null animals appear normal 

(Kuan et al 1999). JNK1 null mice have defective T cell 

proliferation and differentiation (Dong et al 1998), and CD4 

T cells produce Th2 cytokines (IL-2, IL-4) in the absence of 

a Th2 stimulus (Dong et al 1998). Overall, targeted disrup-

tion of the JNK MAP kinase enzymes has revealed a great 

deal about their function during development. However, 

little is known about the specifi c role of these proteins in 

the adult lung.

Cigarette smoke and kinase 
activation in the lung
Signal transduction cascades are generally initiated by 

diverse stimuli which activate transmembrane receptors such 

as receptor tyrosine kinases and G-protein coupled recep-

tors (Table 1). It is unclear whether cigarette smoke alters 

ligand-receptor interactions, or whether smoke can activate 

membrane-bound receptors directly. It is known, however, 

that smoke exposure is associated with rapid and persist-

ent induction of several kinase pathways, typically within 

minutes. For example, our laboratory demonstrated rapid 

and lasting cigarette smoke-induced activation of ERK-1/2 

MAP kinase in cultured SAECs (Mercer et al 2004). We 

have also detected elevated pulmonary ERK-1/2 (p44/42) 

phosphorylation in mice exposed to cigarette smoke for 

10 days (Mercer et al 2004), which is in agreement with 

previous studies conducted in rats (Chang et al 2001). Most 

importantly, the relevance of these events to COPD was es-

tablished by the discovery of signifi cantly elevated ERK1/2 

activity in airway and alveolar epithelial cells of patients with 

emphysema, compared with nonemphysematous controls 

(Mercer et al 2004). Figure 2 demonstrates the involvement 

of MAP kinase signaling in epithelial and infl ammatory cell 

responses to cigarette smoke.

A central role for ERK1/2 in emphysema pathogenesis 

was established when our laboratory discovered that induction 

of MMP-1 by cigarette smoke in SAECs requires ERK1/2 

MAP kinase signaling (Mercer et al 2004). MMP-1 is an 

interstitial collagenase upregulated in emphysema (Selman 

et al 1996; Imai et al 2001), and generates structural and 

functional emphysema in transgenic mice (D’Armiento et al 

1992; Foronjy et al 2003). Indeed, polymorphisms in MMP-1 

may play a role in lung function and COPD susceptibility 

(Joos et al 2002). Future work is needed to determine how 

ERK1/2 and MMP signaling persists even after the patient 

has stopped smoking (Mercer et al 2004).
Analyses of baseline MAP kinase activity in AM of 

smokers and nonsmokers reveal, perhaps surprisingly, that 
smokers exhibit signifi cantly lower active p38 levels than 
nonsmokers, and that there is no difference in the activity 
of ERK1/2 and SAPK/JNK kinases in AM between these 
two groups (Mochida-Nishimura et al 2001). These data 
suggest that different lung cell types (epithelial and infl am-
matory cell) can activate different MAP kinase signaling 
pathways in response to smoke exposure. However, one 
must be cautious when interpreting studies of molecular 
signaling in lung tissue from smokers, since not all smokers 
will develop COPD.
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Figure 2 Cigarette smoke-induced MAP kinase activation and lung injury in COPD. The many chemicals, oxidants, and metabolites of cigarette smoke stimulate MAP 
kinase cascades within resident and infl ammatory cells of the airways and parenchyma. Comparison of MAP kinase activities in the lung tissue of smokers, nonsmokers, and 
COPD patients has identifi ed signifi cant differences in these cascades. These signaling modules are linked to the indicated cellular processes, many of which are associated 
with COPD pathogenesis.

