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ABSTRACT: The controlled environment ecosystem is a meticulously designed plant growing chamber utilized for cultivating
biofortified crops and microgreens, addressing hidden hunger and malnutrition prevalent in the growing population. The integration
of speed breeding within such controlled environments effectively eradicates morphological disruptions encountered in traditional
breeding methods such as inbreeding depression, male sterility, self-incompatibility, embryo abortion, and other unsuccessful
attempts. In contrast to the unpredictable climate conditions that often prolong breeding cycles to 10−15 years in traditional
breeding and 4−5 years in transgenic breeding within open ecosystems, speed breeding techniques expedite the achievement of
breeding objectives and F1−F6 generations within 2−3 years under controlled growing conditions. In comparison, traditional
breeding may take 5−10 years for plant population line creation, 3−5 years for field trials, and 1−2 years for variety release. The
effectiveness of speed breeding in trait improvement and population line development varies across different crops, requiring
approximately 4 generations in rice and groundnut, 5 generations in soybean, pea, and oat, 6 generations in sorghum, Amaranthus
sp., and subterranean clover, 6−7 generations in bread wheat, durum wheat, and chickpea, 7 generations in broad bean, 8
generations in lentil, and 10 generations in Arabidopsis thaliana annually within controlled environment ecosystems. Artificial
intelligence leverages neural networks and algorithm models to screen phenotypic traits and assess their role in diverse crop species.
Moreover, in controlled environment systems, mechanistic models combined with machine learning effectively regulate stable
nutrient use efficiency, water use efficiency, photosynthetic assimilation product, metabolic use efficiency, climatic factors,
greenhouse gas emissions, carbon sequestration, and carbon footprints. However, any negligence, even minor, in maintaining optimal
photoperiodism, temperature, humidity, and controlling pests or diseases can lead to the deterioration of crop trials and speed
breeding techniques within the controlled environment system. Further comparative studies are imperative to comprehend and
justify the efficacy of climate management techniques in controlled environment ecosystems compared to natural environments, with
or without soil.

1. INTRODUCTION
The controlled environment ecosystem (CEE) serves as a
sophisticated plant growth chamber essential for speed
breeding and cultivating horticultural or agricultural crops,
microgreens, and various other plants. These crops and the
speed breeding process find applications in protected
cultivation, vertical farming, container farming, plant factories,
and even specialized environments, such as National
Aeronautics and Space Administration (NASA) biomass
production chambers. Controlled environment technologies
such as hydroponics, aeroponics, aquaculture, aquaponics, and
genoponics play pivotal roles in these endeavors.1 Controlled

environment agriculture (CEA), indoor farming (IF), and
indoor agriculture (IA) are alternative terms commonly used
to describe the controlled environment ecosystem. Speed
breeding, a state-of-the-art plant breeding technique, enables
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the production of superior crops within shorter generation
times under meticulously controlled environmental conditions.
This method integrates various techniques including plant
tissue culture, advanced breeding methods, genetic engineer-
ing, molecular approaches, utilization of light-emitting diodes
(LEDs), growth regulators, immature germination, and
micronutrient supplementation to achieve desired breeding
objectives and cultivate improved or superior crops.2

Alternative scientific terms for speed breeding (SB) include
rapid breeding, crop improvement, smart breeding, and crop
improvement.
Controlled environment agriculture dates back to ancient

times, with records showing that the Roman doctor Tiberius
Caesar grew cucumbers under such conditions as early as 14−
37 A.D.3 The design and structure of modern greenhouses
were first documented in the 1670s, with European countries
pioneering the construction of wood-framed structures covered
with either glass or oiled paper. In 1780, during the American
Revolution, the first American greenhouse was erected by
George Washington at Mount Vernon’s Conservatory.4 The
use of incandescent lamps for influencing plant growth was
pioneered by Liberty Hyde Bailey at Cornell University in
1889. By 1900, improved heated water systems were being
implemented in American greenhouses. In the 1960s, the
Agricultural Research Service (ARS) Phyto-Engineering
Laboratories of the U.S. Department of Agriculture (USDA)
initiated the production of lettuce, tomato, and cucumber in
plant growth chambers. During the mid-1980s to the late
1990s, the National Aeronautics and Space Administration
(NASA) utilized the Kennedy Space Center’s biomass
production chamber to grow wheat and barley for space
missions. Commercial utilization of controlled environment
agriculture began in 1999 when Cornell University embarked
on mass production of lettuce.5−7 The evolution of applied
research theories has paved the way for the development of
speed breeding as a method to enhance crop production under
controlled growing conditions. Renowned scientist Lee Hickey
from the University of Queensland, Australia, introduced the
concept of speed breeding. He first applied this technique to
wheat, peanut, and barley, using the single seed descent (SSD)
method in glasshouses to create disease-resistant varieties.
With the advent of new plant growth room designs, such as
controlled environment chambers, glasshouses, and homemade
growth rooms, efforts to improve crops through speed
breeding techniques have expanded. Plant production and
speed breeding are influenced by various factors, including
light quantity, light quality, photosynthetic active radiation
(PAR), temperature, sterile/axenic environments, growing
times, conditions, plant age, system types, growing media in
closed systems, vertical farming, and protected cultivation. The
controlled environment ecosystem holds significant potential
for cultivating improved plants, transgenic crops, tissue culture
plants, and employing vertical farming and protected
cultivation methods, all within controlled environmental
systems.8,9

The natural climate serves as a critical variable in
accelerating the growth and development of plants. Various
climatic factors, including water availability, light intensity,
temperature, humidity levels, and atmospheric pressure,
consistently impact the biological processes of crops.10

Nevertheless, fluctuations and disruptions in the natural cycle
of climatic factors can significantly influence crop growth,
development, and improvement. Irregularities in monsoon

patterns and fluctuations in the temperature or light can
disrupt soil properties and hinder plant growth. Climate
change has led to the adaptation of pest species and altered the
dynamics of the gaseous cycle, posing challenges to field trials
and the process of plant hardening.11 Moreover, unstable
climatic conditions exacerbate challenges related to pollination,
self-incompatibility, seed shattering, male sterility, and
breeding cycle. In open ecosystems, the impacts of these
conditions prolong crop development in traditional breeding,
requiring 10 to 15 years (5 to 10 years for plant population line
creation, 3 to 5 years for field trials, and 1 to 2 years for variety
release). Conversely, the development of transgenic crops
through direct or indirect gene manipulation takes 4 to 5 years,
further complicated by the interaction with unstable climatic
factors in open fields. Conventional agriculture, known for its
extensive land use and high water consumption, often leads to
significant agrochemical leaching and soil erosion. The
production and management practices associated with tradi-
tional agriculture contribute to yield losses, pest infestations,
and weed emergence, exacerbated by the effects of climate
change.
The controlled environment plant growth system is an

artificially regulated chamber where crop or microgreen
production and speed breeding take place, with climate factors
meticulously controlled and manipulated.12 It conserves 80%
of land usage and 90% of water consumption and efficiently
manages nutrient runoff compared to traditional agriculture.
By limiting eutrophication emergence and minimizing the
stress impact, it establishes a stable artificial ecosystem
conducive to quality growth and high yields. Additionally, it
provides a more accurate delivery of nutrient ions to the plant
system compared to soil-based agriculture. The controlled
environment system holds vast potential for mitigating climate
change effects and mitigating crop losses associated with soil-
based agriculture.13 The controlled environment plant growth
system employs recycled agrowaste and wastewater for plant
production.14 The controlled environment plant growth
chamber ensures the stability of carbon sequestration and
minimizes the carbon footprint, effectively offsetting green-
house gas emissions and potential yield losses. It enhances
photosynthetic assimilation, metabolic efficiency, and main-
tains stable climatic conditions conducive to plant growth.15

The controlled environment plant growth chamber reduces
sources of pollution and minimizes pest emergence compared
to soil agriculture, enabling the successive growth of seasonal
crops.
Speed breeding, within a controlled environment ecosystem,

demonstrates the capability to yield high-performing and
superior crops. Its versatility extends to agricultural or
horticultural crops, offering opportunities for crop improve-
ment at any stage within a controlled environment setup.
Moreover, it facilitates the production of tissue-cultured crops,
biofortified crops, and nanomodified crops within the
controlled environment ecosystem.16 This method combines
genomics and phenomics to analyze the structure and function
of crops, utilizing sensor-based technologies to explore
qualitative and quantitative traits in both crops and growing
media within controlled growth conditions.17 Speed breeding
mitigates crop loss and revenue challenges in conventional
ecosystems while addressing hidden hunger, malnutrition, and
food security concerns among expanding global populations.18

Speed breeding enhances both physical and chemical traits in
crops or microgreens cultivated within controlled environment

