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Abstract: Worldwide demographic projections point to a progressively older population. This fact
has fostered research on Ambient Assisted Living, which includes developments on smart homes
and social robots. To endow such environments with truly autonomous behaviours, algorithms must
extract semantically meaningful information from whichever sensor data is available. Human activity
recognition is one of the most active fields of research within this context. Proposed approaches
vary according to the input modality and the environments considered. Different from others,
this paper addresses the problem of recognising heterogeneous activities of daily living centred in
home environments considering simultaneously data from videos, wearable IMUs and ambient
sensors. For this, two contributions are presented. The first is the creation of the Heriot-Watt
University/University of Sao Paulo (HWU-USP) activities dataset, which was recorded at the Robotic
Assisted Living Testbed at Heriot-Watt University. This dataset differs from other multimodal
datasets due to the fact that it consists of daily living activities with either periodical patterns or
long-term dependencies, which are captured in a very rich and heterogeneous sensing environment.
In particular, this dataset combines data from a humanoid robot’s RGBD (RGB + depth) camera,
with inertial sensors from wearable devices, and ambient sensors from a smart home. The second
contribution is the proposal of a Deep Learning (DL) framework, which provides multimodal activity
recognition based on videos, inertial sensors and ambient sensors from the smart home, on their
own or fused to each other. The classification DL framework has also validated on our dataset
and on the University of Texas at Dallas Multimodal Human Activities Dataset (UTD-MHAD), a
widely used benchmark for activity recognition based on videos and inertial sensors, providing a
comparative analysis between the results on the two datasets considered. Results demonstrate that
the introduction of data from ambient sensors expressively improved the accuracy results.

Keywords: human activity recognition; multimodal datasets; deep learning; video classification;
inertial sensors; human–robot interaction

1. Introduction

According to projections by the Department of Economic and Social Affairs of the
United Nations, the worldwide proportion of citizens aged between 15 and 64, with respect
to those aged over 65 years old, is expected to drop from about 7:1 in 2020 to approximately
4:1 in 2050 [1]. This may lead to a deficit in workforce numbers in the elderly care sector,
which has motivated the research on Ambient Assisted Living (AAL) [2]. The idea is to
support human carers, with the introduction of assistive technologies. These solutions may
help to address issues such as improving limitations of movements, monitoring chronic
diseases, minimising social isolation or controlling medicine administration by providing
integrated services that may be connected to the Internet of Things (IoT) [3].
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Technologies for AAL may be provided in the form of smart homes [4], equipped
with sensors, for monitoring different conditions of the environment and its inhabitants [5],
and actuators, to effectively help them in their daily activities [6]. To enhance those
environments and improve their acceptance towards the end users, the design can include
service or social robots [7], which may either introduce additional functionalities and
monitoring tools, or provide more natural human–robot interaction. One advantage
of introducing such robots to an AAL environment is the possibility to collect visual
information with less privacy concerns than those related to fixed cameras [8]. Besides,
robots may be endowed with behaviours to manage privacy-sensitive situations [9].

Human activity recognition, which consists of classifying human-centred data from
different sensors [10], is a key requirement for AAL applications, as it is essential for allow-
ing proactive behaviours or even basic cooperation between human and the environment.
The review provided in Chaaraoui et al. [11] presented a discussion on taxonomies for
Human Behaviour Analysis (HBA). According to the authors, an activity is a sequence of
semantically meaningful actions involving interactions between humans and their environ-
ment. The most widely adopted approach to HBA involves the classification of the activities
from sensor data capturing sequences of basic human motions, i.e., action primitives.

To date, most research on this field has focused on single modality approaches, which
may consist of either RGB [12] or RGB-D videos [13], wearables such as inertial sensors
(Inertial Measurement Units—IMUs) [14], or ambient sensors [15]. The scenarios in which
each of these modalities have been employed for activity recognition vary according to
the availability of data, which may be constrained by technical or ethical limitations. RGB
videos can be found on different online sources, which allows the gathering of different
large-scale, very heterogeneous datasets [16]. Depth videos and IMU data are usually
collected in more controlled environments, such as AAL research laboratories [17]. For all
of those modalities, deep learning (DL) approaches have shown to provide state-of-the-art
classification results [18–20]. In the case of ambient sensors, most datasets provides long-
term records of binary data, and the associated research effort usually focus on segmenting
and classifying human activities [21].

The availability of data from multimodal sources within a smart robotic environ-
ment [22] may help designing more robust methods for activity recognition. For instance,
although recent advances on DL approaches have made video-based activity recognition
a very powerful approach [23], this modality of data may be unavailable due to privacy
restrictions, or it may be compromised by technical issues such as occlusions. Besides, one
modality of data can perform better than another in certain conditions. Ambient sensors
may be quite informative on some well-defined scenarios in a smart home [24], while
wearable sensors can be more suitable for actions that rely on limb motions [25]. Therefore,
most recently, multimodal approaches for activity recognition have been investigated [20]
as more robust alternatives when compared to single-modality approaches.

To the best of our knowledge, there is no work in the literature that addressed the prob-
lem of recognising heterogeneous activities of daily living centred in home environments
by building modules that consider, simultaneously, data from videos, wearable IMUs, and
ambient sensors. One of the reasons is the lack of a representative dataset suitable for this
task, which would be a prerequisite to train and test any data-driven model. Nonetheless,
this configuration can be expected in smart AAL environments combining smart home and
robotic technology.

Driven by this motivation, our first contribution in this work is the design, collection
and curation of the Heriot-Watt University/University of Sao Paulo (HWU-USP) activities
dataset, which will be made public. This database was built based on an international
collaboration between researchers from the Heriot-Watt University (HWU) in the UK, and
the University of Sao Paulo (USP) in Brazil (the dataset is available at https://drive.google.
com/drive/folders/1Aq1kOcAxLhZl84R9qAdW_o0uL8s5b30E?usp=sharing). The dataset
was designed to capture a set of activities of daily living that took place in the Robotic
Assisted Living Testbed (RALT) at the Heriot-Watt University, in Edinburgh, Scotland.

https://drive.google.com/drive/folders/1Aq1kOcAxLhZl84R9qAdW_o0uL8s5b30E?usp=sharing
https://drive.google.com/drive/folders/1Aq1kOcAxLhZl84R9qAdW_o0uL8s5b30E?usp=sharing
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It includes not only activities that involve long-term dependencies, such as preparing a
sandwich, but also static activities, such as reading a newspaper. Videos were recorded
from the RGBD camera from a robot, positioned at a fixed location in the test kitchen.
Two wearable IMUs were placed at the dominant arm and at the waist of each participant,
exemplifying the inertial sensors usually found in smartwatches and a smartphones. The
ambient sensors from the smart home also have been integrated in the environment.