In vitro studies of A549 cells and in vivo studies with rats 

demonstrate tobacco smoke-mediated induction of c-Fos, 

MEK1, and ERK2 MAP kinase activities (Chang et al 2001; 

Hellermann et al 2002). Activation of these signal transduc-

tion molecules can trigger pro-proliferative or pro-infl am-

matory transcription factors such as c-fos, c-myc, AP-1, and 

Elk-1 (Puddicombe and Davies 2000), which translocate to 

the nucleus and enhance gene expression (Figure 3). One 

study reported increased mRNA and protein expression of 

Egr-1, an ERK1/2 substrate, in the lung tissue of patients with 

emphysema, suggesting that targets of ERK1/2 signaling are 

involved in pathogenesis (Zhang et al 2000). It is also likely 

that activation of different MAP kinases induces the same 

transcription factor. For example, ERK1/2 (Chen et al 2004) 

and JNK pathways have each been shown to activate NFκB 

signaling in human monocytes and airway epithelial cells 

(Tuyt et al 1999), demonstrating the potential for crosstalk 

between these pathways. 

Research examining the interactions between cigarette 

smoke and the plasma membrane of lung epithelial cells has 

identifi ed a role for the EGF receptor in the initial activa-

tion of MAP kinase signaling. EGFR is activated by several 

ligands: EGF, TGF-α, epiregulin, and amphiregulin. Several 

groups have demonstrated direct phosphorylation of EGFR 

by tobacco smoke. Takeyama et al (2001) identifi ed rapid 

transcriptional and post-translational activation of EGFR 

by tobacco smoke in NCI-H292 bronchial epithelial cells 

(a pulmonary mucoepidermoid carcinoma cell line which 

constitutively expresses EGFR). Lemjabbar et al (2003) later 

showed that EGFR activity was required for MUC5AC induc-

tion by smoke and elucidated the cytosolic events (Gensch 

et al 2004). These investigations showed that smoke and 
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Figure 3 Transcriptional regulation by MAP kinases. Activated MAP kinases enter the nucleus and phosphorylate transcription factors such as Ets, AP-1, or ATF2. 
Transcription factor binding to cis-elements in the promoters of genes enhances transcription. Transcriptional control is also mediated via histone acetyltransferase (HAT) 
or histone deactylase (HDAC), which generally mediate activation or repression, respectively. Dashed lines indicate that kinase movement across the nuclear membrane 
occurs in both directions. Phosphorylation of transcription factors can also take place in the cytoplasm.

reactive oxygen species induce MUC5AC gene expression 

through both 1) an EGFR-independent mechanism, in which 

reactive oxygen species traverse the membrane to activate 

JNK and 2) an EGFR-dependent pathway which activates 

ERK1/2. The two pathways converge in the nucleus, where 

respective transcription factor targets JunD and Fra-2 bind 

AP-1 sites in the distal region of the MUC5AC gene to in-

crease transcription (Gensch et al 2004). The role of EGFR 

in the activation of other genes in COPD has not been fully 

examined, and little is known about this process in primary 

epithelial cells of the small airways. Figure 1 models the 

steps in the activation of ERK1/2 via EGFR activation by 

cigarette smoke.

Lung cell apoptosis and MAP kinase 
signaling
Apoptosis of several lung cell types has been detected in the 

lung tissue in COPD (Segura-Valdez et al 2000; Aoshibai 

et al 2003; Tuder et al 2003; Yokohori et al 2004), and 

positively correlates with disease severity (Imai et al 2005). 

In general, apoptosis is associated with changes in p38 

or JNK signaling. In lung fi broblasts apoptosis can occur 
as a result of an increased oxidant burden; however, the 
mechanism is unclear (Ishii et al 2003). Recent data reveal 
that ceramide production in alveolar cells contributes to 
apoptosis and emphysema in mice (Petrache et al 2005). 
No data on MAP kinase signaling exists in this model, but 
ceramide-induced apoptosis of A549 cells was recently 
shown to be mediated by JNK (Kurinna et al 2004), and 
ceramide-induced apoptosis resulting from cellular stress has 
been shown to require SAPK/JNK signaling (Verheij et al 
1996). Interestingly, ceramide can induce MMP-1 expression 
in dermal fi broblasts through ERK1/2- and p38-dependent 
mechanisms (Reunanen et al 1998). Data on primary lung 
epithelial cells are lacking.

