
Class Prediction and Feature Selection with Linear
Optimization for Metagenomic Count Data
Zhenqiu Liu1*, Dechang Chen2, Li Sheng3, Amy Y. Liu4

1 University of Maryland Greenebaum Cancer Center, Baltimore, Maryland, United States of America, 2 Department of Preventive Medicine and Biometrics, Uniformed

Services University of the Health Sciences, Bethesda, Maryland, United States of America, 3 Department of Mathematics, Drexel University, Philadelphia, Pennsylvania,

United States of America, 4 Department of Applied Math, Brown University, Providence, Rhode Island, United States of America

Abstract

The amount of metagenomic data is growing rapidly while the computational methods for metagenome analysis are still in
their infancy. It is important to develop novel statistical learning tools for the prediction of associations between bacterial
communities and disease phenotypes and for the detection of differentially abundant features. In this study, we presented a
novel statistical learning method for simultaneous association prediction and feature selection with metagenomic samples
from two or multiple treatment populations on the basis of count data. We developed a linear programming based support
vector machine with L1 and joint L1,? penalties for binary and multiclass classifications with metagenomic count data
(metalinprog). We evaluated the performance of our method on several real and simulation datasets. The proposed method
can simultaneously identify features and predict classes with the metagenomic count data.
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Introduction

The majority of microbes reside in the gut, have a profound

influence on human physiology and nutrition, and are crucial for

human life. Metagenomics, the culture-independent isolation and

characterization of DNA from uncultured microorganisms, has

facilitated the analysis of the functional biodiversity harbored in

the large reservoir of uncultured bacteria and archaea. The goals

of microbiome research are to delineate the host-microbiota

interactions, associate differences in microbial communities with

differences in metabolic function and disease, and understand how

changes in the microbiota may affect human health. Recent

advances in genome sequencing technologies have made obtaining

a complete metagenomic sequencing more tractable [1]. Having

on hand such a large number of microbial genomes has changed

the nature of microbiology and of microbial evolution studies. By

providing the ability to examine the relationship of genome

structure and function across many different species, these data

have also opened up the fields of comparative genomics and of

systems biology [2,3]. A main promise of metagenomics is that it

will accelerate drug discovery and biotechnology by providing new

genes with novel functions [2,4].

In metagenomics, one aim is to understand the composition and

operation of complex microbial assemblages in both human and

environmental samples through sequencing and analysis of their

DNA. There have been great efforts in determining the

taxonomical and functional contents of a sample in the last

several years. One way is to use a homology-based approach,

which is based on comparing the sequencing reads against a

reference database such as the NCBI-NR database of nonredun-

dant protein sequences [5], usually employing a variant of the

program BLAST [6]. The result of this extensive computation is a

set of high-scoring pairs or matches that represent possible

homologies between genes in the data set and genes in the

reference database. This must then be analyzed so as to obtain a

taxonomic profile and/or functional profile for the input data.

Several tools employ a homology-based approach, including

MEGAN [3,7] MG-RAST [8], IMG/M [9], CAMERA [10],

and CARMA3 [11]. An alternative to a homology-based approach

is to employ a machine-learning method that uses simple

signatures of the reads, as implemented in TETRA [12],

PhyloPythia [13], and PhyloPythiaS [14]. More recent tools

include Phymm and PhymmBL [15], NBC [16], PCAHIER [17],

and INDUS [18]. The NB-based classification approach which

hybridizes both homology and composition was also proposed

[19]. There are a number of tools that focus primarily on the

analysis and comparison of 16S and 18S data, such as MOTHUR

[20], MLtreemap [21], UniFrac [22], QIIME [23], and CloVR

[24]. Those softwares provide different approaches for taxonomic

classification of metagenomic sequence data. The ultimate goal,

however, is to identify specific microbia and microbial commu-

nities that are associated with human diseases. Comparing

metagenomes from two or more populations with different disease

statuses is necessary for understanding how genomic differences

affect, and are affected by, the abiotic environment, but study of

the link between characteristics of microbiome and disease status is

in its infancy. Thus, there are not many methods for studying the

associations and interactions between metagenomic data and

clinical outcomes.
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Statistical test based approaches such as MetaStats [25] were

designed to compare one microbial feature at a time and can not

be used to identify multiple features simultaneously. Moreover, we

do not know the prediction power of those identified features,

which is very important in clinical metagenomic research.