ACS Omega http://pubs.acs.org/journal/acsodf Review

https://doi.org/10.1021/acsomega.3c09060
ACS Omega 2024, 9, 29114−29138

29115

http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c09060?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


plant growth chambers. These improvements encompass plant
height, leaf number, fruit size, fruit weight, and overall yield,
alongside enhancements in chemical attributes like total
soluble solids, biochemical content, color, flavors, water use
efficiency, and nutrient use efficiency.19 Under a controlled
environment plant growth chamber, completing the F1−F7
generations in crop development typically takes 2−3 years.
Speed breeding fosters robust growth and nutrient-rich yields
by reducing the toxicity and impurity levels in both crops and
microgreens. With reduced manpower and time requirements,
speed breeding yields high-quality crops and microgreens,
meeting diverse physical targets as needed.20 Speed breeding
enhances seed viability and vigor, accelerating morphological
and anatomical growth rates compared to traditional soil
agriculture. Furthermore, it enables stable phytoremediation,
enhances resilience against biotic and abiotic stresses, supports
biofortification efforts, facilitates improvements in tissue-
cultured plants, and integrates nanotechnology within
controlled environment plant growth chambers. Speed
breeding creates ample opportunities for research, promotes
the establishment of new industries, and contributes to
employment growth.21 While many aspects of the controlled
environment ecosystem have been extensively studied and
reviewed, there remains a need for comprehensive compila-
tions and reviews focusing on plant production, speed breeding
for trait improvement, the integration of artificial intelligence
(AI) in screening phenotypic characters, and the dynamics of
nutrients, water, and climate within controlled environments.
This review aims to emphasize crop and microgreen
production, the intricacies of nutrient, water, and climate
dynamics, technological interventions in speed breeding, and
the utilization of AI for phenotypic characterization in crops
grown under controlled environment ecosystems. Through this
exploration, we seek to further advance both theoretical
understanding and practical techniques in this field.

2. CROP AND MICROGREEN PRODUCTIONS IN CEE
THROUGH CONTROLLED ENVIRONMENT
TECHNOLOGIES

A diverse range of crops and plants, spanning barley, rice, oats,
wheat grass, mint, basil, rosemary, sage, oregano, amaranth,
beets, chard, quinoa, spinach, and a plethora of vegetables,
herbs, and flowers, have benefited from the successful
implementation of a controlled environment ecosystem. This
innovative approach fostered optimal growth conditions,
enhancing yield and quality across various agricultural and
horticultural species.22,23

2.1. Horticultural Crop Production in a Closed
System under Controlled Environment Conditions.
Vegetable crops were cultivated using both water-based
techniques like the Nutrient Film Technique (NFT) and
substrate-based methods such as container farming within
controlled environment setups.24 The NFT has been utilized in
several crops such as tomato, lettuce, and cucumber for
obtaining high yield, pest resistance, and reduced toxic
products in the greenhouse. This method utilizes substrates
like rock wool, cocopeat, sawdust, peat moss, vermiculite, sand,
and perlite.25 Furthermore, tomato seedlings gave superior
morphological and anatomical growth in rockwool cubes
containing specific nutrients under NFT.26 Besides, keeping
tomatoes in slabs, buckets, black gunny bags, and lay-flat
containing mixtures of rockwool + coconut coir + perlite +
peat with the recommended dose of nutrient solution through

the NFT method under greenhouse condition revealed
significant morphological growth and yield.27

The beneficial growth and good yield in eggplant were
obtained in polystyrene trays containing 1:1 (v/v) peat:
vermiculite, using different growing media (sawdust, spent
mushroom compost, volcanic tuff, perlite) with discharge of
standard nutrient solutions comprising 135 mg N, 48 mg P,
283 mg K, 0.05 mg Mo, 128 mg Ca, 0.5 mg B through a drip
system in a glass greenhouse.28,29 Additionally, the pest-free
and biochemical-enriched onion seedlings were obtained in
pot culture grown in oasis cubes, while robust quality growth
and nutrient-enriched cucumber were harvested in cocopeat
growing media with the application of Hoagland nutrient
solution under controlled environmental conditions.30,31 In the
case of aeroponics potato cultivation under controlled
conditions, the qualitatively and quantitatively nutritious mini
tubers were harvested after 2 weeks of transplanting in a test
tube, magenta box, and styrofoam (thermocoal box) with the
recommendation of nutrient solutions.32 The groovy bio-
chemical content, growth, physiological response, and yield
were achieved in chili through the fertigation method in a glass
house.33 Utilizing full dose, half dose (with a 50% reduction in
macronutrients), or pure water (devoid of nutrients) of the
Hoagland nutrient solution in the floating method resulted in
significantly enhanced growth parameters, biomass, and yield
in spinach cultivated within a greenhouse environment.34

Carrots experienced enhanced growth and yield in a
greenhouse setting using rockwool blocks enriched with
vermiculite and supplied with nutrient solutions via subsurface
irrigation.35 Melons were cultivated in an aeroponics system,
and lettuce in a combination of polystyrene foam and pots with
three nutrient solutions delivered through a floating
system.36,37 Ginger was grown in pots containing various
ratios of coir dust and burnt paddy husk, receiving MARDI
nutrient solution through irrigation channels within a side-
netted rain shelter.38 Green beans thrived in pots supple-
mented with peat, perlite, and sand, utilizing subsurface
irrigation for nutrient supply.39 Broccoli flourished in rockwool
with Hoagland nutrient solution in a multitunnel green-
house.40 Kohlrabi was cultivated using an NFT in a
greenhouse.41 Rhododendrons were grown in containers filled
with a mixture of bark, sphagnum peat moss, perlite, and
vermiculite.42 Hybrid lilies were raised in plastic bags
containing varying proportions of cocopeat, perlite, and palm
trunk, with nutrient solution discharge.43 Mustard was
cultivated using hydroponic and aquaponic systems.44 Various
vegetables such as tomatoes, cucumbers, eggplants, chili
peppers, carrots, lettuce, and spinach were grown in an open
rooftop system.45,46 Different substrates, including tuff, perlite,
and sawdust, were observed to affect cucumber production in
varying proportions within the greenhouse.47 Broccoli, cauli-
flower, and cabbage achieved typical growth and yield when
cultivated in various growing mediums such as commercial
peat and paper waste in pot culture within a plastic
greenhouse.48

Different container systems were employed for melon
production in greenhouse settings, including fertigation
systems using polybags and cocopeat, U-shaped troughs
made of PVC tubes, double U-shaped troughs, and triangular
containers constructed from polyethylene sheets. While melon
production was observed in all containers, the fruit quality was
found to be superior in the U-shaped troughs.49 Plastic pots
filled with perlite and cocopeat were utilized for cucumber
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cultivation in a polyhouse.50 Pepper plants exhibited
productive morphological growth and high-quality fruit when
grown in gunny bags filled with peat or a mixture of peat,
perlite, and sand (1:1:1 ratio) substrate under greenhouse
conditions.51

Various substrate media have been noted to yield
suboptimal production outcomes for several crops. Diverse
combinations of cocopeat and vermiculite in differing
proportions were employed for cultivating strawberry cv.
Chandler within polybags placed in a passively ventilated
greenhouse.52 Using vermiculite: erlite culture medium in a 1:1
ratio, gerbera plant production is recommended in a controlled
environment ecosystem.53 The utilization of coconut fiber and
peat as a growing medium proved advantageous in the
cultivation of Galanthus elwesii under soilless conditions,
resulting in a notable improvement in bulb quality.54 Peat
and a composite medium (consisting of peat, slag, and perlite
in a 1:1:1 ratio) demonstrated enhanced growth for Limonium
sinuatum.55 Besides, coconut fiber as a substrate media showed
improvement in Lisianthus russellianus growth and flower
quality.56 Furthermore, a blend of cocopeat, vermiculite, and
FYM (in a 1:1:1 ratio) as a growing medium also contributed
to improved flower production of the potted Chrysanthemum
cv. Anmol, accompanied by enhanced plant morphological
development.57 Additionally, a composition of 0.5 kg gravel
with 1.2 kg coconut fiber along with four holes at the base in a
pot showed the production of sunflowers under saline stress
conditions in hydroponic conditions.30 The mustard spinach
seedlings showed robust germination rates and dense seedling
growth when cultivated in polystyrene trays filled with a
vermiculite substrate. They were then transplanted into net
pots filled with gravel within a shade net house covered with
black and white shading material.58

2.2. Microgreen Plant Production in a Closed System
under a Controlled Environment. The microgreen
utilization traces back to 1930 when North American
pharmacies began harnessing the medicinal properties of
wheatgrass. By the 1970s, this trend expanded with the
cultivation of microgreens like buckwheat, sunflower, and
radish during the winter months, aptly dubbed as winter
greens.59 Microgreens like basil, arugula, kale, beets, and
cilantro were utilized for serving in food items later in San
Francisco in the 1980s;60 however, in the mid-90s, lettuce
microgreens were served as salad and garnishings, which led to
its terminology in 1992 as “Microgreen and Babygreen” by
Craig Hartman. These contain 4−40% higher concentrations
of micronutrients than matured vegetables and herbal plants.61