Apoptosis in the lung tissue of animal models and patients 
with COPD may result from chronic exposure to irritants 
in smoke. Acrolein induces apoptosis of cultured bronchial 
epithelial cells (Nardini et al 2002), and acrolein-induced 
cytotoxicity occurs via ERK1/2 in vascular smooth muscle 
cells (Ranganna et al 2002). Nicotine also has been shown 
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to suppress apoptosis of neutrophils (Aoshiba et al 1996), 

and is a potent inducer of ERK1/2 MAP kinase, with little 

effect on JNK or p38 pathways (Heusch and Maneckjee 

1998). The complexity of these apoptosis-inducing events 

merits further research.

Cytokine stimulation of and by MAP 
kinase cascades
One result of smoke-induced MAP kinase signaling is 

increased gene transcription due to altered chromatin 

architecture. For example, there is an increase in the intrinsic 

histone acetyltransferase (HAT) activity of ATF-2 through 

phosphorylation by either JNK or p38 (Kawasaki et al 

2000). In addition, in vitro studies with A549 lung epithelial 

cells, for example, have demonstrated a cigarette smoke 

extract-mediated decrease in histone deactylase (HDAC) 

activity, contributing to unwinding of nuclear chromatin and 

cytokine gene expression (Moodie et al 2004) (Figure 3). 

Similarly, HDAC activity inversely correlates with COPD 

severity, and its reduced activity is thought to contribute to 

disease pathogenesis via enhanced infl ammatory cytokine 

production (Ito et al 2005). These regulatory mechanisms 

are not fully elucidated, but it is hypothesized that control of 

cytokine gene expression is regulated in part through histone 

modifi cation.

Analyses of murine asthma models reveal that production 

of the Th2 cytokines IL-2, IL-13, and IFNγ in the airways (as 

represented by bronchoalveolar [BAL] fl uid) is mediated via 

MAP kinase signaling, specifi cally ERK1/2 and JNK MAP 

kinases (Chialda et al 2005). MAP kinases themselves may 

be activated by cytokines (Cuenda et al 1995; Meier et al 

1996), but the effect depends upon the type of cytokine. 

For example, the proinfl ammatory Th1 cytokine IL-17 

can induce ERK1/2, but not p38 or SAPK/JNK in A459 

lung epithelial cells (Ning et al 2005). Mapping out these 

kinase-cytokine modules is complicated by the variety of 

cell types, signal crosstalk, and infl ammatory mediators 

within the lung. Additional research into the role of MAP 

kinases in pulmonary cytokine expression and infl ammation 

is needed.

Identifying the components of tobacco 
smoke that activate MAP kinases
The most common and preventable cause of COPD is ciga-

rette smoking (Markewitz et al 1999). Therefore, determining 

which pathways are activated in lung cells during tobacco 

smoke exposure is an important step towards identifying 

cellular mechanisms involved in the pathogenesis of COPD. 

However, an additional objective of research is to determine 

which components or fractions of the smoke (or tobacco 

leaf) are mediating such an effect. For example, several 

well-conducted studies have examined the roles of nicotine 

(Zhang et al 1993; Armstrong et al 1996; Carty et al 1996; 

Zhang et al 2001), cotinine (Carty et al 1996), acrolein 

(Bishop and Laurent 1995; Borchers et al 1999; Nardini et al 

2002), acetaldehyde (Appelman et al 1982; Saladino et al 

1985; Sisson et al 1991; Mio et al 1997), and hydrogen per-

oxide (Saladino et al. 1985) in animals or cultured cells. It has 

been estimated that there are over 4700 chemicals in tobacco 

smoke (Moodie et al 2004), making it diffi cult to identify 

specifi c tobacco component(s) responsible for smoking-

induced MAP kinase activation (Figure 3). In addition, it 

is important to appreciate that in vivo ADME (absorption, 

distribution, metabolism, excretion) pharmacokinetics of 

combusted tobacco components cannot be predicted by in 

vitro studies of isolated components dissolved in dimethyl 

sulfoxide. Cell type-specifi c responses are also important, as 

demonstrated by studies showing that while oxidant-sensitive 

NFκB is activated by cigarette smoke extract in A549 cells 

(Moodie et al 2004), no activation occurs in NHBE cells 
(Hellermann et al 2002). 