Besides presenting the dataset in detail, our second contribution is the development
of a framework based on Deep Learning (DL) networks for classifying multimodal data
not only from videos and inertial units, as performed on related work, but also on ambient
sensors. To the best of our knowledge, this is the first approach to consider those three
modalities altogether, which could not be done with the other datasets present on the
literature. The DL models for the different modalities were trained and evaluated with the
HWU-USP dataset. Our investigation included approaches for sensor fusion, a non-trivial
problem which drives research in different contexts [26], and has been explored in the field
of activity recognition [27]. On our case, fusion was performed mostly at decision-level,
though one feature-level approach was proposed for the inertial and ambient sensors.
A comparative analysis of the results, quantifying the improvements achieved by each
approach, was performed.

The classification framework was based on existing literature for each modality. Re-
garding the video modality, we have considered the two streams proposed by Simonyan
and Zisserman [28]: the spatial and temporal streams. As expected, due to the motion-
driven aspect of the datasets analysed, with few background information or objects that
could be discriminative regarding to the activity being performed, the appearance-based
approaches (i.e., the spatial stream) led to poor results, and hence were not considered on
the multimodal scenarios. Instead, our architecture focused on motion-based approaches
(i.e., the temporal stream), which led to the best accuracies observed for the single-modality
approaches. This consisted of combining CNN modules for feature extraction on dense
optical flow maps [29–31], previously computed on the video frames, and a LSTM layer for
temporal modelling [32].

With respect to the IMU, we introduced the raw, time-domain data to a DL architecture,
another common practice in related work [33,34]. The fusion between IMU data and
ambient sensors was performed internally as part of one of the DL architectures presented,
after both modalities were temporally aligned in a preprocessing stage, an approach that
we are proposing as part of this work. To perform fusion between the video-based models
and the models that processed IMU and ambient sensors’ data, the output vectors were
combined with the outputs of the other modalities, also an approach commonly adopted
in related research [35,36].

All predictions are performed on two-seconds-long segments. Following a widely
adopted approach in the literature in video-based activity recognition [18,28,35], we have
evaluated our models on 25 segments equally spaced between them. We did the same for
the other modalities as well, since this approach allows the classifiers to consider partial
observations of the activities, as expected for real-world scenarios. Results are presented
in terms of the accuracy obtained in each of the conditions analysed, corresponding to
different input modalities or fused models. The introduction of ambient sensors has shown
to provide significant improvements to the overall accuracy. The results presented here
provide a baseline for future work in human activity recognition using multi-modal sensor
data in smart robotic environments.

Besides the new HWU-USP dataset, we have also experimented our video and IMU
models with another popular public available dataset, the UTD-MHAD [37], providing
comparisons with the HWU-USP dataset regarding to the behaviour of the classifiers.
Moreover, the classification methods achieved competitive results for the UTD-MHAD.
The confidence in predicting the correct label on each segment was also analysed. As was
expected, this was quite different when comparing the HWU-USP dataset, consisting of
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both complex and simple activities, to a more homogeneous dataset, such as the UTD-
MHAD.

The remainder of this article is organised as it follows. Section 2 illustrates and
compares the most relevant datasets from the literature, and highlights their key differences
from the one presented in this paper. Section 3 provides an overview of sensor-based
human activity recognition, focused on techniques able to exploit different input modalities.
Section 4 presents a detailed description of the data in the proposed dataset and the
protocol used for its collection. Furthermore, it describes the DL methods considered for
the classification of data and also the protocols used for their training and evaluation.
The results are then presented and analysed in Section 5, and a discussion is presented in
Section 6. Finally, in Section 7, conclusions and possible directions for further research are
outlined.

2. Datasets of Human Activities

The HWU-USP dataset was built to provide a benchmark for studies on activity
recognition in indoor environments. For this reason, combinations of different modalities,
namely videos, wearable IMUs, and environmental sensors were considered. In this section,
previously developed datasets that includes sensor data from these modalities, regardless
of the context, will be presented, in order to contextualise the construction of the HWU-USP
dataset. The nature of available datasets and associated approaches for data collection vary
greatly for different sensor modalities considered in human activity recognition research.
For example, for RGB video datasets, there is a vast availability of data on the Internet, from
movies or other non-dedicated sources, which can be labelled and made available, resulting
in fairly large datasets. This is more difficult for depth videos, IMUs or environmental
sensors, hence this type of datasets are more often collected in controlled settings, usually in
research laboratories simulating domestic environments. In the next subsections, datasets
for each modality or set of modalities will be presented separately.

2.1. RGB Videos

As already mentioned, most commonly used benchmarks of regular RGB videos
can avail of amateur videos, movies or sports broadcasts. Most of these datasets are pre-
segmented, which means that each video is entirely associated to one category (e.g., “biking”
or “playing piano”), with a few exceptions. The categories in which the activities of these
datasets are usually labelled are generally at a comparatively high level of abstraction and
granularity, including activities such as playing basketball, instead of low-level, primitive
activities such as walking or running. A summary of representative RGB video datasets is
provided in Table 1.

Table 1. Video datasets made available and widely used in related works.

Dataset Number of Instances Categories Source Pre-Segmented

UCF101 [16] 13,320 101 YouTube Yes

HMDB51 [38] 6766 51 Movies, YouTube, etc. Yes

CCV [39] 9317 20 YouTube Yes

Hollywood2 [40] 1707 12 Movies Yes

Sports-1M [41] +1 M 487 YouTube Yes

Kinetics 700 [42] +600 K 700 Youtube Yes

THUMOS [43] +23,700 101 YouTube No

ActivityNet [44] 13,837 203 YouTube No
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The two most relevant benchmarks, on which the most renowned video-based HAR
techniques have been evaluated, are the UCF101 [16], from the University of Central Florida,
and the Human Motion Database (HMDB51) [38]. The Columbia Consumer Video Database
(CCV) [39] is also commonly referenced, as it presents similar properties, but longer videos.
The Hollywood2 [40] and the Sports-1M [41] datasets present an additional challenge,
as the videos contain editions and camera transitions. Although, as seen in Table 1, the
Sports-1M dataset is quite large, a newer dataset—the Kinetics dataset [42]—has been
preferred for testing DL architectures, requiring a large amount of data. Regarding datasets
that were not pre-segmented, some of the most relevant ones are the THUMOS [43] dataset,
provided with the same set of categories as the UCF101, and the ActivityNet [44], annotated
according to a semantic hierarchy of activities designed by the U.S. Department of Labour
to perform the American Time Use Survey (ATUS).

All of the above-mentioned datasets consist of heterogeneous and realistic sets of
videos, usually thanks to user-created content. This variety of data is not possible, at
least at present, for data from other modalities, such as RGB and depth videos, wearable
and environmental sensors. Consequently, multimodal datasets are usually collected in
controlled environments, mostly with static backgrounds, few variations in camera angles
and artefacts shared among the data samples. These limitations are inherent to any dataset
consisting of modalities that does not count on large amounts of user-created content,
which is the case for almost all multimodal datasets, including ours.

2.2. Depth Videos

With the popularisation of RGBD (RGB + depth) cameras, such as the Microsoft
Kinect [45], it became possible to provide not only RGB and depth videos, but also pre-
viously extracted skeleton joints from humans being observed. The categories within
these datasets are usually from levels of abstraction compatible with those that could be
acquired by RGBD devices, although less diverse, with several activities sharing the same
background, objects for manipulation and light conditions. In Table 2, a collection based
on the datasets adopted by Amir Shahroudy et al. [46] is shown. These datasets presented
were collected using a Microsoft Kinect device, except for the NTU RGB+D, which was
collected using a Microsoft Kinect v2. Both devices may collect data on either 15 Hz or
30 Hz.