Microgreen plants from diverse families such as Alliaceae,
Amaranthaceae, Apiaceae, Asteraceae, Boraginaceae, Brassica-
ceae, Cucurbitaceae, Fabaceae, Lamiaceae, Oxalidaceae,
Poaceae, Leguminoceae, Polygonaceae, and Portulacaceae
were cultivated for consumption, the production of high-
value products, and revenue generation.4 The delicate leaves of
microgreen plants boast rich flavors and bioactive compounds,
including vitamins, antioxidants, and minerals, surpassing those
found in mature leafy greens.62 These portions of the plants
have much higher nutrient content than their fully grown
portions. Due to this, microgreen plants having tender leaves
have more potential to confine microbial contamination than
seedlings.63 The intake of microgreens is responsible for the
regulation of body weight, lowers cholesterol levels, and
protects against heart disease. They also contribute to
detoxification, purifying, and fortifying the blood, acting as

diuretics to support kidney function.64 Besides, microgreens
help with anemia, reduce the risk of eye diseases, help maintain
strong and healthy bones, and promote blood clotting.
Microgreens synthesize abundant ascorbic acid, neoxanthin,
violaxanthin, phylloquinone, α-carotene, tocopherols, lutein,
and carotenoids, along with higher levels of zinc, iron, and
protein.65 Additionally, they reduce the generation of
antinutritional components. Microgreens are abundant in
essential macronutrients and vital micronutrients.65

Furthermore, microgreen and crop production were initiated
by utilizing substrate-growing media such as vermiculite,
bagasse, sawdust, and rice hulls, which possess natural physical
and chemical properties for their production. Bagasse and
sawdust exhibit a high water retention capacity, coupled with
low porosity and a notably high saturation point, respec-
tively.66 Redwood, pine bark, and fir bark serve as ideal
substrates for fostering the safe growth of microgreens.
Conversely, cedar and walnut are best avoided due to potential
toxicity concerns associated with these substrates. Notably, the
combination of sphagnum peat and vermiculite, commonly
termed peat-lite, has emerged as a highly effective growing
medium for promoting the cultivation of both microgreens and
crops alike. Nutrient-rich substrates such as rock wool,
cocopeat, sawdust, peat moss, vermiculite, sand, and perlite
were employed for greenhouse vegetable cultivation.66

Cucumbers and tomatoes have thrived when cultivated with
bark from pine, cypress, redwood, and fir in greenhouse
settings.66 Optimal fruit weight and yield were achieved
through the utilization of perlite and a cocopeat-perlite
nutrient mixture for greenhouse tomato production.66

Indoor production of microgreen plants such as fenugreek,
chickpea, mung bean, and coriander demonstrated superior
growth and yield responses when cultivated with nutrient-rich
media like cocopeat and peat, compared to outdoor environ-
ments.67 Using substrate growing media of mushroom,
vermicompost, perlite, sawdust, peat moss, and compost,
crops like kale, arugula, pak choi, and Swiss chard in the
greenhouse were grown to find the root area, chlorophyll
contents, carotenoid contents, shoot length, total phenolics,
high yield, flavonoids, and antioxidant enzymes.68 Brassica rapa
var. chinensis and Brassica oleracea L. var. acephala had the
highest sugar and protein contents with growing media which
includes sawdust at 20%, vermicast at 30%, mushroom
compost at 30%, and perlite at 20% in a greenhouse.69 The
significant yield and biomass in nutrient media consisting of
peat and coco coir were observed in various crops, such as
radish, microgreens, kale, basil, etc. in the climate-controlled
greenhouse than in indoor farming.70 The successful
emergence of spinach, radish, and carrot was observed in
nutrient media having cocopeat and rice husk in the ratio of
1:1 in a bagasse container.71

Cocopeat, utilized as a growing medium, has demonstrated
the ability to enhance micronutrient content, including zinc
(Zn2+), magnesium (Mg2+), and potassium (K+), as well as
increased levels of ascorbic acid, chlorophyll, carotenoids, and
overall growth response in leguminous microgreens such as
cowpea, mungbean, fenugreek, and horse gram, as well as
cereal microgreens like wheat and sorghum when cultivated
within closed systems.72 Even superior morphological growth
and yield have been observed in lettuce, broccoli, turnip, and
kale varieties when grown on a nutrient medium composed of
cocopeat, perlite, and vermiculite in a ratio of 3:1:1 within a
closed system.73 The growths of shoot length and stem
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diameter of tobacco were increased in a substrate composition
of pine bark (50%), sand (50%), and compost (100%) under
an open system. However, cattle manure was not recom-
mended with the same media composition in tobacco plants.74

Green bean microgreens displayed enhanced morphological
growth and prolonged shelf life when grown using straw
nanofiber and hydrogel derived from diaper waste within a
closed system.74

On the other hand, various hydroponic pads like hemp mats,
biostrate, jute mats, and micromats gave positive results in
microgreen production in the greenhouse. Excluding a hemp
mat, radish plants have recorded the highest nitrogen
concentration, while mustard recorded the highest phosphorus
content. Variations in the fresh and dry weights of shoots as
well as the mineral nutrient content in radish, broccoli, kale,
mustard, and cabbage microgreens were even observed in
diverse hydroponic pads. Microgreens cultivated on hemp
mats exhibited the greatest shoot height, fresh and dry shoot
weights, and concentration of potassium.75 The physical
development, weight gain, and productivity were observed in
mustard, arugula, basil, and radish microgreens grown in a
controlled environment system using NFT with coarse burlap
fabric.76 In kale cultivation, achieving optimal levels of proline
content, plant canopy temperature regulation, and fresh yield
was accomplished by utilizing a 17.5% irrigation threshold
within a hydroponic wick system, managed through an EVC
container, within a controlled environment vertical farming
setup.77 Furthermore, favorable plant height and yield results
were documented for broccoli, red sorrel microgreens, basil,
mizuna, and sunflower, cultivated within a vertical hydroponic
framework and an ebb-flow bench system. These systems
utilized a growing medium comprised of perlite mix, peat, and
cellulose within a double-layered greenhouse equipped with a
heating system. Additionally, rice grass and wheat grass, grown
in a screen house, displayed similar positive results when
grown in nutrient media containing sawdust, cocopeat, and
husk charcoal.78

The preceding details confirm the significant potential of
controlled environment systems for cultivating agricultural and
horticultural crops, particularly for microgreen production,
using soilless cultivation methods (Table 1).79 The synthetic
ecosystem maintains consistent biotic and abiotic relationships
to stimulate the growth and maturation of crops and
microgreen vegetation. It ensures steady climatic conditions
conducive to cultivating crops and microgreens rich in
biochemical compounds and promoting high-quality growth.80

The constructed environment addresses issues such as crop
yield reduction, climate-related damage, natural resource
management or preservation, environmental considerations,
and seasonal crop production declines in the natural
environment.81 Investigation may be necessary to comprehend
essential or consistent thresholds of climatic elements, carbon
capture, carbon emissions, and suitability for crop and
microgreen cultivation within a controlled environmental
setup. Comparative research and analysis are essential to
grasp the vital or stable levels of climatic factors, carbon
capture, and carbon emissions associated with crop and
microgreen production within predetermined conditions and
open environments82,83 (Table 1) (Figure 1).

3. DECIPHERING MODELS FOR TRACKING
NUTRIENTS, WATER, AND CLIMATE DYNAMICS IN
CONTROLLED ENVIRONMENT ECOSYSTEMS
USING ADVANCED TECHNOLOGIES

In hydroponic systems with computer models, nutrient uptake
in crops typically involves the precise control of nutrient
solutions delivered directly to the plant roots. Computer
models help optimize this process by monitoring and adjusting
factors, such as nutrient concentration, pH levels, and water
availability, to ensure optimal growth conditions. The plants
absorb nutrients through their root systems in this soilless
environment, facilitated by the nutrient-rich solution. The
computer models help maintain the balance and provide real-
time data for better management. The progress of greenhouse
engineering with hydroponics has shown a heavy reliance on
computational intelligence, especially through automated
monitoring and control mechanisms. Advanced instrumenta-
tion and intelligent control systems employed in hydroponic
setups hold the potential to enhance both the quality and
quantity of production by efficiently managing diverse
processes. These production systems are subject to continual
monitoring and precise regulation. An essential aspect of these
highly automated and computerized configurations is the
accuracy and reliability of sensor-derived information, as well
as the efficacy of decisions transmitted to actuators.119 The
model involved in a controlled environment actively manages
the interplay of nutrient, water, and climatic elements within a
controlled environment framework (Table 2). It operates
under the governance of an operating system, ensuring the
provision of essential nutrients, water, and climate parameters
to nurture plant growth within consistent standards.120