Acrolein is a potent component of tobacco that has been 
shown to produce mucus metaplasia in the lungs of both mice 
(Borchers et al 1999) and rats (Borchers et al 1998). Acro-
lein also contributes to EGFR phosphorylation, MUC5AC 
transcription, and ERK1/2 activation in NCI-H292 airway 
epithelial cells (Deshmukh et al 2005). In this cell culture 
system acrolein depleted glutathione (GSH) and increased 
the burden of oxidative stress, as is thought to occur in 
COPD. Acrolein also has been shown to inhibit apoptosis in 
neutrophils (Finkelstein et al 2001), and activates all three 
MAP kinase pathways in smooth muscle cells (Ranganna 
et al 2002).

Nicotine is present naturally as an antimicrobial in to-
bacco leaves (Tomizawa and Casida 2003), and is required 
for the addictive properties of cigarettes. Nicotine has been 
shown to increase normal branching morphogenesis and 
gene expression in embryonic mouse lung buds. However, 
the mechanisms involved are not known, and the response 
varies in different genetic strains (Wuenschell et al 2004). 
In cultured human airway epithelial cells, nicotine has been 
shown to activate Ras, the MKKK in the classical ERK1/2 
signaling pathway (Chu et al 2005; Guo et al 2005). In lung 
cancer cells nicotine has no effect on the activities of JNK 
and p38 MAP kinases, but does activate ERK2 (Heusch and 
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Maneckjee 1998). It is thus reasonable that activation of the 
classical MAP kinase signaling pathway is one reason that 

nicotine is a potent anti-apoptotic agent in several different 

lung cell types (Aoshiba et al 1996; Heusch and Maneckjee 

1998).

Inhibitors of MAP kinase signaling
Cancer research stimulates broad 
interest in kinase inhibitors
MAP kinase inhibitors have been extensively studied in 

animal models of disease, particularly cancer. These efforts 

were driven in part by human studies revealing increased 

ERK phosphorylation or activity in tumor-derived lung tissue 

(Erman et al 2005; Han et al 2005) or human lung cell lines 

(Vicent et al 2004). Mouse models of lung cancer also dem-

onstrate signifi cant increases in several MAP kinase pathways 

(Wilhelm et al 2004). Evidence from smoke-exposed mice, 

xenografted mice, or mice injected with the aggressive hu-

man A549 adenocarcinoma cells suggests that uncontrolled 

proliferation of lung cancer cells can be alleviated using 

kinase inhibitors, with subsequent improvements in lung 

structure (Kramer et al 2004). Although these compounds 

were initially designed as cancer therapies, recent preliminary 

studies suggest that they may also possess signifi cant benefi t 

in treating emphysematous lesions and associated COPD 

pathologies (see below).

Potential for MAP kinase inhibitors as 
therapeutics in COPD
Inhibition of transcription factor activity can occur at 

the level of activation, translocation, or DNA binding. 

However, inhibition of the upstream kinases trumps the 

need to block nuclear transcription factors, by preventing the 

phosphorylation of these cytosolic DNA-binding effectors. 

Several inhibitors exist which have selective affinities 

for specifi c kinases, and which are, importantly, orally 

available (Table 2). These drugs, which typically act in an 

ATP-competitive manner, have shown promise in their ability 

to block various COPD-relevant cellular behaviors in culture, 

such as protease production, mucus secretion, and cell 

proliferation. However, the side-effects of these drugs can-

not be known until long-term animal studies are conducted. 

Impressively, the MAP kinase inhibitors currently used in 

humans demonstrate low incidences of side-effects. It is for 

this reason, perhaps, that protein kinases are postulated to be 

the primary drug targets of this century (Cohen 2002).