Table 2. Selection of datasets for depth videos, adapted from the list by Amir Shahroudy et al. [46].

Dataset Classes Subjects Repetitions Instances

ORGBD [47] 7 24 2 336

MSR-DailyActivity3D [48] 16 10 2 320

3D Action Pairs [49] 12 10 3 360

RGBD HuDaAct [50] 13 30 - 1189

NTU RGB+D 120 [51] 120 106 - 114,480

The datasets listed at Table 2 share a lot of common points. The Online RGBD
Action dataset (ORGBD) [47] contains videos from different environments, allowing cross-
environment evaluation of HAR techniques. The MSR-DailyActivity3D [48] is characterised
by a higher intra-class variation. The 3D Action Pairs [49] was designed to include pairs of
opposite activities, such as pull a chair and push a chair. An initiative for providing a larger
dataset resulted on the RGBD HuDaAct [50]. Finally, the NTU RGB+D was extended and
formed the NTU RGB+D 120 dataset [51], with more than 100K videos distributed on 120
categories.
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2.3. Wearable and Ambient Sensors

In this subsection, we are addressing sensors that may be worn by the subjects (i.e.,
wearable sensors) or placed at predefined locations of the environment (i.e., ambient sen-
sors). We focused our review in inertial measurement units (IMU), since most multimodal
datasets address this modality. However, we also referenced setups including sensors
embedded in the environment, usually at fixed locations, because these can help to get very
discriminative information. This is the case of our own dataset, which includes data from
different sensors from a smart home, as discussed in Section 4.1. The data provided by these
devices usually consist of measurements from accelerometers, gyroscopes, and, sometimes,
magnetometers, all of them three-dimensional. All datasets examined in Table 3 were
collected under controlled conditions, with the sensors placed on the surfaces of objects or,
most commonly, as wearable devices.

Table 3. Datasets based on environmental or wearable sensors. Except for the OPPORTUNITY dataset, the IMUs were all
contained on wearable devices.

Dataset Sensors Rates Attributes Subjects Classes

OPPORTUNITY [52]

Wearable accelerometers: 12
Wearable IMUs: 7
Wearable tags: 4
Objects’ accelerometers: 12
Objects’ gyroscopes: 12
Environmental accelerometers: 8
Switches: 13

64 Hz
30 Hz
87 Hz
64 Hz
64 Hz
98 Hz
100 Hz

242 4 17

PAMAP2 [53] Colibri wireless IMUs: 3
Heart monitor: 1

100 Hz
9 Hz 52 9 18

REALDISP [54] Xsens IMUs: 9 50 Hz 120 17 33

SBHAR [17] Samsung Galaxy S2 IMU 50 Hz 561 30 12

Skoda [55] IMUs: 20 98 Hz 141 1 10

DG [56] IMUs: 3 64 Hz 9 10 2

The OPPORTUNITY [52] dataset has been widely used as benchmark in the literature
for activity recognition tasks involving wearable or environmental sensors, as it consists
not only of several inertial sensors placed in objects of daily living and worn by the subjects,
but also tags and switches positioned in different parts of the environment. Another
widely adopted dataset is the Physical Activity Monitoring for Aging People (PAMAP) and
its extension, the PAMAP2 [53], designed for identifying patterns in subjects performing
physical exercises. The Realistic Sensor Displacement Benchmark Dataset (REALDISP) [54] also
addresses physical activities. The positioning and availability of sensors are not usually
practical and intended for large-scale adoption, except when dealing with standardised
conditions, such as smartphones, as addressed on the Smartphone-Based Human Activity
Recognition dataset (SBHAR) [17]. Datasets for other scenarios have also been developed,
such the Skoda Mini Checkpoint dataset [55], composed of work activities in a car factory, and
the Daphnet Gait (DG) [56], composed of motion patterns of patients affected by Parkinson’s
Disease.

Bakar et al. [57] presented an extensive survey on sensing approaches for activity
recognition in smart homes. Besides cameras, microphones and wearables, these environ-
ments allow the introduction on fixed sensors such as temperature, pressure or motion
sensors. Binary sensors, such as switches at doors and wardrobes, are also usual, and these
categories were also included on our approach. The CASAS project [58] proposed different
testbeds that could be used for data collection and experiments in smart homes, based
mostly on environmental sensors. Differently from the datasets mentioned in Table 3, these
datasets usually result from long-term data collections. As detailed by Lesani et al. [59],
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the Twor2009, Tulum2009 and Tulum2010 datasets, from the CASAS project, were collected
in periods ranging from 3 to 6 months, in which information from motion, binary, door
and item sensors were recorded.

An intrinsic advantage of the above-mentioned modalities is that they can provide
additional data that are invariant to the positioning of externally placed observing devices,
contrary to when cameras or robots are used. Thus, they may provide valuable information
for an activity recognition framework. Besides, inertial and ambient sensors also have the
advantage of being less intrusive than video cameras. For this reason, multimodal datasets,
including video, IMUs and other modalities, have been proposed.

2.4. Multimodal: Video and IMU

Multimodal datasets with videos and other sensors, especially IMUs, have been
proposed in different contexts. Most of these datasets report data from combinations of
different sensors and depth videos, which may be accompanied by the RGB videos. A
survey on the subject was provided by Chen et al. [27], considering only datasets that
provided depth videos and IMU data. In Table 4, we present a collection of the most
relevant datasets for any kind of video collected along with data from other sensors.

Table 4. Multimodal datasets, provided with videos, IMU sensors, and possibly others.

Dataset Sensors Rate Subjects Classes Instances

CMU-MMAC [60]

Cameras: 5
Microphones: 5
Wired IMUs: 5
Wireless IMUs: 4
Motion capture: 1
eWatch (accelerometer)

30 Hz or 60 Hz
-
120 Hz
60 Hz
120 Hz
-

18 5 90

Berkeley-MHAD [61]

Motion capture: 8
Stereo cameras: 2
Quad cameras: 2
Microsoft Kinect: 2
Shimmer IMUs: 6
Microphones: 4