Investigators want to know how strong the association is between

microbial features and clinical phenotypes. Supervised learning

methods such as support vector machines (SVM) have been

extensively studied with gene expression data [26] and they have

been applied to classify psbA fragments based on genomic

composition in the marine environment [27]. Linear program-

ming (LP) is a branch of mathematical programming with linear

constraints and an objective function. It has found applications in

many research fields including microarray analysis [28–30].

However, those approaches were mainly formulated as binary

classification problems without the ability to select features and

predict classes simultaneously. In this paper, we propose a novel

supervised learning method using LP based support vector

machine (SVM) with joint L1,? penalty for simultaneous feature

selection and binary/multiclass prediction. Our proposed method

identifies common microbial features for multiclass predictions,

which overcomes the drawback that different classifiers choose

different features when applying the one-against-rest rule for

multiclass prediction. We evaluate the performance of our tool

(metalinprog) through simulation, publicly available, and our own

metagenomic data sets. The proposed methods are robust across

datasets and efficient for microbial feature identification and

phenotype prediction. The software metalinprog is implemented

in MATLAB and is available at http://biostatistics.csmc.edu/

metalinprog/.

Methods

To understand the association between the metagenomic

contents and clinical phenotypes such as cancer, it is crucial to

develop new supervised learning tools. We assume there are two or

multiple populations with different clinical phenotypes (e.g. cancer

and healthy, or different treatments) and each has multiple

samples. For each sample we have multiple metagenomic count

features including the number of 16S rRNA clones assigned to a

specific taxon, or number of shotgun reads mapped to a specific

biological pathway or subsystem as shown in the follows:

X~

x11 x12 . . . x1m

x21 x22 . . . x2m

..

. ..
.

P
..
.

xn1 xn2 . . . xnm

2
66664

3
77775,and y~

y1

y2

..

.

yn

2
66664

3
77775,

where X is the metegenomic count matrix with n samples and m

features, xij denotes the total number of reads of feature j in

sample i, and y is the clinical phenotypes with c categories.

yi[f1, . . . ,cg. Our goals are to identify features whose abundance

in different populations is different, and estimate the power of

those identified features in predicting clinical phenotypes.

There are two sources of bias in the metagenomic count data:

(1) different levels of reads (sampling) across multiple samples, and

(2) the variance of xij depends on its particular value. Validity of

many statistical procedures relies upon the assumptions of normal

distribution and homogeneity of variances. However, the metage-

nomic count and related percentage data have variances that are a

function of the mean and are not normally distributed but instead

are described by Poisson, binomial, negative binomial, or other

discrete distributions. The variance heterogeneity and non-

normality of the metagenomic count data can seriously increase

either Type I or II error and make the statistical inferences invalid.

Therefore, The following data preprocessing and variance-

stabilizing transformation steps are required before we build

predictive models for metagenomic data classification:

1. Converting the raw abundance measure of each sample to

the relative abundance to adjust for the sampling depth (read

count) differences across samples. Mathematically, we normalize

Figure 1. Test ROC curves and AUCs for simulation data: Left: 2-Classes; Right: 4-Classes.
doi:10.1371/journal.pone.0053253.g001

Table 1. Frequencies of Correctly Identified features with
Different numbers of classes.