Inhibitors of the classical MAP kinase 
pathway
There are several points along the classical MAP kinase 
pathway that can be targeted for inhibition. At the membrane, 
inhibition can block receptor dimerization or the attachment 
of GEFs to the plasma membrane. Inhibitors of RTKs exist, 
such as EGFR inhibitors AG1478 and ZD1839 (gefi tinib/
Iressa). ZD1839 has been shown to block lung injury in 
a mouse model of bleomycin-induced pulmonary fi brosis 
(Suzuki et al 2003), and to slow breast cell tumorigenesis in 
transgenic mice (Lu et al 2003). This drug has shown promise 
in clinical trials for lung cancer but adverse effects are often 
an issue (Tsuboi et al 2005).

Compounds have also been designed to target the 
farnesylation of oncogenic Ras, thereby blocking its 
attachment to the plasma membrane (Cohen 2002; Doll 

et al 2004). In addition, the cytoplasmic MEK inhibitors 

have been studied extensively for their ability to reduce or 

Table 2 MAP kinase inhibitors and their effect in various models of tissue injury     

Pathway Inhibitor Effect Reference 

ERK1/2 PD98059 ↓ CSE induced MMP-1   (in vitro)  Mercer et al 2004  
  ↓ LPS-induced neutrophilia, cell death, airway leakage  Lee et al 2004  
  ↓ Airway epithelial thickening Tamaoki et al 2004  
 CI-1040 ↓ Adenoma proliferation              ←→ Apoptosis Kramer et al 2004  
 UO126 ↓ Lung infl ammation Chialda et al 2005  

p38 SB230580 ↓ LPS-induced MIP2, TNFα, neutrophilia Arcaroli et al 2004  
 SB239063 ↓ LPS-induced IL-6 expression (in vitro) Underwood et al 2000  
  ↓ LPS-induced fi brosis, MMP-9 expression, neutrophilia Underwood et al 2000  

SAPK/JNK SP600125 ↓ Lung infl ammation Chialda et al 2005  
  ↓ Arthritic joint swelling, collagenase expression Han et al 2001  
 CEP-1347 ↓ Neuronal apoptosis Maroney et al 1998  
  ↓ Pancreatic edema, infl ammation Wagner et al 2000  
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prevent the phosphorylation and activation of ERKs (Kramer 

et al 2004). Indeed, MAP kinase inhibitors have been shown 

to be effective in cancer therapy in mouse models (Sebolt-

Leopold et al 1999).

PD98059 and UO126 are two of the few MAP kinase 

inhibitors that are not ATP competitive. While both have 

good specifi city at inhibiting ERK1/2 activation (IC
50

 in 

the nm range), PD98059 has been shown to also inhibit 

cyclo-oxygenases 1 and 2, decreasing platelet aggregation 

(Borsch-Haubold et al 1998). PD98059 blocks the activation 

of MKK1 by binding to it and preventing its activation by 

Raf-1, but it does not act on active MKK1. While PD98059 

has outstanding activity in vitro, the potential for in vivo 

toxicity limits its long-term use in animal models or humans 

(Cohen 2002). One promising compound is CI-1040 (PD 

184352), a specifi c small molecule inhibitor of MEK1/2. 

CI-1040 is well tolerated in humans and has shown effi cacy 

as an anti-tumor agent (Kramer et al 2004). Use of ERK 

inhibitors in animal models of smoke-induced emphysema 

has not been reported, but it is conceivable that this treat-

ment would block the activation of ERK1/2, preventing the 

subsequent changes in gene expression.

p38 inhibitors
Inhibitors of p38 MAP kinase signaling have shown effi cacy 

in ameliorating several COPD pathologies in animal models 

(Table 2). These compounds were initially identifi ed for their 

ability to prevent production of IL-1 and TNF from stimu-

lated human monocytes (Lee et al 1994). The most popular 

p38 inhibitor used in basic science research applications is 

SB203580. Unfortunately, this compound has limited solu-

bility and high toxicity and its use is generally restricted to 

cell culture assays (Cohen 2002). But use in the laboratory 

can identify roles for p38 in disease. For example, as was 

shown for the MEK1/2 inhibitor PD98059, SB203580 can 

inhibit cyclo-oxygenases-1 and -2 (Borsch-Haubold et al 

1998). These data demonstrate the importance of dose-re-

sponse studies and careful analysis of the multiple pathways 

that may be affected by kinase inhibitors. SB203580 at 3–5 

micromolar concentrations has been shown to block phos-

phorylation of phosphatidylinositol 3-kinase/protein kinase 

B (PKB)(Akt/Rac) kinase in IL-2 stimulated T cells (Lali 

et al 2000). The result is blockade of T cell proliferation via 

inhibition of cell cycle progression.