480 Hz
22 Hz
22 Hz
30 Hz
30 Hz
48k Hz

12 11 660

UTD-MHAD [37] Microsoft Kinect: 1
IMU: 2

30 Hz
50 Hz 8 27 861

C-MHAD [62] Webcam: 1
Shimmer3 IMU: 2

15Hz
50Hz 12 12 240

50 Salads [63] Microsoft Kinect: 1
Accelerometers: 11

30 Hz
50 Hz 25 51 966

JIGSAWS [64] da Vinci (kinematic data): 1
Stereo camera: 1

30 Hz
30 Hz 8 15 103

ChAirGest [65] Microsoft Kinect: 1
Xsens IMUs: 4

30 Hz
50 Hz 10 10 1200

UR Fall Detection [66] Microsoft Kinect: 1
x-IMU: 1

30 Hz
256 Hz 5 5 70

TST Fall Detection V2 [67] Microsoft Kinect: 1
Shimmer IMUs: 2

30 Hz
50 Hz 11 8 264

The Carnegie Mellon University Multimodal Activity (CMU-MMAC) Database [60]
records data from RGB cameras, microphones and wearable sensors worn by a set of
subjects performing food in a kitchen environment. The Berkeley Multimodal Human Action
Database (Berkeley-MHAD) [61] and the University of Texas at Dallas Multimodal Human
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Action Database (UTD-MHAD) [37] have a similar structure based on short actions recorded
with RGBD cameras, IMUs and a variety of other sensors. The recently deployed Continu-
ous Multimodal Human Action Dataset [62] was collected in an environment similar to that
of the UTD-MHAD, although without the RGBD camera, containing activities related to
smart TV gestures (5 activities) and transitions (7 activities) in continuous, non-segmented
recording sessions. The 50 Salads dataset [63] captures people preparing several salad
recipes being recorded by RGBD cameras, and IMUs placed in the utensils used for the
food preparation. The ChAirGest [65] dataset focuses on gesture recognition with the
aim to be applied in human–computer interfaces. The University of Rzeszow Fall Detection
Dataset [66] and the Telecommunications System Team (TST) Fall Detection Dataset [67] were
built with data on regular daily activities and falls, which can be used to train models for
fall detection, an important field of research with applications as part of AAL solutions for
the elderly.

Although the above-mentioned datasets cover a range of applications for multimodal
activity recognition, none of them focused generically on activities of daily living in AAL
environments. Moreover, none of them are provided simultaneously with data from videos,
inertial units and ambient sensors. Our approach aims to alleviate this gap by providing a
dataset captured in a heterogeneous, sensory rich environment comprised of a smart home
system, a wearable sensor kit, and a domestic robot equipped with an RGBD camera.

3. Human Activity Recognition

Different algorithms can be suitable for the task of human activity recognition, depend-
ing on the nature of the data being addressed [68]. For RGB videos, although strategies
based on classic feature extraction techniques still provide competitive results [69–71],
Deep Learning (DL) architectures have led to increasingly accurate, state-of-the-art results,
representing a very active field of research, as discussed by Zhang et al. [72]. Among the
most influential studies on this subject is Simonyan and Zisserman [28], which presented
the Tow-Stream ConvNets, characterised by a spatial and a temporal stream. The spatial
stream consists of a Convolutional Neural Network (CNN) that classifies individual RGB
frames from a video, while the temporal stream is a similar CNN which, instead of an
individual image, processes a sequence of dense optical flow maps (horizontal and vertical),
computed on a preprocessing step using a suitable algorithm [29–31], from a predefined
number of frames. The scores obtained by both streams are then fused, in order to obtain
a prediction. Most of the works found in literature built on the basic structure of the
Two-Stream ConvNets, including the Temporal Segment Networks [18]. Recent literature
has proposed different multiple-stream approaches that could include other input modali-
ties [12]. Our work was based on the multiple stream paradigm, in which the temporal
stream was extended to work with a combination of CNN and Long Short-Term Memory
(LSTM), as proposed by Donahue et al. [32]. It is worth to notice that spatio-temporal
approaches, usually based on 3D CNNs, have been a popular alternative to multiple-stream
approaches such as ours [73–75]. In this paper, the approaches implemented for video
classification consisted of combining multiple stream principles using optical flow maps,
with feature extraction with a CNN and temporal modelling with LSTM.

With respect to depth videos, state-of-the-art results have been obtained from different
approaches. Motion from depth images, including optical flow features computed over
depth human silhouettes, along with features exracted from human joints, are usually
employed to compose Hidden Markov Models (HMM) [76–81], or other representations
such as Self-Organising Maps (SOM) [82]. The most successful approaches are based on
features extracted from geometrical relationships on skeleton joints [83]. In the context
of DL, some researchers investigated the introduction of preprocessing steps such as the
computation of depth motions maps [84], or the computation of action maps from scene
flow representations [19]. We did not include the depth videos as a modality for computing
the temporal stream because there is not a direct correspondence between the preprocessing
steps of the most successful approaches on this context and the algorithms that we have
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analysed for the other modalities. The three-dimensional version of the optical flow, the
scene flow, could be computed based on RGB-D images [85], but led to poor results on
exploratory experiments and, hence, were unconsidered. Nonetheless, we included the
raw depth images as an additional condition for analysing the spatial stream.

Considering sensors other than video cameras, the survey by Wang et al. [86] defined
four modalities: body-worn (i.e., wearable sensors such as smartphones or watches), object
(i.e., sensors attached to objects, such as RFID or IMUs attached to utensils), ambient (i.e.,
sensors attached to to environment, such as door sensors or Bluetooth beacons), and hybrid
(i.e., combinations of modalities, typical for smart environments). Here, we are interested
on body-worn (specifically IMUs) and ambient sensors, which composed a hybrid setting
for our experiments.

Regarding activity recognition based on IMUs, research has addressed scenarios that
resemble devices that are expected to be actually worn by the users, such as smartphones
and smartwatches [87]. Feature extraction methods include combinations between se-
quential minimal optimization (SMO) and Random Forest [25], statistical features feeding
genetic algorithms [88], and Markov models [89]. DL architectures, such as Deep Neural
Networks (DNN), Convolutional Neural Networks (CNN), autoencoders, Restricted Boltz-
mann Machines (RBM), and Recurrent Neural Networks (RNN) have also been successfully
applied to this modality [33]. In this paper, we designed a module for inertial sensors that
resembled the DeepConvLSTM by Rueda and Fink [90], in which a convolutional module
would perform feature extraction and feed it to an LSTM layer.

Considering ambient sensors, approaches can be divided into two major categories;
data driven and knowledge driven. Domain Knowledge based systems use ontology’s
and semantic reasoning to aid in recognition. Chen et al. [91] and Liciotti et al. [92]
used a knowledge driven approach, including a Partially Observable Markov Decision
Process (POMDP) and exploited the task information, while the location is combined
with the sensor events in the smart home. Data-driven is mainly focused on use of feature
extraction, temporal clustering, and activity recognition. Medina-Quero et al. [93] proposed
a method using fuzzy time windows (FTW) to segment the data set, followed by Long
Short-Term Memory (LSTM) for activity recognition. Gochoo et al. [94] extracted fixed-
length sliding windows into a sparse two-dimensional time matrix to use Convolutional
Neural Networks (CNN) for activity recognition. Guo et al. [15] provided a data-driven
framework for activity recognition from multiple residents using time clustering.

Although different possibilities for fusion of multimodal data using DL methods have
been proposed, especially regarding to different inputs from multiple video streams [95],
the most popular approach for dealing with heterogeneous data is to process each modality
separately and fuse the obtained scores at a later stage [35,36], which we refer as late fusion.
This was the approach adopted on all experiments performed in this paper. Considering
neural networks, variation of this method that has been adopted is to fuse the outputs of the
modules respective to each modality using a fully-connected layer [75]. Other approaches
have also been proposed, such as the Correlational Recurrent Neural Network (CorrRNN)
presented by Yang et al. [96].