Features 2-Classes 4-Classes

1 99 96

2 100 97

3 97 100

4 100 100

5 100 99

Av. # of Features 4.9 4.86

doi:10.1371/journal.pone.0053253.t001
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the metagenomic count matrix X into a relative abundance matrix

P with

P~½pij �n|m, where pij~
xijPm

j~1

xij

2. We then employ either the square root transformation or the

arcsine transformation to the relative abundance matrix P:

NSquare root transformation:

Z~½zij �n|m with zij~

ffiffiffiffiffiffiffiffiffiffiffiffiffi
pijz

1

2

r
:

NArcsine transformation:

Z~½zij �n|m with zij~ arcsin (
ffiffiffiffiffi
pij
p

):

Before we do any transformations, we will compute the mean

and variance for each sample with matrix P or X , and then test

the assumption of homogeneity of variances with Bartlett’s test

[31]. Either the square root or arcsine transformation will be used.

Practically, if the percentage data have homogeneous variances,

no transformation is needed. For data with variance heterogeneity,

if the data lie in the range of 0–0.3 or 0.7–1 but not both, the

square root transformation should be used. Otherwise, the arcsine

transformation should be used. In most cases, we find both

transformations increase predictive power and have similar

performance [32]. In this paper, we therefore utilize the arcsine

transformation with proportion data for all of our experiments.

Table 2. Identified OTUs for hand surface bacteria data.

Firmicutes;‘‘Bacilli’’; ‘‘Lactobacillales’’;Lactobacillaceae;Lactobacillus (100)

Proteobacteria;Gammaproteobacteria;Pseudomonadaceae;Pseudomonas(83)

Firmicutes; ‘‘Bacilli’’; ‘‘Lactobacillales’’;Streptococcaceae;Streptococcus (100)

Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae;Neisseria (78)

Firmicutes; ‘‘Bacilli’’;Bacillales; ‘‘Listeriaceae’’;Brochothrix (76)

Firmicutes; ‘‘Bacilli’’; ‘‘Lactobacillales’’;Streptococcaceae;Lactococcus (100)

Firmicutes; ‘‘Bacilli’’;Bacillales; ‘‘Staphylococcaceae’’;Staphylococcus (100)

Proteobacteria;Betaproteobacteria;Burkholderiales;Comamonadaceae;Acidovorax (92)

Proteobacteria;Betaproteobacteria;Burkholderiales;Incertae sedis 5 (100)

doi:10.1371/journal.pone.0053253.t002

Table 3. Identified OTUs for keyboard data.

ID OTU Name

1 Bacteria;Firmicutes;Bacilli;Lactobacillales;Carnobacteriaceae (100)

2 Bacteria;Proteobacteria;Betaproteobacteria;Neisseriales;Neisseriaceae (88)

3 Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Propionibacteriaceae (100)

4 Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Corynebacteriaceae (100)

5 Bacteria;Actinobacteria;Actinobacteria;Actinomycetales;Micrococcaceae (100)

6 Bacteria;Firmicutes;Bacilli;Bacillales;Staphylococcaceae (100)

7 Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae (100)

8 Bacteria;Cyanobacteria;Chloroplast;Streptophyta (100)

doi:10.1371/journal.pone.0053253.t003

Figure 2. Relative abundances of the identified features for
three healthy individuals: Left: Individual 1, Middle: 2, Right: 3.
doi:10.1371/journal.pone.0053253.g002
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L1 and L1? Penalized SVM Methods
L1 Penalized SVM Method with Linear

Programming. When there are two classes (number of

categories c~2), a general binary classification problem may be

simply described as follows. Given n samples, with normalized

features, D~f(z1,y1), . . . ,(zn,yn)g , where zi is a multidimensional

feature vector with dimension m and class label yi[f{1,1g, find a

classifier f (z) such that for any normalized feature vector z with

class label y, f (z) predicts class y correctly. Consider the case of

learning a single sparse classifier on the normalized feature space

of the form:

f (z)~h0zhT z, ð1Þ

where h0 is the intercept and h~½h1,h2, . . . ,hm�T are the

coefficients (parameters). A sparse model will have a small number

of features with nonzero coefficients. A natural choice for the

sparse models is to find optimal parameters h0 and h that minimize

the following L1~
Xm

j~1
Dhj D penalized loss function:

min
h0,h

Xn

i~1

Loss(f (zi),yi)zl
Xm

j~1

Dhj D, ð2Þ

where the left term measures the error that the classifier incurs on

training examples measured in terms of loss function, and the right

term is the L1 penalty which encourage sparsity, where the larger

the l, the more sparse the model. Naturally, we penalize

parameters associated with each normalized feature without

penalizing the intercept term h0. The loss function for soft-margin

SVM is defined as

Loss(f (z),y)~
0 if yf (z)§1

1{yf (z) if yf (x)v1

�
~ maxf0,(1{yf (z))g:ð3Þ

The L1 SVM, therefore, identifies the phenotype associated

features and evaluates the model predictions by optimizing

min
h0,h

Xn

i~1

maxf0,(1{yf (z))gzl
Xm

j~1

Dhj D: ð4Þ

Equation (4) can be reformulated as following linear program:

min
h0,h,j,t

Xn

i~1

jizl
Xm

j~1

tj

Subject to yi(h0zhT zi)§1{ji,

{tjƒhjƒtj , ð5Þ

ji§0 and tj§0

V i~1, . . . ,n and j~1, . . . ,m:

Multiclass SVM with Joint L1? Penalty. We adopt the

common technique of representing the class labels using the`one-

against-rest’ role for general multiclass (cw2) problems. We

encode each yi into a vector yi~½y1
i ,y2

i , . . . ,yc
i � such that yk

i ~1 if

xi belongs to class k (k[f1, . . . ,cg), and yk
i ~0 otherwise. After

encoding, a multiclass problem becomes c binary class problems.

We have the parameter of hk
0 and hk for the binary model k. There

are a total of H~
h1

0 . . . hc
0

h1 . . . hc

� �
parameters to be estimated,

where Hjk~hk
j corresponds to the j-th coefficient of the k-th

problem (j[f0,1, . . . ,mg). In this way, the k-th problem is defined

as f k(z)~hk
0z(hk)T z. Our goal is to identify the most discrim-

inative microbes for the clinical phenotypes. Clearly the number of

non-zero rows of H corresponds to the total number of microbes

selected by any of the c classifiers. This suggests learning the sparse

optimization problem jointly across rows of H, which overcomes

the vital drawback that different binary classifiers select different

microbe features if we optimize the c binary classifiers separately.

The L1? has been applied in multi-task learning for joint feature

selection [33–35]. It is defined as

L1?~
Xm

j~1

max
k

DHjk D: ð6Þ

The L1? promotes joint sparsity by combining an L1 norm and

L? norm on the coefficient matrix H. The L1 norm operates on a

vector formulated by the maximal absolute values of the coefficient

of each microbial feature across problems, encouraging most of

these values to be 0. On the other hand, the L? norm on each row

promotes non-sparsity among the coefficients of a feature. As long

as the maximal absolute value is not affected, no penalty is

incurred for increasing the values of a row’s coefficient. As a result

only a small subset of discriminative microbes will be selected in

our model and the identified microbes will contribute to joint

multiclass prediction problems. Based on L1,? and similar to

equation (4), we define the following joint learning problem for

multiclass SVM:

min
H

Xc

k~1

Xn

i~1

maxf0,(1{yk
i f k(zi))gzl

Xm

j~1

max
k

DHjk D: ð7Þ

Equation (7) is equivalent to the following linear optimization

problem:

min
H,j,t

Xc

k~1

Xn

i~1

jk
i zl

Xm

j~1

tj

Subject to yk
i (hk

0z(hk)T zi)§1{jk
i ,

{tjƒHjkƒtj , ð8Þ
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jk
i §0 and tj§0

V i~1, . . . ,n, j~1, . . . ,m, and k~1, . . . ,c:

The second constraint in Equation (8) bounds the coefficients

for the j-th feature across c problems to lie in the range of ½{tj ,tj �.
Usually it is better to transform the row score f k(z) to probability

with

P(y~kDf k(z))~
e{f k(z)

Pc
l~1

e{f l (z)

~
e
{hk

0
{(hk )T z

Pc
l~1

e
{hl

0
{(hl )T z

: ð9Þ

The final class prediction for each sample is determined by

maxk P(y~kDf k(z)). Because the normalization conditionXc

k~1
P(y~kDf k(z))~1, the parameters for one of the classes

need not to be estimated. Without loss of generality, we thus set hc
0

and hc to zero. For the remainder of the paper, we estimate H as a

(mz1)|(c{1) matrix.