Effectively distributing nutrients, water, and climate variables
regulates their crucial levels to sustain stability. Moreover, this
model facilitates the creation of a controlled artificial
ecosystem tailored for cultivating crops and microgreens,
optimizing resource usage in the process.121 Additionally, it
holds promise for mitigating crop loss and contributing to
natural climate stabilization efforts. Within this model, distinct
categories function according to specific principles and roles,
all aimed at fostering plant growth within controlled
environmental settings.122 An instrumental system was
developed for monitoring and adjusting the pH and
conductivity of the nutrient solution for hydroponic lettuce,
which typically experiences significant fluctuations during
cultivation.123 Furthermore, a Bayesian Network model has
been developed to automate crop cultivation. Sensors and
actuators are integrated to oversee and regulate farm
parameters including light intensity, pH levels, electrical
conductivity, water temperature, and relative humidity. Data
collected from sensors is utilized to construct the Bayesian
Network, which categorizes and forecasts optimal values for
each actuator, enabling autonomous control of the hydro-
ponics farm.124

Another hydroponic system was designed with an advanced
real-time operating system based on a microcontroller. ARM
Cortex-M4 microcontroller (ARM) system was used to
manage transmission signals. It oversees the measurement of
crucial parameters such as electrical conductivity, pH levels,
carbon dioxide concentration, temperature, and nutrient
concentrations within a standardized environment. The system
demonstrated its ability to maintain the desired concentration
level within a narrow variation margin of less than 3%.
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Furthermore, the pH sensor used in this system exhibited
commendable accuracy, with deviations of only 5.83%
observed across pH values ranging from 3.23 to 10. The
microcontroller interfaces with a digital temperature and
humidity sensor (DHT) to monitor humidity levels and an
MH-Z19 sensor to gauge carbon dioxide concentrations.
Employing expert system-based automation (HES), in a
controlled environment, is for regulating all aspects including
temperatures, oxygen levels, nutrient supply, and operational
settings for various components such as water heaters, fertilizer
tubes, pH regulators, conditioners, moisture control systems,
carbon dioxide generators, and artificial lighting. This
synchronization ensures the creation of optimal conditions
within the greenhouse system.125

Furthermore, the Arduino Uno microcontroller model
examines the mobility and speed of the nutrient flow in
solution. Arduino represents an electronic platform driven by
open-source code, encompassing both hardware and software
components. This versatile system possesses the capability to
receive sensor input, trigger motor action, illuminate LEDs,
and transmit data to the Internet and mobile devices, as well as
receive and process incoming information, converting it into
various applications. Users can dictate specific actions by
programming instructions into the microcontroller embedded
within the board. With its user-friendly interface, Arduino has
found widespread use across a myriad of projects and
applications. Its software caters to beginners with simplicity,
while offering flexibility for advanced users. Compatible with
Mac OS, Windows, and Linux, Arduino boasts cost-
effectiveness in comparison to other microcontroller platforms.
Additionally, the Arduino software can be expanded by
proficient programmers through C++ libraries and is adaptable
for circuit designers seeking to innovate.126 Moreover, anT
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Figure 1. Stability of ecosystem in conventional and controlled
environment agriculture systems. (a) Conventional Environment
Ecosystem. (b) Controlled Environment Ecosystem.
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integrated hydroponic farm management system was devel-
oped to be capable of monitoring parameters like water
temperature, water levels, nutrient solution concentrations, and
acidity levels employing sensors linked to a microcontroller
through an online platform.127

A neural network utilizing fault detection in a controlled
environment is designed based on a quasi-network back-
propagation algorithm, effectively discerned dynamic processes
within the hydroponic system’s root zone, and accurately
forecasted one-step-ahead values for pH and electrical
conductivity.128 The PlantTalk system monitors water move-
ment, regulates LED lighting, and manages plant care using
Python programs. The Penman-Monteith and Stanghellini
models analyze solar radiation, air temperature, humidity, and
wind speed within a controlled environment. Moreover,
alternative models such as the Priestley Taylor model and
the Hargreaves & Samani model monitor air temperature and
solar radiation within a controlled setting. The recurrent neural
network and long short-term memory (RNN-LSTM) assess
the levels of pH, temperature, humidity, and water diffusion,
operating based on deep neural networks.
The mechanistic and physiological model with machine

learning (MPM-ML) evaluates nutrient levels, nutrient trans-
port, accessibility of water-soluble nutrients, substrate nutrient
density, growth rate, productivity, and concentration gradients.
Employing the Michaelis−Menten enzyme kinetics principle,
this model functions by integrating with the Barber-Cushman
model to calculate nutrient concentrations in the solution,
mass transfer, diffusion, and Robin boundary conditions.
Additionally, the Porter diffusion model is utilized to analyze
substrate advection and diffusion equations.
The model provides insights into the operational dynamics

and impacts of water, nutrient, and climatic variables within a
controlled environment ecosystem. It regulates both critical
and noncritical fluctuations in climatic factors, fostering stable
plant growth under controlled conditions. Additionally, the
model advocates for ecological reform and ecosystem
preservation while conserving natural resources. With its
potential to address and mitigate climate crises, it plays a
crucial role in sustaining biogeochemical cycles and managing

greenhouse gas emissions.125,129 Carbon dioxide concentra-
tions in the surrounding environment, whether stable or
fluctuating, are assessed using Carbon Enrichment for Plant
Stimulation (CEPS) systems, implemented in both open and
closed setups. Carbon sequestration in such systems is
analyzed through models like the Rothamsted carbon model
and Fourier or neural models, which explore carbon dynamics
in both open and closed environments.130 Furthermore,
Willits131 introduced a thermal model aimed at forecasting
microclimate conditions within greenhouses equipped with
mechanical ventilation and an evaporative cooling system.
With the implementation of evaporative cooling, enlarging the
canopy size holds greater significance in reducing air
temperature. In the absence of evaporative cooling pads, the
ratio of energy utilized for transpiration to incoming solar
energy is estimated to vary between 1 and 75 for an outdoor air
temperature of 36.8 °C and a humidity ratio of 3.3 g/kg,
decreasing to 0.8 °C for an outdoor humidity ratio of 29.9 g/kg
at the same air temperature. Max et al.132 also explored the
impacts of different greenhouse cooling techniques, including
mechanical ventilation and evaporative cooling, on the yield
and quality of tomatoes in tropical climates.
Moreover, biochar can serve as a valuable resource for

improving soil fertility, sequestering carbon, and enhancing the
availability of essential nutrients for plants within open
environment ecosystems. This method effectively enhances
nutrient and carbon concentrations or availability under
controlled conditions, while simultaneously preserving the
integrity of the biogeochemical cycle.133 There is a need for
investigation of the influence of biochar under controlled
environment ecosystems using precise technologies such as
speed breeding. Furthermore, the integration of artificial
intelligence and machine learning in this approach will be
further required for more significant results under such
conditions.
3.1. Impact of Light-emitting Diodes (LEDs) Spec-

trum on Photomorphogenesis and Crop Growth under
a Controlled Environment Ecosystem. LEDs emit electro-
magnetic radiation across various wavelengths, which is
absorbed by the plastidial photoreceptors of plants to facilitate

Table 2. Diverse Models Involved in a Controlled Environment Ecosystem for Assessing Factors

s.
no. algorithm models principles assessing determinants references

1 Decision-tree-based dosing algorithm Real-time operating
system

Carbon emission reduction, nutrient dynamics 134

2 Linear regression analysis - Electrical conductivity, pH 135
3 Nicolet model Mechanistic Crop growth, nitrate uptake 136
4 Fuzzy inference system Real-time operating

system
Control temperature, relative humidity, electrical
conductivity, and pH

137

5 Plant talk Python programs Water dynamics, light emitting diodes monitor, plant
care control

138

6 Machine learning, support vector regressor, extreme gradient
boosting, random forest, deep neural network

Mechanistic Crop growth 139

7 Artificial neural network, genetic algorithms Real-time operating
system

Electrical conductivity 140

8 Mechanistic and physiological model with machine learning
(MPM-ml)

Michaelis-Menten
enzyme kinetics

Nutrient quantity, nutrient flow rate, water-nutrient
interaction, nutrient gradient, growth, yield

141

9 Recurrent neural network Sensor Crop growth 142
10 Light and shade system implementation Sensor High pressure sodium, light emitting diodes 143
11 Multiple linear regression Sensor Nutrient dynamics 144
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biological and physiological processes. These photoreceptors
selectively capture specific colors of light to trigger cellular,
molecular, and biochemical responses. Far-red light (>730
nm)147 is predominantly captured, with occasional responsive-
ness to green wavelengths due to their broad absorption
spectrum (530−700 nm) extending into the green range.
Within the cryptochrome, phototropin, and zeitlupe family
proteins, green, blue, and UV-A light are absorbed at
wavelengths of 530−700 nm, 390−500 nm, and 320−390
nm, respectively.148,149 Similarly, ultraviolet resistance locus 8
(UVR8) responds to light at wavelengths of 290−315 nm.
These processes intricately regulate various aspects of plant
growth and development, including phytochrome-mediated
responses, photoperiodism, flowering, photosynthesis, chlor-
ophyll synthesis, responses to light stress, modulation of
hormonal pathways, enzymatic functions, and the synthesis of
secondary metabolites like alkaloids and terpenoids.150