4. Methods

The experiments were performed in order to evaluate the improvements that could be
achieved by combining motion information from videos and inertial sensors with static,
contextual information from ambient sensors at a smart home. The task was to classify
high-level activities, possibly composed by complex sequences of actions, using time-
localised data, which is certainly a requirement for a real-time decision-making system. In
the literature review, summarised in Section 2, we did not find a dataset suitable for such
analyses. Hence, we designed a data collection procedure and collected the HWU-USP
dataset, presented in the next subsection. This dataset captures a set of daily activities
performed in the simulated kitchen at the Robotic Assisted Living Testbed (RALT), part of
the Edinburgh Centre for Robotics in Edinburgh [97]. It was recorded with ambient sensors
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such as switches installed on wardrobes and drawers, inertial sensors attached to the wrist
of the dominant arm and to the waist of the participants, and videos recorded from the
RGBD camera of a domestic robot placed in a fixed observing location.

Besides the construction of the HWU-USP database, we have also performed experi-
ments with the UTD-MHAD [37], already mentioned on Section 2.4, one of the most widely
used benchmarks for multimodal activity recognition from videos and IMU. This known
dataset differs from ours on its granularity, with actions composed of short movements
such as clap, all of them with approximately the same length of very few seconds. It
also provides more homogeneous data, with the subjects cautiously positioned facing
the camera, always in full face (on the HWU-USP dataset, images in profile and in full
face are presented on different frames of the videos). Although this is suitable for work
on gesture-based interfaces, it is realistic for daily activities such as the ones that we are
interested in. Moreover, it is focused on motion information and does not provide data
from ambient sensors, which limits our analyses. Another difference is that, whereas
the HWU-USP dataset is provided with two inertial units placed on the subjects’ waist
and dominant wrist, the UTD-MHAD provides inertial data from only one unit, worn
on the subject’s right wrist. Nevertheless, it may provide an alternative benchmark for
our evaluations, besides allowing comparisons with our dataset on the performance of
successive predictions over time using the same classifiers. Those analyses will be better
described on Section 4.3.

As for the classifiers, we built on DL architectures for data from video and inertial
sensors, presented on our previous work [36]. The most relevant contributions of this
paper are the models trained not only on data from those modalities, but also considering
ambient sensors from the smart home. This data was pre-processed to compose tuples
of structured, categorical data which could be introduced as an additional stream to be
introduced on the top of the neural network originally implemented for classifying IMU
data. The design of the resulting neural network will be depicted on Section 4.2.

4.1. The HWU-USP Activities Dataset

The multimodal datasets presented in Section 2 provide data from different kinds
of videos and inertial sensors, but they did not include data from ambient sensors. The
main contribution of our dataset is introducing the data from the smart home devices
synchronously with videos and inertial sensors. Moreover, we provided videos of either
activities made of repetitive patterns, such as reading a newspaper, and more complex
activities with long-term dependencies, such as preparing a sandwich. This makes our
dataset more realistic regarding the set activities, with respect to what could be expected
on an actual AAL scenario, when compared to the others.

As already mentioned, the data collection was performed at the RALT laboratory [97].
The RALT is a 60 m2 (square meters), fully sensorised space designed to resemble a typical
single level home comprising an open-plan living, dining and kitchen area and a bathroom
and bedroom, and hosting a number of smart home, assistive technologies and domestic
robots, such as the TIAGo robot, manufactured by Pal Robotics [98]. Besides collecting data
from the smart home, people being recorded were asked to wear a wearable kit comprising
of a smart watch and a sensor device to be installed on the belt, both equipped with IMUs.
Furthermore, a Tiago robot was placed at a fixed location, to record data from its RGBD
camera.

The data collection procedure received ethics approval from the Heriot-Watt Univer-
sity ethics committee on the 17th of November, 2019. A set of 16 volunteers participated
on this study over the period of 2 weeks, performing a single repetition of each of the
nine activities included in our protocol. This was to ensure to capture a degree of vari-
ability in the performance of each activity being recorded, including different timings for
primitive actions and overall activities performed by different people. The participants,
healthy volunteers with neither functional nor cognitive impairments, signed a consent
form and the data collected did not include their identity (participants’ faces were also
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made anonymous by blurring the recorded image). Each participant was brought into the
lab and the activities were explained and the participants were set up with the IMU’s in
the kitchen. The following subsections will provide more information about the sensors
and protocols used for data collection.

4.1.1. Sensors and Modalities

The RALT is a ”Living-Lab” home-like environment designed to facilitate user-driven
design and testing of innovative information and communications technologies (ICT)
and robotic solutions for healthy ageing and independent living. In Figure 1, the whole
environment is illustrated.

This environment is equipped with ambient sensors to perceive, monitor and un-
derstand occupancy’s daily activities. The sensors are positioned around the household
with uniquely identified identity (ID), together with timestamp to indicate and record of
occupancy’s activity. In our dataset, we recorded the sensors that were available in the
kitchen and that would be meaningful for our purposes. Specifically, we considered four
binary switches, two of which were positioned at the doors of two cupboards, respectively
containing mugs and dishes, one at the door of the fridge, and one at a drawer used to
store cutlery. We also considered the PIR sensor present in the kitchen, and the power
measurements by the kettle, used for preparing tea.

Figure 1. Environment in which the data collection was performed, with the TIAGo robot positioned
on the corner of the kitchen (on the right side) during the recording sessions.

The TIAGo robot is a mobile service robot designed to work in indoor environments.
It has an extendable torso and a manipulator arm to grab tools and objects. Its sensor suite
allows it to perform a wide range of perception, manipulation, and navigation tasks and is
used for assisted living research in the RALT. For our data collection, we considered only
data from its RGBD camera, an Orbbec Astra [99] device installed in its head. According
to the manufacturer’s specifications, the range of this depth sensor lies within 0.6 and
8 meters. We positioned the robot in such a way that all activities and objects of interest
were within this range. The colour VGA 640 × 480 at 25 fps and depth stream mode VGA
640 × 480 at 15 fps were used for the HWU-USP dataset. The TIAGo robot was placed
in the environment with a clear view of the participants, at a fixed viewpoint across all
recording sessions (see Figure 1).

As an wearable device for providing IMU measurements, we adopted the MetaMo-
tionR, by MbientLab [100], a commercial device equipped with inertial, temperature, light
and humidity sensors. The participants were asked to wear two MetaMotionR units, one
of which placed at a wristband worn at the subject’s dominant arm, and the another placed
at a clip worn at the subjects waist. These devices and placements are shown in Figure 2.
We recorded data from the accelerometers and gyroscopes, synchronised using the robot’s
internal clock. A sample from the dataset, considering the different modalities present in
the dataset, is shown in Figure 3.
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(a) (b)

Figure 2. Inertial sensors attached to (a) a waist clip; and (b) a wrist band.