Algorithms and Choice of Parameter l. The huge

advantage of our linear programming based SVM approach is

that it can find a globally optimal solution with an off-the-shelf

package. Efficient algorithms for linear programming are available

in literature [36,37]. The non-commercial linear programming

code of choice appears to be lp_solve, written in ANSI C by

Michel Berkelaar, who claims to have solved problems with as

large as 30,000 variables and 50,000 constraints (http://lpsolve.

sourceforge.net/5.5/). Matlab also has a linprog function in its

optimization toolbox. Efficient large-scale interior point algorithm

is implemented in both functions. The regular parameter l
controls the sparsity of the model. The larger the l, the fewer the

microbial features to be selected. If l is too small, there will be

overfitting and little sparsity. If l is too large, the produced

classifier will be very sparse but have poor predictability. The

optimal l is chosen with the smallest test error through 10-fold

cross validation.

Results

Simulation Data
We first evaluate our proposed methods using simulated

metagenomic count data with 2 and 3 different classes, respec-

tively. The datasets with the sample size of 50 for each class are

generated using Poisson distributions with different means (ms).

The means (ms) for Poisson distributions are simulated from the

Gamma distribution with a mean (m) of 100 and variance (s2) of

1000. We simulated 1000 features for each sample from NB

distributions, which contained the first 5 relevant features having

different distributions with distinguished ms. We used two-fold

cross validation to evaluate the method. First, we normalized the

data with proportion and arcsin transformations, and then divided

the data into training and test equal subsets. The training subset

was used for model construction, while the test subset was used to

evaluate performance. The model parameters l are determined

from only the training data with leave-one-out cross-validation. To

prevent bias arising from a specific partition, we simulated the

datasets of each sample size 100 times. The optimal l�s are 5 and

7 for the binary and 4-class classifications respectively. The

frequencies of correctly identified features for 2-class and 4-class

predictions are reported in Table 1 and the ROC curves for the

test data are given in Figure 1.

Both Figure 1 and Table 1 show that metlinprog performs well

in both binary and multiclass classification. With a sample size of

50 for each class, the 5 class associated features are identified with

over 96% accuracy and the average number of features selected

are 4.9 and 4.87 respectively, which are very close the the number

of true features (5). The average test AUCs are 0.997 and 0.97 for

the binary and 4-class classifications, respectively. The proposed

approach performs better than the multinomial logistic regression

(mlogit) R package (http://cran.r-project.org/web/packages/

mlogit), which has the average predictive AUCs of 0.97 and

0.94 for the binary and 4-class classifications, respectively.

Hand Surface Bacteria Data
Bacteria thrive on and within the human body. One of the

largest human-associated microbial habitats is the skin surface,

which harbors large numbers of bacteria that can have important

effects on health [38]. This data was collected for characterizing

bacterial diversity on hands and assessing its variability within and

between individuals. The palmar surfaces of the dominant and

nondominant hands were examined from approximately 93

undergraduate students in two different studies. Sequences were

processed and analyzed following the standard processing pipeline

[38]. Operational taxonomic unit (OTU) count data were

generated using Mothur package ([20], PMID: 19801464) at a

sequence similarity threshold of 97%. The total group method in

Mothur was used to find the normalized abundance. There are

total 175 metagenomic data samples without missing values. We

intend to predict the gender of the samples and identify gender

associated OTUs simultaneously. We first normalized the data

with proportion and arcsine transformation, and then evaluated

the model performance with two-fold cross validation. To prevent

bias arising from a specific partition, we divided the data into

roughly-equal two parts (one as the training and the other as the

test data) 100 times through permutation. The free parameter l is

determined through cross-validation with the training data only.