Phytochrome, for instance, orchestrates flower opening and
closure in response to redfar red light, while also governing
processes such as germination, leaf development, metabolism,
and flowering via perception of blue/green light. Phototropin
regulates leaf orientation, phototropism, stomatal behavior,
and chloroplast movement, while the zeitlupe protein family
coordinates metabolic activity and flower development.
Furthermore, UVR8 plays a role in regulating de-etiolation
and flavonoid synthesis in plants cultivated under controlled
artificial lighting environments.151

In controlled environments, crops utilize specific wave-
lengths of LED light to regulate their biological responses
(Table 3). Both monochromatic and polychromatic emissions
from LED lights influence the growth and physiological
functions of crops in these controlled settings.152 For instance,
in brinjal cultivation, monochromatic blue light was observed
to promote growth in growth chambers. Compared with white
light, blue light increased plant height by 2.16%, while red light
led to a decrease in height by 0.38%. Additionally, a
combination of red and blue light has shown benefits in
enhancing the accumulation of photosynthetic pigments and
advancing photosynthesis in eggplant seedlings, particularly
when the blue:red light ratio was 1:3. Blue light increased
ΦPSII (Photosystem II quantum yield) by 10.6%, whereas red
light reduced it by 25.8% compared to white light.153 In the
case of potato plantlets, exposure to blue light resulted in a
shortened stature, characterized by larger leaves, well-
developed roots, and abundant green foliage, along with
noticeable changes in stomatal development. Furthermore, the
combination of blue light with white light demonstrated a
favorable response in enhancing growth and metabolic
processes in onions by influencing photosynthesis-related
genes, compared to using white light LEDs alone.154

Additionally, combining red and far-red light has been found
to significantly hasten the growth of potato plants, resulting in
heights of 30.3 and 27 cm for the Golden King and Chungang
varieties, respectively.155 The use of simple and complex LED
light emissions, including white, red, dark red, and a mixture of
dark red, blue, and orange, has been shown to promote
biological and physiological growth in jute (Corchorus
capsularis) under controlled glasshouse conditions. Exposure
to red light increased plant height by 12% compared to that
with white light, while the stem diameter exhibited an 86%
increase under blue light and an 82% increase under orange
light. Similarly, the root diameter increased by 83% under blue
light and 84% under orange light.156 Monochromatic LED

light emissions, such as red, white, blue, and orange, have been
effective in promoting morphological growth in Brassica napus
within controlled glasshouse environments. For instance,
exposure to red light increased the seedling length of Brassica
napus by 29.2%, plant height by 13.2%, crown length by 32.2%,
total chlorophyll by 17.5%, carotenoids by 20.4%, plant fresh
weight by 18.6%, and dry weight by 20% compared to white
light.157 Both monochromatic and polychromatic LED lighting
have successfully supported cellular, biochemical, and molec-
ular processes across various plant species. These investigations
will further illuminate the effects of LED light emissions on
millets, fiber crops, and oilseed crops under controlled
environmental conditions, areas that have yet to be extensively
explored.
3.2. Mechanism of Nutrient Translocation in Plants

with Physiological Model and Machine Learning in a
Controlled Environment Ecosystem. Mechanistic physio-
logical models (MPMs) and machine learning (ML)
algorithms are central in orchestrating the intricate interplay
among water, light, nutrients, and growth parameters within
controlled environments, thereby exerting profound effects on
the plant growth rate and yield. Real-time sensors, outfitted
with ion-selective electrodes (ISEs), collaborate seamlessly
with a computerized database management system to
scrutinize both practical observations and theoretical insights.
Nestled within the root zones of plants, these sensors
perpetually track the dynamics of nutrient levels and
absorption, while artificial neural networks (ANNs) take
charge of rectifying errors, refining accuracy, and mitigating
disruptions during nutrient transportation. By amalgamating
ANNs with two-point normalization techniques (TPNs),
meticulous forecasting and regulation of nutrient movement
within plants are accomplished with precision.179

3.3. Mechanism of Nutrient Translocation in the Root
System of the Plant. In controlled environmental settings,
the intricate interplay of root architecture, metabolism, and
dynamics is discerned through the application of mechanistic
physiological models (MPMs) and machine learning (ML).
These sophisticated models not only govern the influx and
dynamics of nutrients within the plant root system but also
facilitate a nuanced understanding of substrate dynamics and
root nutrient uptake. The integration of mechanistic
physiological models, such as the Barber-Cushman model
and Porter diffusion models, enables a comprehensive
exploration of nutrient dynamics and uptake mechanisms
within plant roots. The Barber-Cushman model, alongside the
Porter diffusion model, operates independently, yet synergisti-
cally, in elucidating nutrition metabolism. This multifaceted
model scrutinizes various facets, including nutrient concen-
trations, solution nutrient levels, spatial distributions, mass
flow, diffusion processes (governed by the advection-diffusion
equation), and Robin boundary conditions. Simultaneously,
the Porter diffusion model meticulously examines substrate
advection and diffusion equations within the intricate frame-
work of plant roots, further enriching our understanding of
nutrient dynamics and uptake processes. Furthermore, the
Michaelis−Menten (MM) model regulates nutrient flow from
the root cell to the plasma membrane, biomass growth,
nutrient gradients, substrate dynamics, and root influx
dynamics in the plant root system.180

Utilizing additive chemicals enhances biological growth,
stimulates the production of phenolic compounds and
flavonoids, improves nutrient availability, facilitates the syn-
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thesis of antioxidant compounds, fortifies processes, and
bolsters stress resistance in plants.181 Under controlled
conditions, the utilization of potassium nitrate (KNO3)
elevates the levels of antioxidant enzymes, such as superoxide
dismutase (SOD), peroxidase (POD), catalase (CAT), and
ascorbate peroxidase (APX) within both the root and leaf
systems of radish plants. This augmentation mitigates salt
stress in radishes. Additionally, it amplifies the presence of
phenolic compounds, flavonoids, ascorbic acid, and anthocya-
nins.182 Under glasshouse conditions, the intake of synergic
acid diminishes oxidative stress while concurrently boosting
growth, biomass, gas exchange, and the presence of antioxidant
compounds in either the root or shoot system of tomato
plants.183 Furthermore, in Triticum aestivum L. plants, the use
of taurine enhances growth, chlorophyll levels, and nutrient
absorption by modulating the scavenging of reactive oxygen
species (ROS), secondary metabolic pathways, and ion balance
in response to stressors. Taurine’s efficacy mitigates the
generation of nitric oxide, hydrogen sulfide, glutathione, and
phenolic compounds, while also attenuating the impact of
boron (B) and chromium (Cr) under regulated conditions.184

Moreover, employing advantageous additive chemicals in
hydroponic systems, substrate-based cultivation, and accel-
erated breeding methodologies significantly boosts biological
growth, stress resilience, reduction of reactive oxygen species
(ROS), establishment of barriers against toxic metals, and
enrichment of phytochemicals or phenolic compounds.
Comprehensive studies may be necessary to grasp the intricate
mechanisms and uptake dynamics of potassium nitrate,
synergic acid, and taurine compounds within plant root
systems by using mechanistic physiological models and
machine learning techniques under controlled environmental
settings.

4. APPROACHES OF TECHNOLOGICAL RESOURCES
IN SPEED BREEDING UNDER A CONTROLLED
ENVIRONMENT ECOSYSTEM

Speed breeding techniques encompass a diverse array of
methodologies and tools aimed at accelerating the breeding
process and enhancing desirable traits in crops under
controlled conditions. These techniques include the utilization
of various markers such as molecular, biochemical, and
morphological markers as well as advanced breeding methods
like Marker-Assisted Selection (MAS), Genome-Wide Associ-
ation Studies (GWAS), Next-Generation Sequencing (NGS),
Genomic Selection (GS), Targeted Induced Local Lesions IN
Genomes (TILLING), mutation breeding, RNA interference
(RNAi), and CRISPR/Cas gene editing. Additionally, tissue
culture methods are employed to propagate plants rap-
idly.185,186 Speed breeding techniques have been effectively
utilized to enhance several crops including Brassica species,
Arabidopsis thaliana, various species of amaranthus, bread
wheat, durum wheat, barley, chickpea, pea, grass pea, quinoa,
oat, purple false brome, peanut, soybean, sorghum, broad
beans, lentil, rice, and burrowing clover within controlled
environment systems. These techniques have proven instru-
mental in improving traits essential for crop enhancement.187