(a)

(b) (c)

(d)

Figure 3. Sample of the dataset collected, consisted of (a) an RGB and (b) a depth image, both related to one timestep;
(c) raw data from the inertial sensors, related to a whole sequence; (d) raw data from the ambient sensors (binary), where Sk
correspond to one of the k sensors available.

4.1.2. Activities List

The activity list was based on the types of activities usually performed in kitchen
environments. These were activities of daily living (ADL), tasks that require a level of
functional capability and are completed in everyday independent living, such as cooking
and cleaning. The activities also required that the participants manipulated a variety of
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objects and furniture in the kitchen, especially the cupboards, the simulated fridge and
the drawer for cutlery, all of them equipped with binary switches. The participants were
also asked to complete the list of activities in their own time. Intervals between recording
each activity were implemented, such that the participants could look over the activity list
and solve any doubts. The tasks were explained to the participants prior to completing
the task, in which they were given a specific order and scripts to complete each of the
tasks, such as the location of the items they were instructed to use, and relevant locations
where they needed to carry out different actions. Since we were not recording sound,
we gave instructions during the completion of the activities as well, so that the participants
were not required to necessarily memorise all details respective to each activity. The data
collection lasted approximately 20 min per participant as they completed the following set
of activities, as illustrated in Figure 4. Notice that those activities have variable lengths,
ranging from about 30 s to almost 2 min.

(a)

(d)

(g)

(b)

(e)

(h)

(c)

(f)

(i)

Figure 4. Sample frames of the activities considered for the dataset. (a) making a cup of tea;
(b) preparing a sandwich; (c) preparing a bowl with cereals; (d) setting up the table; (e) using a
laptop; (f) manipulating the cell phone; (g) reading a newspaper; (h) washing the dishes; (i) cleaning
the kitchen.

• Making a cup of tea: taking the kettle to the sink filling the kettle, turning it on, collecting
a mug and teabags from separate cupboards before combining and filling with water.

• Making a sandwich: collecting of a plate, bread, ham and cheese from the respective
cupboards and fridge, and assembling with all the ingredients on the worktop.

• Making a bowl of cereals: collecting of the spoon at the cutlery drawer, the bowl and the
cereal from separate cupboards, and the milk and honey from the simulated fridge,
placing everything on the worktop and assembling.

• Setting the table: moving the prepared sandwich, tea and cereal from the worktop to
the place mat on the kitchen table.
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• Using a laptop: using a laptop while sat at the kitchen table, complicated with the
cluttered environment from the previous activities.

• Using a phone: similar to “using a laptop”, but with a phone device instead, with both
the laptop and the meal at the table.

• Reading a newspaper: similar to “using a phone”, but with the participant reading the
newspaper.

• Cleaning the dishes: taking the bowl of cereals to the waste bin, dispose it from its
content using the spoon, then pretend to wash it in the sink using a sponge. Due to
the position of the sink respective to the robot’s positioning, the participant partially
obscures this activity.

• Tidying the kitchen: returning the items to the cupboards and moving throughout the
kitchen environment.

Each activity was performed from the same starting point to avoid classification due
to starting configuration alone. The participants would walk into the kitchen environment
and begin the activity. Once the activity was completed then the recording of the data was
stopped. The starting positions of the objects in the smart kitchen environment was kept
constant through the course of the data collection, to ensure consistency of the dataset.

The statistics regarding the lengths of the recordings, for each activity considered, are
shown in Figure 5. The resulting dataset was composed of a total of 144 instances (i.e.,
16 subjects performing a set of nine activities), which summed about 116 min. As shown in
the figure, the average length of of the activities was around 48 s, which is considerably
larger than the recordings of most other datasets (see Section 2). An important observation
is that the proposed activities were designed at a high level of abstraction, so that most
of them were composed by complex sequences of shorter-term actions. For example, to
prepare a sandwich, the participant had to place a plate on the board, take the ingredients
from the fridge, take the bread from the cupboard, assemble the sandwich, and so on. Based
on the timestamps of the videos, fine-grained annotations may be provided as needed, so
that each of those actions could be treated as a separate label. This could provide a different,
more challenging scenario to be addressed on future research. In this paper, however, we
are interested on the presentation of the data collection procedure, the dataset, and the
multimodal framework for classification, which operates on high-level activities.
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Figure 5. Statistics regarding the lengths of the recordings for each of the activities in the dataset.
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4.2. Classification Framework

For feature extraction and classification of activities recorded with videos and inertial
data, we have proposed different DL architectures and compared the resulting models and
their accuracies on a previous work [36]. Based on the results obtained in this previous
paper, we chose the CNN and LSTM models as basis for our experiments. As it already
mentioned, our main contribution was the introduction of contextual data from the ambient
sensors of the smart home as an additional stream, specifically by including an additional
input stream at the neural networks aimed at the inertial data. The different scenarios
considered will be presented on the next subsections.

4.2.1. Segment-Wise Classification and AAL Applications

Before presenting the methods proposed for multimodal activity recognition, it may
be worth to discuss the type of applications that could benefit from either the HWU-USP
activities dataset or the classification framework to be presented in Section 4.2. An AAL
application that could be addressed is shown in Figure 6, which summarises scenarios
proposed on related work [101]. The sensors made available on the data collection pre-
sented in Section 4.1.1, illustrated in the figure, provide inputs for the activity recogniser
module, which is the focus of this paper. In an actual AAL environment, data would be
gathered continuously from the available sensors, and predictions would be provided
at each instant t. These predictions, referred in the figure as pred(t), consist of the out-
puts of the framework presented in Section 4.2, which will be evaluated and discussed in
Sections 5 and 6.

Activity 
recogniser

Behaviour 
scheduler

Video 
camera

Inertial 
units

Ambient 
sensors

Pred(t)

Ambient 
actuators

Artificial 
agents

Figure 6. Example of an AAL scenario expected to be addressed by the proposed framework.

The next module that would be part of such an application would be the behaviour
scheduler, a possible direction for future research. This module would be responsible for
orchestrating the different ambient actuators and artificial agents (e.g., social robots or
mobile applications), providing useful services or proactive behaviours for the inhabitants
of the environment. For a real-time application, these behaviours are expected to be
continuously adapted according to the predictions of the activity recogniser at each instant t.

State-of-the-art methods for multimodal activity recognition have been achieved
remarkable results by processing previously segmented activities on its whole length [75].
Although this approach makes sense in the case of fine-grained activities, it would be of
little use in contexts such as the scenario of Figure 6. There are two reasons for it. First, it
requires that the activities have been previously segmented, which is not realistic for real-
world applications. Second, it would require the activity to be finished before providing a
reliable prediction, which could take more than a minute in the case of the activities of the
HWU-USP dataset (see Figure 5). In this case, it is possible that the proactive behaviour of
the AAL environment is no longer required, or does not make sense to be performed after
the human activity is finished. For example, a robot may need to bring the user’s glasses
while he is reading the news—it would make little sense to do so after the user has stopped
this activity.

Therefore, we designed our framework so that the DL architectures process two-
seconds-long segments, and the predictions over a longer sequence could be enhanced
at decision-level, by averaging the output vectors at each segment. This is an approach
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commonly used for video-based activity recognition [28,35], and we extended it to the
other modalities to provide a framework that is able to work with partial data.