The effi cacy of SB203580 on lung injury has also been 

tested in vivo (Arcaroli et al 2001), with mixed results. Al-

though researchers demonstrated an increase in p38 activity 

within neutrophils during acute lung injury, SB203580 did 

not decrease lung neutrophil infl ux or pulmonary edema 

during hemorrhage or lipopolysaccharide endotoxemia 

(Arcaroli et al 2001). Similarly, the increased production of 

proinfl ammatory cytokines (MIP2, TNF-α) and activation 

of NF-κB in lung neutrophils induced in these models was 

not diminished by p38 inhibition.

Not all studies result in the same conclusions regarding 

the effi cacy of p38 inhibitors. While the previous report 

did not demonstrate any benefi t from p38 inhibition, others 

report positive outcomes. During synthesis of a different 

compound, SB239063, it was discovered that methylation 

of the nitrogen in the imidizole group greatly improved the 

drug’s bioavailability (Liverton et al 1999). The resulting 

inhibitor was shown to reduce myocardial infarction in 

the mouse (Kaiser et al 2005). In addition, use in rats and 

guinea pigs demonstrates that SB239063 effectively blocks 

p38 signaling in lung tissue when delivered intragrastrically 

before and after lipopolysaccharide inhalation challenge 

(Underwood et al 2000), demonstrating that this compound 

has substrate effi cacy in the lung. Most notably, this study 

showed that inhibition of p38 signaling with SB239063 could 

reduce pulmonary fi brosis, MMP-9 and IL-6 expression, and 

neutrophil infl ux in vivo (Underwood et al 2000) (Table 2). 
While the study by Arcaroli and colleagues demonstrated 

no benefi t with SB203580, p38 inhibition with intratracheal 

SB239063 was much more effective. Taken together, these 

studies demonstrate that the benefi t of p38 inhibition depends 

upon the type of inhibitor, delivery route, and disease model. 

The bioavailability of these compounds may be an important 

factor in their ability to control lung injury.

SAPK/JNK inhibitors
Inhibitors of SAPK/JNK signaling have only recently be-

come commercially available to basic scientists, and thus 

it will be some time before their effects on COPD-relevant 

events become clear. It has been demonstrated in several 

studies that this pathway is an important regulator of gene 

transcription, in part for the ability of JNKs (JNKs1, 2, and 3) 

to bind and phosphorylate the transcriptional regulator c-Jun. 

Inhibitors of this pathway have shown promise in controlling 

rheumatoid arthritis (Han et al 2001). There are 13 upstream 

MKKKs which regulate JNK signaling (Science STKE JNK 

Pathway Connections Map 2002; URL: http://stke.science-

mag.org/cgi/cm/stkecm;CMP_10827), suggesting that there 

are many targets for SAPK/JNK signaling blockade. As was 

shown for inhibitors of the classical MAP kinase pathway, 
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SAPK/JNK inhibitors can also slow the growth of tumor cells 
in vivo (Ennis et al 2005). Using the SP600125 compound, 
researchers demonstrated that JNK blockade reduced tumor 
growth in a mouse model of Lewis lung carcinoma (Ennis 
et al 2005). This drug demonstrated anti-angiogenic as well 
as anti-proliferative effects (Ennis et al 2005). SP600125 also 
reduces arthritis symptoms (infl ammation, joint swelling) 
(Han et al 2001) and several parameters of lipopolysac-
charide-induced lung injury in rats (Lee et al 2004) (Table 
2). Other JNK inhibitors have shown promise in reducing 
neuronal apoptosis (Maroney et al 1998) and pancreatic 
edema and infl ammation (Wagner et al 2000). The SAPK/
JNK pathway is also involved in T cell differentiation and 
activation (Dong et al 2000). Several studies have shown 
activated T cells in lung tissue and peripheral circulation of 
patients with COPD (Barnes and Cosio 2004), suggesting 

that inhibition of this MAP kinase cascade may impact on 

both central and peripheral infl ammation in COPD. However, 

further studies are needed to defi ne the precise roles of this 

pathway in the lung.