4.1. Response of Speed Breeding Techniques in
Crops for Trait Improvement in Controlled Environ-
ment Conditions. Recombinant inbred lines (RILs) with
desired traits were successfully generated in soybean in five
years using a temperature-controlled growth chamber and an
incandescent lighting speed breeding technique, employing a

single pod descent method.188 In a span of four years, early
plant regeneration was achieved in groundnut through the
utilization of a greenhouse, employing the photosynthetically
active radiation (PAR) technique and gas heating speed
breeding method, facilitated by the single seed descent
approach.189 In a span of 7 to 8 years, early flowering and
seed germination in broad beans and lentils were achieved
using a speed breeding technique incorporating light emitting
diodes (LEDs), precise temperature control, and growth
regulators, all managed through the single seed descent
method within an incubator. Similarly, in peas, recombinant
inbred lines (RILs) were successfully developed within a time
frame of 5 years by integrating light emitting diodes (LEDs),
growth regulators, and speed breeding techniques using the
single seed descent method within a growth chamber.190 For
wheat, these lines were obtained within an eight-year time
frame utilizing incandescent lighting, precise temperature
control, or embryo culture in conjunction with a speed
breeding approach, all implemented through the single seed
descent method under carefully controlled conditions.191

Moreover, in chickpeas, these lines were produced in four
years with LED and temperature-based speed breeding
techniques through a single pod descent method under
greenhouse.192 Similarly, the rapid productions of high-yielding
varieties in rice were also produced in 4 years using the same
technique under greenhouse and screen house facility.193

However, in soybeans, the germination rate with light effect
was achieved in five years with light emitting diodes and speed
breeding technique through a single seed descent method
under climate-controlled chamber.194

Over a span of nine years, using LED, controlled
temperature, growth regulators, and the embryo rescue speed
breeding technique, segregated and pure lines were developed
in wheat, barley, and sorghum populations via the single seed
descent method within a controlled environment facility.195

Within a span of 6 to 7 years, the development of biotic stress-
resistant traits and the establishment of pure line plant
populations in bread wheat, durum wheat, or chickpea were
demonstrated using a speed breeding technique based on LED
lighting or temperature regulation. These methods were
applied through the single seed descent approach under
laboratory room conditions, temperature-controlled glass-
houses, and controlled environments simulating glass homes,
respectively.196,197 Moreover, employing analogous technolo-
gies, the breeding period was condensed, resulting in a
complete development within five years, and early panicle
emergence was achieved in oats within the Walnut Street
Greenhouse.198 Conversely, for Arabidopsis thaliana, the
breeding cycle was abbreviated, with a total development
time of 10 years observed under Greenhouse.199 Furthermore,
the generation of segregating plant populations in Amaranthus
species was achieved within a six-year time frame utilizing
these technologies under predefined conditions.200 In just six
years, the rapid development of high-yielding sorghum
varieties was accomplished using a speed breeding technique
that incorporated light emitting diodes (LEDs), precise
temperature control, and immature seed germination, all
managed through the single seed descent method within a
controlled greenhouse.201 Similarly, rapid biparental or multi-
parental plant populations in Trifolium subteraneum were
established within the same time frame of six years, employing
an expedited breeding method that involved incandescent
lighting, temperature regulation, and growth regulators, all

ACS Omega http://pubs.acs.org/journal/acsodf Review

https://doi.org/10.1021/acsomega.3c09060
ACS Omega 2024, 9, 29114−29138

29125

http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c09060?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


applied through the single seed descent method within a
controlled plant growth facility202,203 (Table 4).
Speed breeding techniques offer significant potential for

enhancing oligogenic or qualitative traits while simultaneously
reducing the generation time in crop breeding programs.
Further research is warranted to explore the screening of
quantitative traits, assess heritability, delve into the concept of
plant ideotypes following Donald’s concept, investigate
biofortification strategies, conduct biometric analyses, and
undertake physiochemical characterization within the frame-
work of existing breeding techniques and plant tissue culture
methods under controlled environment conditions. Addition-
ally, advancements in biometric analyses and physiochemical
characterization techniques can provide valuable insights into
the underlying genetic mechanisms and physiological processes
governing trait expression. Moreover, the integration of plant
tissue culture methods into speed breeding protocols offers
opportunities for rapid propagation of elite genotypes,
somaclonal variation screening, and the development of
novel genetic variants. This approach can expedite the
generation of diverse germplasm and accelerate the breeding
cycle, ultimately enhancing the efficiency and effectiveness of
crop improvement programs.204

4.2. Protocols of Speed Breeding in Rice, Sorghum,
Chickpea, Soybean, and Groundnut in Controlled
Environment Conditions. Speed breeding techniques
significantly abbreviate the breeding cycle, enabling the swift
creation of new varieties within a considerably reduced time
frame.205 Parental selection, crossing, generation line develop-
ment, multiplication, evaluation, adaptation, yield trials, and
variety release can all be accomplished within a mere 2 to 3

years of generation time using speed breeding methodologies
within a controlled environment ecosystem.206 The techniques
and timelines for speed breeding and generation vary across
crop development and enhancement within controlled
environment settings.207 For instance, rice population lines
can be achieved within a generation time of 80 days by using a
rapid advancement method based on speed breeding. This
method necessitates specific conditions, including an 11-h
photoperiod, temperatures of 30 °C during the day and 25 °C
at night, a photosynthetic photon flux density of 350 μmol m−2

s−1, 70% humidity, and a CO2 concentration of 475 ppm under
controlled conditions. However, altering the photoperiod to 10
h and maintaining the same temperature, light intensity, and
humidity, the generation time for rice population lines extends
to 100 days under controlled conditions.208 For sorghum, the
generation time was reduced to 77 days under controlled
conditions when subjected to continuous light and maintained
at a temperature of 30 °C.209 Additionally, the vegetative
growth of soybean is observed within a generation time of 70
days under standardized conditions. These conditions include
a 14-h photoperiod, temperatures of 30 °C during the day and
25 °C at night, a photosynthetic photon flux density of 220
μmol m−2 s−1 at canopy level, a CO2 concentration exceeding
440 ppm, and humidity ranging between 50 and 80%.210

Furthermore, in the context of chickpeas, a condensed
breeding cycle was observed when population lines were
subjected to specific conditions. This included exposure to a
22-h photoperiod, day temperatures of 22 °C and night
temperatures of 17 °C, maintained humidity levels of 70%, and
a photosynthetic photon flux density ranging between 440 and
650 μmol m−2 s−1 during the adult plant stage, all under

Table 4. Intervention of Speed Breeding Methods in Phenotypic Traits Improvement under Controlled Environment
Conditions

s.
no. crops speed breeding methods

generation
per annum traits improvement growing system references

1 Soybean Incandescent lights, temperature 5 Recombinant inbred lines
(RILs)

Growth chamber (188)

2 Groundnut Photosynthetically active radiation
(PAR) technique, gas heating

4 Early plant regeneration Greenhouse (189)

3 Broad bean, lentil Light emitting diodes, temperature,
growth regulators

7 or 8 Early flowering and seed
germination

Incubator (204)

4 Pea Light emitting diodes, growth
regulators

5 RIL Growth chamber (190)

5 Chickpea Light emitting diodes, temperature 4 RIL Greenhouse (192)
6 Soybean Light emitting diodes 5 Germination rate in light

effect
Climate controlled chamber (194)

7 Wheat, barley,
sorghum

Light emitting diodes, temperature,
growth regulators, embryo rescue

9 Segregated or pure lines
plant populations

Controlled environment facility (195)

8 Rice Light emitting diodes, temperature 4 Rapid production of high-
yielding variety

Screen house facility (193)

9 Wheat Incandescent light, temperature,
embryo culture

8 RIL controlled conditions (191)

10 Bread wheat,
durum wheat,
chickpea

Light emitting diodes, temperature 6−7 Biotic stress resistance,
pure line plant
population

Laboratory room conditions,
temperature controlled glasshouse,
glass home

(196,
197)

11 Oat Light emitting diodes, temperature,
micronutrient

5 Short breeding time, early
panicle emergence

Walnut street greenhouse (198)

12 Sorghum Light emitting diodes, temperature,
immature seed germination

6 Rapid high yielding
variety development

Controlled greenhouse (201)

13 Arabidopsis thaliana Light emitting diodes, temperature,
growth regulators

10 Short breeding cycle Greenhouse (199)

14 Amaranthus spp. Light emitting diodes, temperature,
growth regulators

6 Segregating plant
populations

Controlled growth chamber (200)

15 Trifolium
subteraneum

Incandescent light, temperature,
growth regulators

6 Rapid biparental,
multiparental plant
populations

Controlled plant growth facility (202,
203)
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predefined conditions.211 Furthermore, the integration of
speed breeding with continuous light supply, day temperatures
of 28 ± 3 °C and night temperatures of 17 ± 3 °C, along with
65% humidity, yielded a generation time of 89 days for
groundnut population lines under standardized environmental
conditions.212