4.2.2. Data Preprocessing

Regarding the video modalities, following the proposal by Simonyan and Zisserman [28],
we considered multiple streams. Videos were resized to 320× 240 before any other prepro-
cessing step. For data augmentation, we implemented random cropping for training, and
cropping of all corners and the centre for testing, resulting in frames of size 224× 224.

The spatial stream could be composed by individual RGB frames obtained from the
videos, as on the original framework. We also adopted a similar approach for taking the
depth frames as inputs. To do so, the depth frames had been converted to 3-channel, 8-bit
RGB inputs with the same intensity on all channels, composing grayscale samples which
could be employed in transfer learning scenarios.

Two approaches were considered for the temporal stream. The first was to feed the
learning architectures with pairs of dense optical flow maps, as in the original two-stream
ConvNets [28]. Those maps were generated with OpenCV implementation of the TVL1
algorithm [31] on each pair of successive frames on the RGB videos previously converted
to grayscale images. The outputs of those algorithms consist of the horizontal and vertical
estimations of the displacements of each point from one frame to another, assuming their
intensities are preserved on both images. In the case of dense optical flow, all pixels on the
image might be considered.

In relation to the inertial and ambient sensors, the recordings were made asyn-
chronously. The alignment was performed independently for each of the 144 recording
sessions of the dataset, so far referenced as instances. Regarding the inertial sensors, con-
sider that, for a given instance, there is a set of Psk rows of data from a sensor sk, k ∈ {1, 2},
with s1 being the inertial unit of fixed to the user’s waist, s2 the inertial unit fixed to the
user’s wrist (more sensors could be added to this framework, as needed). Let xsk(p) be
a vector correspondent to the p-th row of data registered by sensor sk, correspondent
to a timestamp tsk(p) obtained from a global clock during the data collection procedure.
The alignment procedure intends to obtain an aligned file composed by Q rows, equally
sampled at a desired sampling rate r, starting from the highest timestamp registered by
any of the sensors. The vector y(q) is the q-th row of data aligned from both sensors (i.e.,
the output data). The timestamp correspondent to this row of data is ty(q), computed
as in Equation (1). For each index q, the method consisted of composing a concatenated
aligned row y(q), composed of data from both sensors, by appending the tuple of data
xsk(i), i ∈ [1, P], from each sensor sk, so that tsk(i) is the lowest value among the P rows in
the instance that satisfies tsk(p) > ty(q).{

ty(0) = max {ts1(0), ts2(0)}
ty(q) = ty(0) + q · (1/r) , q = 1, 2, . . . , Q

(1)

For preprocessing the smart home data, the same alignment procedure was used
to provide one tuple for each timestamp, allowing a one-to-one correspondence with
each tuple of the inertial data. Apart from implementation details, this is equivalent to
including a sensor s3 to the above-mentioned alignment procedure, correspondent to the
set of ambient sensors from the smart home. An inertial input to the DL architecture would
consist of a sub-sequence of a recording session of length Nraw

t . The data from the ambient
sensors were introduced to an additional preprocessing step before feeding the DL models:
the attributes of the Nraw

t correspondent samples on the ambient sensors were averaged,
composing a feature vector. Finally, the data from inertial sensors and from the smart home
ambient sensors were L2-normalised, in order to compensate the scales of each variable.

All experiments performed were based on classifiers being applied to two-seconds
long data segments, regardless of the modality. One example of input, with all the different
modalities represented on the HWU-USP dataset, is shown in Figure 7. For the UTD-
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MHAD, although data from ambient sensors is absent, the remaining modalities were
arranged on the same structure.
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Figure 7. Example of two-seconds long segment fed to the architectures that process each modality.

4.2.3. Deep Learning Architectures

Our multimodal strategy for video and inertial data was based on late fusion of the
output vectors of each single-modality model. This approach is also known as decision-
level fusion [75]. Indeed, we implemented independent neural networks for videos and
IMUs, and, at a later stage, performed weighted averaging of the scores at the outputs of
the softmax layers of each network. Data from ambient sensors of the smart home were
introduced as an additional input vector on the same neural network used for classifying
the IMU data, so that the resulting output vector could also be combined to the video
output to provide a classification framework with all modalities considered.

In Table 5, the DL architectures employed for each modality are summarised. We
began our analyses by considering two baseline architectures resembling the spatial stream
of Simonyan and Zisserman [28]. A consolidated CNN model, the InceptionV3 [102], was
employed to train two models for each dataset: one for processing RGB frames, and another
for depth frames. We named these modalities RGB and Depth, respectively. The models
were pre-trained on the ImageNet dataset [103], and had all their layers fine-tuned for
training the activity recognition datasets under analysis.

Table 5. Summary of the DL architectures employed for each architecture.

Model Input Description Structure

Spatial RGB frame InceptionV3 [102]
Depth Grayscale frame InceptionV3

Optical flow
(single frame) Optical flow pair InceptionV3 with two input channels

Optical flow
(sequence) Sequence of optical flow pairs See Figure 8a

IMU Sequence of raw data See Figure 8b
Ambient (shallow) Average vector from sequence of tuples Fully-connected NN with two hidden layers
IMU+ambient Two inputs (IMU and ambient) See Figure 8c

For the video-based temporal stream, which processes optical flow maps, we imple-
mented the neural network of Figure 8a. This consisted of a CNN, which was trained and
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evaluated previously for performing the same classification task. Their inputs were a set
of flow maps respective to a single pair of frames. This input consisted of two-channels,
which comprises the optical flow previously computed. The InceptionV3 architecture was
adopted for this aim. We refer to the classification models composed by this CNN alone,
without temporal modelling of a sequence of frames, as optical flow (single frame).

To model sequences of optical flow pairs (i.e., the optical flow (sequence) condition), the
2048 features, extracted right before the softmax layer of the InceptionV3 architecture, were
considered. The CNN was applied Nvideo

t times, each to the optical flow input respective
to one timestep of a sequence of timesteps, generating a set of Nvideo

t feature vectors.
Those were fed to an LSTM module, whose outputs were the input of a softmax layer for
classification. The LSTM module was composed of 128 units and dropout of 50%, with
sigmoid activation. L2-normalisation was employed for regularisation.

Pre-trained
2D CNN

Pre-trained
2D CNN

Pre-trained
2D CNN

t=1 t=2 t=N
t

LSTM

Softmax layer
(predictions)

(a) (b)

1D CNN

LSTM

Softmax layer
(predictions)

(c)
1D CNN LSTM

Softmax layer
(predictions)

0 1 0 1

1 0 0 1
FC layer Concatenate

Figure 8. DL Architectures considered for each input modality. (a) Video inputs preprocessed
by optical flow (i.e., two-channels input maps) algorithms. (b) IMU inputs, with a custom one-
dimensional CNN as a feature extraction step before feeding a LSTM layer. (c) Multimodal scenario
with fusion between inertial and ambient sensors within the modules of the neural network.