Pitfalls of kinase inhibition in COPD
A key objective in the design of therapeutics for COPD is 

to achieve signifi cant functional and survival benefi t for the 

patient. The fi rst steps of kinase inhibition research involve 

a determination of the effi cacy and toxicity of potential 

compounds. A major obstacle in the design of kinase inhibi-

tors is obtaining high selectivity of the compound without 

side-effects. For example, MAP kinase blockade in embry-

onic mouse lung explants impairs branching morphogenesis 

and increases apoptosis (Kling et al 2002), which may 

Figure 4 Model of the potential for MAP kinase inhibitors as COPD treatment strategies. COPD treatment branches are numerous, targeting the most destructive and 
debilitating processes, including airway infl ammation, infection, exacerbations, and airway obstruction. Ongoing research to design drugs that reduce protease activity and 
oxidant injury will be critical in future COPD treatment. The potential for MAP kinase inhibitors is another promising area of research. These drugs have already demon-
strated effi cacy in reducing apoptosis, infl ammation, cytokine production, fi brosis, and MMP expression. Future studies may result in the inclusion of MAP kinase inhibitors 
to COPD therapeutic strategies.
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translate into unwanted cellular and morphometric effects 

in adult lung tissue. Often, while a drug is able to inhibit 

the phosphorylation of its purifi ed substrate in a test tube, 

it may not be biologically available, making it diffi cult to 

use for animal models of COPD, and ultimately humans. 

This has been shown to be the case for PD98059 and 

SB23580, two compounds that inhibit ERK1/2 and p38 

kinases, respectively. Though cell permeable, these com-

pounds demonstrate toxicity and solubility issues at higher 

concentrations which preclude their chronic use in animals, 

although short-term studies have been performed (Tamaoki 

et al 2004; Kase et al 2005). In addition, because COPD 

patients typically present with several comorbidities, such 

as right-sided heart failure, muscle weakness, cachexia, and 

pulmonary vascular disease, the effects of drug therapy must 

be cautiously assessed.

Conclusions
Transitioning COPD research
The molecular pathogenesis of COPD involves repeated 

smoke-induced injury to cells of the airways and 

parenchyma. These insults alter gene expression and 

epithelial cell function. Although diverse stimuli activate 

MAP kinase pathways in the lung, it is clear that tobacco 

smoke is an essential modifier of gene expression in 

COPD. Many cell processes are controlled by reversible 

phosphorylation of proteins. Analysis of the human ge-

nome revealed that the “kinome” (collection of all putative 

protein kinases) contains 518 genes, many with unknown 

function (Manning et al 2002). In vitro, animal, and hu-

man tissue studies of ERK1/2, SAPK/JNK, or p38 kinases 

have identifi ed important roles for these enzymes in lung 

cell biology. Although individual MAP kinases have been 

shown to mediate specifi c COPD-relevant cellular events 

(Johnson and Lapadat 2002), the crosstalk among these 

pathways within the lung milieu is complex (Price et al 

1996). Thus it is conceivable that even small reductions 

in kinase activity will result in robust reductions in gene 

transcription. Indeed, the use of MAP kinase inhibitors to 

reduce infl ammation, apoptosis, cytokine production, and 

tissue injury has already been demonstrated. Currently, 

drug treatment strategies for COPD can be organized into 

several branches of target pathology (Figure 4). Although 

further studies are needed, the MAP kinase inhibitors, 

along with protease inhibitors and antioxidants, are be-

ginning to emerge as promising therapeutic strategies for 

COPD.
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