5. APPLICATIONS OF ARTIFICIAL INTELLIGENCE IN
PHENOTYPIC CHARACTER EXAMINATION IN
CROPS UNDER A CONTROLLED ENVIRONMENT
ECOSYSTEM

The real-time machine powered by artificial intelligence (AI)
operates on neural network principles and algorithmic models.
It is seamlessly incorporated into plant growth chambers,
where predetermined environmental conditions facilitate the
scrutiny of phenotypic traits and functional assessments in
crops. This cutting-edge technology has demonstrated its
efficacy across various crops, serving pivotal roles in screening
for traits within controlled environments.213

Preharvest potential, yield performance, and identification of
high-yield cultivars in soybean were evaluated through various
advanced methodologies. These include the application of Best
Linear Unbiased Prediction (BLUP), Neural Networks (NNs),
kernel methods, and algorithmic models such as Multilayer
Perceptron (MLP), Support Vector Machine (SVM),
Ensemble-Stacking (E-S), Random Forest (RF), and Stochas-
tic Gradient Descent (SGD) within an open field system.214,215

In soybeans, investigations into seed per pod and seed
characteristics across diverse environments were conducted
using Convolutional Neural Networks (CNNs) and algorith-
mic model Batch Normalization (BN) within a conventional
field system.216 Similarly, French beans underwent scrutiny for
average yield, adaptability under stress factors, and phenotypic
stability, employing Artificial Neural Networks (ANNs) along
with algorithmic models Mean Square Deviation (MSD) and
Mean Square Residue (MSR) within a standard field
scenario.217 Moreover, employing similar technologies, French
beans were subjected to assessments of the oil content, callus
physical characteristics, secondary metabolite synthesis, and
somatic embryo development. These analyses were conducted
in a research field218 and controlled environment room.219

Stress resistance and miRNA expression related to stress
response were investigated in Arabidopsis thaliana utilizing
deep learning techniques and algorithmic support vector
machine (SVM) and naive Bayes classifiers within a growth
room setting.220 In the case of sesamum, evaluations of seed
yield, oil content, and identification of superior genotypes were
carried out utilizing Artificial Neural Networks (ANNs) and
algorithmic model Multiple Regression Analysis in a research
field221 (Table 5).
The integration of real-time machine learning presents

significant opportunities for quantitative trait screening within
speed breeding techniques implemented in controlled environ-
ment ecosystems. Exploring the intervention of speed breeding
techniques in quantitative traits, biofortification, nutrient or
water dynamics screening, tissue culture plant regeneration
examination, biometric analysis, and physiochemical character-
ization using artificial intelligence becomes essential in
studying crops under controlled growth conditions.
5.1. Intervention of Artificial Intelligence (AI) and

Machine Learning (ML) in Phenotype Screening in
Speed Breeding. The fundamentals of crop modeling, crop T
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management, trait discovery, phenotype identification, quanti-
fication, diseases, and pest diagnosis, along with image
processing, are integrated into the algorithmic models. These
models leverage artificial intelligence, machine learning,
automated machine learning, and information technology to
screen, identify, classify, and assess various aspects such as
growth, yield, disease, pest detection, plant-microbe relation-
ships, environmental factors, climatic patterns, and pheno-
types.222

Leveraging AI and ML streamlines the analysis and retrieval
of data from vast populations, including quantitative traits, root
phenotypes, environmental parameters, and multilocation field
trials in field breeding. Moreover, these technologies serve as
robust and concurrent tools for screening qualitative and
quantitative data in plant systems within controlled environ-
ment ecosystems.223,224 Both methods are instrumental in
facilitating high-throughput phenotyping of plants during
speed breeding under controlled environmental conditions.
High-throughput phenotyping in plants is facilitated through

the utilization of AI algorithm models, ML algorithm models,
and automated ML algorithm models, which are integrated
with sensor-based or satellite-based platforms.225 These
advanced algorithms enable the identification of plant
phenotypes and leaf morphology, measurement of growth
parameters, detection of disease or pest symptoms, analysis of
genomic and environmental data, assessment of genotype-
phenotype-environment interactions, and investigation of
relationships between phenotype and disease. Additionally,
they facilitate the early detection of pathogenic hosts and the
analysis of plant growth or disease images within the context of
speed breeding in controlled environment ecosystems. The AI
algorithm models excel in detecting leaf color, texture, specific
gene features, crop traits, and weather patterns in plants under
standardized conditions.226−228

In recent advancements, the fusion of AI with convolutional
neural networks (CNNs) has revolutionized the precision of
leaf segmentation and trait quantification.229 Similarly, the
synergy of hyperspectral imaging with machine learning
enables swift evaluations of crop performance.230 Moreover,
the integration of unmanned aerial vehicles (UAVs) with deep
learning facilitates the early detection of diseases in wheat
fields.231 Additionally, the amalgamation of genomic data with
machine learning techniques aids in predicting breeding
outcomes with greater accuracy.232 Furthermore, the coupling
of Bayesian optimization with genomic prediction enhances
the selection process for high-yielding genotypes.233 Utilizing
AI alongside UAV imagery, coupled with CNNs, efficiently
identifies weed species or populations.234 Lastly, employing AI
CNN gradient-weighted class activation mapping (Grad-
CAM) offers a robust screening method for assessing
chalkiness quality in rice.235

In addition to integrating crop models with AI algorithms to
monitor plant development and performance, these models
play a pivotal role in selecting key traits from plant population
lines in breeding programs.236 Moreover, various crop models
serve to gather empirical and theoretical data in plants. For
instance, the AI system PHENOPSIS assesses plant responses
to soil-water stress, while the crop model GROWSCREEN-
FLUORO identifies phenotypic leaf growth and chlorophyll
fluorescence to determine the abiotic stress tolerance. The
artificial technology LemnaTec 3D Scanalyzer System
comprehensively evaluates the salinity tolerance in rice.
Additionally, the model technology PhenoBox identifies

diseases such as head smut, corn smut, and responses to salt
stress. The crop model technology PHENOVI-SION detects
drought stress and recovery and analyzes stress responses.
Furthermore, artificial intelligence through Pheno Field
evaluates abiotic stress and related traits, while the AI model
Plant Screen Robotic XYZ system examines diverse traits
including stress tolerance mechanisms and drought toler-
ance.237

Machine learning techniques applied to plants under
predefined conditions are utilized to decipher the transmission
of information from DNA sequences to observable plant traits.
In this realm, a plethora of ML algorithms have been
introduced and honed to augment plant development.238

These ML-based algorithms delve into disease or pest
diagnosis, yield response, the genotype-phenotype relationship,
molecular events in biological systems, novel components in
plants or pathogens, omics analysis, plant-microbe interaction,
and disease identification in plants facilitated by speed
breeding in controlled environment ecosystems. Various
imaging modalities such as thermal or stereo visible light,
remote sensing, Kinet RGB (red, green, blue) depth images,
hyperspectral images, fluorescence imaging spectroscopy,
unmanned aerial vehicles (UAVs) based RGB depth images,
and multispectral images are employed to tackle disease
identification problems in plants undergoing speed breeding
under controlled environmental conditions.239,240

A plethora of machine learning algorithms, including
support vector machine (SVM), successive approximation
model (SAM), Gaussian processes classifier (GPC), Bayes
factor, detection analysis resolution (DAR), object-based
image analysis (OBIA) based classification, K-Nearest
Neighbor (KNN), quadratic discriminant analysis (QDA),
linear discriminant analysis (LDA), naiv̈e Bayes (NB), simple
logistic analysis (SL), library successive approximation model
(Lib SVM), Library LINEAR (LINE), multilayer perceptron
(MLP), binarized neural network (BNN), functional trees
(FT), random forests (RF), quantitative trait loci (QTL), and
genome-wide association studies (GWAS), have demonstrated
success in species identification, classification, analyzing
multiple traits, and identifying phenotypes or genotypes, as
well as diseases or pests in various crops such as tomato, sugar
beet, apple, and barley.241−243 Moreover, the integration of
machine learning algorithm models with sensor-based
technologies like light detection and ranging (LIDAR),
hyperspectral imaging, thermal fluorescence, or 3D laser
scanning, among others, is utilized to assess stress tolerance
and yield in plants. These combined technologies are also
employed to investigate stress and yield responses in crops
such as cotton, triticale, maize, and citrus.244,245 Additionally,
automated machine learning (AutoML) is recognized for its
role in data preparation, extraction, selection, construction,
model development, model evaluation, and image processing
in plants, particularly in conjunction with speed breeding
techniques under controlled environmental conditions.246,247

The fusion of AI and ML offers comprehensive screening of
phenotypic or genotypic data, crop architecture and develop-
ment, pest or disease symptoms or diagnosis, and image
processing within speed breeding programs under controlled
environmental conditions. These technologies necessitate
standardized procedures for initiating speed breeding programs
along with prominent features, reliable algorithm models, and
physiological or biochemical-based traits. Effective utilization
of algorithm models, AI, and ML demands expertise in their
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operation and maintenance within controlled environmental
ecosystems. Furthermore, implementing sophisticated algo-
rithm models and technologies is time-consuming and requires
capital investment to establish physical targets.248,249,250