The optimal l~0:6. The relevance count is calculated by the

number of times an OTU is selected in 100 permutations. The

selected OTUs are reported in Table 2. The numbers in the

parentheses are the relevance counts for that OTU being selected.

We evaluate the performance of MetClass through comparing

with logistic regression (mlogit). The proposed approach achieves

the test AUC of 0.81 (+0:02) and predictive error of 0.22

(+0:02) with only 9 OTUs, which is better than the best

performance with logistic regression ( test AUC 0.73 and

predictive error 0. 31) with all OTUs. Among the 9 identified

OTUs, 5 OTUs are from the Firmicutes family and 4 are from

Proteobacteria. The relative abundances of those 9 OTUs are

different between men and women, which indicate men and

women harbor significantly different bacterial communities on

their hand surfaces. Both Lactobacillaceae and Pseudomonada-

ceae were also reported statistically significant in the original

study. There are several possible factors driving those differences

in bacterial diversity. Differences in skin PH, sweat or sebum

production, frequency of moisturizer or cosmetics application, skin

thickness, and hormone production can all contribute to distinct

hand bacterial communities in men and women.

Keyboard Dataset
The keyboard study dataset [39] was collected from three

healthy individuals between 20 and 35 years of age. The keys of

the three personal computer keyboards (25–30 keys per keyboard)

Class Prediction and Feature Selection
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and the skin on the ventral surface of the distal joint of each

fingertip of the owner were swabbed for sample collection and

microbial community analysis. There are total 104 samples with a

sample size of 40, 33, 31 for each anonymous individual

respectively. The main purpose of our study is to identify the

OTUs that can distinguish the three experimental subjects

correctly with our proposed method. We first normalized the

data with proportion and arcsin transformation, and then

evaluated the model performance with permutation and cross-

validation. We partitioned the data into two parts, 2/3 of the data

as training data and 1/3 of the data as test data. The free

parameter l was determined by training data only. To prevent

bias from a specific partition, we permutate the data 100 times.

The identified OTUs are given in Table 3. The relative

abundances of each identified OTU for three anonymous

individuals are given in Figure 2.

With the free parameter of l~0:3, we identified 8 OTUs with

predictive error of 0 and AUC of 100, which performs better than

mlogit (test AUC 0.98) and is consistent with the best results

reported by [40]. However, their approach requires 27 selected

features (OTUs) to separate all samples of three anonymous

individuals perfectly compared to ours with only 8 features. The 8

identified OTUs are from Actinobacteria, Cyanobacteria, Firmi-

cutes, and Proteobacteria bacteria families respectively as shown in

Table 3. In addition, both low abundance (Carnobacteriaceae,

Neisseriaceae, and Micrococcaceae) and high abundance (such as

Propionibacteriaceae) OTUS (genera) are highly differentiated in

relative abundance across individuals as shown in Figure 2,

demonstrating that hand-associated bacterial communities are

highly diverse across individuals. Finally, the 8 identified OTUS

(genera) can be used as potential biomarkers for forensic

identification and medicine, especially given the fact that bacterial

DNA is easier to recover than human DNA from the touched

surfaces.

Discussion

We have proposed LP based SVM approach with L1/L1?

penalty for feature selection and binary/multiclass classification

with applications to metagenomic count data. The proposed

approach is easy to use since many large-scale free and

commercial LP software are available in the literature. We

demonstrated that the proposed approach performed well in

simultaneously identifying features (OTUS) and predicting classes

with limited experiments. Even though the proposed method was

evaluated with 16 S metagenomic count data, it may be applicable

to other types of genomic data (such as whole genome shotgun

sequencing) in gene selection and classification with some simple

modifications.
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