6. INTERVENTION OF TECHNOLOGIES IN SPEED
BREEDING UNDER A CONTROLLED
ENVIRONMENT ECOSYSTEM

The strategies for accelerating crop growth within controlled
environment chambers encompass a variety of technologies.251

Utilizing biofortification approaches like the root/nutrient
method, fertigation method, and foliar spray method, speed
breeding techniques yield biofortified crops and microgreens in
controlled ecosystems.252 Tissue culture methods, including
cell culture, seed culture, endosperm culture, embryo culture,
anther culture, and somaclonal variations, are integrated into
speed breeding technology to enhance the development of
superior crop varieties within controlled environments.253 The
integration of speed breeding and tissue culture methods
within controlled ecosystems substantially reduces issues such
as loss of regenerated plantlets in protected cultivation,
regeneration of albino plants, embryo abortion, pseudoseed
formation, and ensures the production of disease-resistant
crops.254 Additionally, this approach alters gene behavior,
genetic makeup, gene expression, and inheritance patterns in
agricultural or horticultural crops by leveraging techniques
such as genomics, phenomics, proteomics, and transcriptom-
ics.255 Moreover, incorporating genomics, phenomics, proteo-
mics, and transcriptomics in speed breeding helps mitigate
challenges like inbreeding depression, male sterility, self-
incompatibility, embryo abortion, and enhances seed setting
within controlled environment plant growth chambers.256

Furthermore, speed breeding expedites the development of
genetically engineered crops using both direct and indirect
genetic engineering methods, including gene editing techni-
ques such as the CRISPR/Cas9 system.257 This approach can
also be synergized with efforts to enhance biotic and abiotic
stress tolerance through protein modification within controlled
environment ecosystems. Additionally, it facilitates the
advancement of phytoremediation crops by integrating
phytoremediation technologies within controlled plant growth
chambers.258 Moreover, speed breeding techniques can
incorporate sensor-based architectures to assess various
parameters such as biometric and stoichiometric parameters,
cell cycle dynamics, genetic linkage, chromosomal inheritance
theory, Donald’s crop ideotype concept, and Mendel’s genetic
theories within controlled environments.259 Speed breeding
practices also encompass optimizing light quality and intensity,
particularly utilizing light-emitting diodes (LEDs), to enhance
crop performance within controlled growth chambers.260

Moreover, it encompasses a variety of controlled growth
systems aimed at enhancing crop and seed improvement
within a single year. Healthy wheat and barley seeds can be
harvested within 2.5−3 weeks in a controlled environment
chamber. Local wheat and barley spikelets, on the other hand,
are typically harvested in 2 and 4 weeks, respectively, in a
glasshouse chamber with regulated lighting. Viable seeds of
wheat, barley, oat, and triticale are harvested within 4 weeks in
a homemade growth room. The speed breeding method
attributes a shorter generation time compared to traditional
breeding, resulting in accelerated variety development.261 This
technique also reduces the timeline for plant population line
development to 1−2 years, field trials to 3−5 years, and variety

release to 1−2 years, as opposed to the 5−10 years typically
required for plant population line development, 3−5 years for
field trials, and 1−2 years for variety release in traditional
breeding262 (Figure 2).

Furthermore, this method integrates with nanotechnology to
foster the development of nanocrops within controlled
environment ecosystems.263 Recycling wastewater technology
and reclaimed wastewater can also be leveraged to enhance
crop improvement under fast breeding conditions. The
dynamics of wastewater can be examined using sensor-based
technologies in conjunction with speed breeding within
controlled environments.264

7. CHALLENGES AND BENEFITS OF SPEED BREEDING
IN A CONTROLLED ENVIRONMENT ECOSYSTEM

Establishing crop production or speed breeding within a
controlled environment ecosystem necessitates a well-equipped
infrastructure. The process of developing parental lines,
selection lines, and releasing varieties through speed breeding
techniques demands various facilities and accessories. This
includes a controlled environment plant growing chamber
spanning 500−1000 square feet and essential equipment like
carbon dioxide analyzers, temperature and relative humidity
controllers, airflow/ventilation systems, as well as controls for
light spectrum, intensity, and photoperiod. The capital
investment for such infrastructure typically ranges from 20 to
30 lakh Indian rupees. Moreover, the implementation of speed
breeding techniques incurs higher monetary costs at certain
stages compared with traditional breeding, although the overall
costs are generally lower (Table 6). A proficient subject expert
is indispensable for comprehending the operation and upkeep
of a controlled environment ecosystem. They must grasp the
concept and approach of speed breeding techniques along with
key trait selection under controlled environmental condi-
tions.265 Furthermore, the scientist leading speed breeding
research should possess a strong understanding of agronomy,
crop physiology, genetics, plant breeding, and plant bio-
technology. Alternatively, a multidisciplinary team with
expertise in these areas should be actively engaged in the
research. The costs associated with nutrient solutions,
advanced infrastructure, and facilities are considerable, and a
continuous supply of distilled water is indispensable for
conducting crop trials using speed breeding techniques under
controlled growing conditions. Even minor lapses or
irregularities in maintaining photoperiodism, temperature,

Figure 2. Generation time of variety release in speed and traditional
breeding.
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humidity, and control of pests or diseases can lead to the
deterioration of crop trials and speed breeding techniques
within the controlled environment system. Ensuring a regular
power supply and maintaining an optimal temperature are
essential for sustaining crop trials, research activities, and
methodologies within the controlled environment. Throughout
the cropping period in controlled environment technologies, it
is imperative to uphold and monitor standard pH levels, total
dissolved solids (TDS), and growing conditions to ensure the
efficacy and success of the breeding programs.266

Moreover, this method has proven to be highly effective in
screening both key and broad-spectrum traits within early
population lines. Speed breeding holds significant potential for
minimizing genetic loss and morphological or reproductive
disruptions while simultaneously enhancing selection intensity,
heritability, and genetic gain and maintaining precise data
records under controlled environmental conditions. It
demonstrates competence in achieving desired breeding
objectives and facilitating varietal development. This technique
inherently accelerates the development of improved population
lines and varieties within a shorter generation time per year,
compared to conventional breeding methods. For example, in
crops like wheat, pea, and chickpea, traits and line develop-
ment typically occur over 4−6 generations per year using
speed breeding, whereas in field breeding, it is limited to 1
generation per year. Similarly, in okra, phenotypic traits and
selection lines manifest over 4−6 generations per year through
speed breeding compared with 2−3 generations per year in
field breeding. Likewise, for both qualitative and quantitative
traits in tomatoes, the speed breeding technique enables 5−6
generations per year, while field breeding typically allows for
only 2−3 generations per year. The adoption of speed
breeding leads to reduced labor expenses, time savings, secured
funding, and fewer field trials within a controlled environment
ecosystem.267,268

8. CONCLUSIONS
The controlled environment setting proves to be advantageous
for cultivating crops and microgreens, addressing food security
concerns, and facilitating technology transfer. It ensures a
consistent distribution of nutrients, water, and climatic
conditions. Such environments play a crucial role in mitigating
the effects of climate change and in sustainable use of natural
resources. Speed breeding, an advanced plant breeding
method, expedites crop improvement by achieving desired
objectives within a shorter generation time, typically a year.
This technique enhances both qualitative and quantitative
traits across a range of crops, including rice, wheat, barley,

sorghum, oat, soybean, peanut, chickpea, broad bean, and
lentil, among others, within controlled environments.
Speed breeding employs various effective methods such as

biofortification, tissue culture, gene manipulation, and omics to
develop healthier, disease-resistant crops and to overcome
issues such as self-incompatibility, male sterility, poor seed
setting, inbreeding depression, embryo abortions, and albino
plant regeneration. Additionally, the recycling of wastewater
can enhance crop growth through fast breeding in controlled
environments. Sensor-based technology enables the inves-
tigation of wastewater dynamics, facilitating speed breeding
under controlled conditions. Integration of algorithmic models
and sensor-based technologies enhances the evaluation of crop
characteristics, climatic factors, nutrient dynamics, and ambient
gases within controlled environment ecosystems with precision
and efficiency. Speed breeding ensures consistent environ-
mental conditions for crop improvement and aids climate
change mitigation within predefined ecosystems. It also
minimizes input-output losses and damage from biotic or
abiotic factors compared to conventional systems, thereby
contributing to food security amidst growing populations.
Further comparative studies are needed to comprehend and
justify the mechanisms involved in climate resilience of major
crops within controlled and natural environments. Inves-
tigations focusing on quantitative traits and omics in crops
through speed breeding under controlled conditions are
warranted. Additionally, exploring more breeding techniques
to evaluate qualitative and quantitative traits and generation
times in crops within controlled environments is essential.
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