The same structure was designed for the IMU data, as shown in Figure 8b, with
the difference that, instead of an InceptionV3, we used a 1D CNN for feature extraction,
which performed convolution and pooling operations on the time domain. Let the length
of these sequences be Nraw

t . We implemented this CNN with three convolutional layers
with kernel size 11 and ReLU activations, interspersed with max-pooling layers of kernel
size 2. The convolutional layers were composed by 128, 256 and 378 units, respectively.
Batch normalisation was introduced before the first and the last convolutional layers. This
convolutional block, referred as 1D CNN in Figure 8b, was followed by an LSTM layer
with 128 units, ReLU activation, and dropout of 50%.

Regarding the machine learning aspect, the most noticeable novelty in this work
was the introduction of data from ambient sensors of the smart home on the learning
framework, which could be done with the new HWU-USP dataset, but not with the UTD-
MHAD. An additional input vector, composed by structured data from binary sensors and
voltage measurements from the kettle, was added to the same network designed to learn
features and classify the IMU data. One condition was included to process this input vector
with a shallow neural network: a fully-connected neural network with two hidden layers
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composed of 512 and 256 units, respectively, with ReLU activation and dropout of 50%
after each layer, and a softmax redout layer.

A feature-level fusion architecture between the IMU and ambient data was also pro-
posed. The approach, as shown in Figure 8c, was to process the input of the ambient sensors
in parallel to the convolutional and recurrent layers of the IMU architecture (Figure 8b),
this time using a single fully-connected layer with ReLU activation function and dropout
of 50%. The outputs of this layer would be concatenated to the features learnt by the
convolutional module of the inertial data, and then classified with a softmax layer.

Skeleton joints, which may be extracted by RGBD cameras, were not considered on
our framework. When designing our dataset, we were interested in providing a framework
based on DL techniques, which have shown to provide good results for video classification
on highly unstructured scenarios, closer to real-world applications. However, the proposed
architectures could not be employed directly to data from skeleton joints without a feature
extraction stage. To properly consider data from skeleton joints for our dataset, we would
have to process it with unrelated techniques, which we understand to be out of the scope
of this work.

4.3. Experimental Setup

For the implementations of the models presented in the previous subsection, we
adopted the TensorFlow library, particularly the Keras module, which provides support
for GPU training and evaluation. The models were trained on different hardware devices:
the cluster Euler, at the Centre for Mathematical Sciences Applied to Industry (CeMEAI)
at ICMC-USP, with GPU nodes provided with a Nvidia Tesla P100; a research computer
at the Robots Learning Laboratory (LAR), at ICMC-USP, provided with a Nvidia Titan V
GPU; and an ASUS TUF Gaming laptop, provided with a Nvidia Geforce RTX2060 GPU.

All architectures were fed with sequences which correspond to two-seconds-long
segments of the recordings. For the case of the video modalities, the inputs were sequences
of length Nvideo

t = 15 with period T = 2 (i.e., the frames were downsampled on the
temporal dimension to half of its original frequency) for the UTD-MHAD dataset, and
Nvideo

t = 25 with T = 1 for the HWU-USP dataset. For the inertial and ambient modalities,
the length of the sequences were Nraw

t = 100 for both datasets, as the two of them were
converted to a r = 50 Hz sampling rate. The optimisation algorithm was Stochastic
Gradient Descent (SGD) with learning rate 10−2, momentum 0.9 and decay 10−4. For the
video models, training was performed for 40,000 steps, and, for the others, for 20,000 steps.

The evaluation protocol consisted of cross-subject training and testing, with a leave-
one-out-approach. That means recordings from one subject were used for testing, while all
others were used for training. Consequently, for each input modality, we have trained eight
models, and reported the mean and standard deviations of their performance in the test
sets. The predictions were obtained using the same principle as recommended in Simonyan
and Zisserman [28]. They consisted of evaluating 25 segments on each session recorded,
equally spaced between them, and the resulting scores of all outputs were averaged before
to produce a prediction. This was done on all modalities. Although this could negatively
affect our overall accuracy, this setting is more consistent to real-world applications in
which an agent must take actions based on limited, time-localised information. Analyses of
the confidence of the predictions through time could be performed, which allowed to better
understand the behaviour of the classifiers on the activities of different levels of complexity
of the HWU-USP-MHAD dataset, and to compare these results to those obtained with the
simpler and shorter activities of the UTD-MHAD.

Fusion of the video streams and the other modalities was performed ad-hoc, after the
predictions were already obtained and recorded. The procedure consisted of averaging the
outputs of the modalities that were being combined, with different weights for different
modalities. The accuracies on different multimodal scenarios were computed on the output
vectors respective to this average. For HWU-USP dataset, the weights were set to 1 and 6
for the IMU and video modalities, respectively. For UTD-MHAD, they were set to 1 and
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2. On both cases, the weights were chosen in order to maximise the accuracy obtained on
each fusion approach.

5. Results

In this section, results of the experiments with respect to each modality are presented,
along with multimodal approaches, in Table 6. The RGB and Depth modalities were
computed by feeding an InceptionV3 newtwork with regular 3-channels frames extracted
from the videos. In the case of the RGB frames, these consisted of the colour channels of the
image, as usual in CNNs. In relation to the depth frames, the 16-bit inputs were converted
to 8-bit maps, which were repeated on the three channels, composing grayscale images,
already mentioned in Section 4.2.2.

The modality optical flow (single frame) refers to a modification of InceptionV3 network
to receive a 2-channels input, which was fed with one pair of dense optical flow (see
Section 4.2.2), hence considering only one pair of timesteps on the sequence. On the other
hand, the optical flow (sequence) models refer to LSTM modules processing the features
extracted by CNNs for two-seconds long segments of the recordings (see Section 4.2.3
and Figure 8a). The ambient (shallow) modality refers to a shallow fully-connected neural
network applied directly to the subsequence (see Section 4.2.3), whereas the IMU modality
refers to the one-dimensional CNN-LSTM models applied to the data from inertial sensors,
also computed on two-seconds long subsequences (Figure 8b), the IMU + ambient com-
prises one multimodal setting with both modalities combined within the neural network
(Figure 8c). Finally, the Optical flow + IMU and Optical flow + IMU + ambient multimodal
conditions refer to the late fusion approach presented in Section 4.3, consisted of combining
the output vectors of each modality before making a final prediction.

It is important to emphasise that all results were computed with predictions from
the average output vector from 25 segments on the test data of each modality, and that
the train and test partitioning followed a cross-subject approach with eight folds (see
Section 4.3), hence the table shows the mean and standard deviation over these eight folds.
In Table 6, we presented results on both the HWU-USP and UTD-MHAD datasets, despite
the important differences existing between them (see Section 4).

Table 6. Accuracy Measures (%) for each input modalities, for UTD-MHAD and HWU-USP datasets.
Models for a single input modality and multimodal models are listed. The accuracy shown is the
mean value of 8 cross-subject folds (i.e., leave-one-out cross-subject evaluation protocol), with inputs
from a single subject being left for testing, a costly, yet rigorous evaluation protocol.

UTD-MHAD HWU-USP

RGB (single frame) 6.39± 2.16 19.57± 6.76
Depth (single frame) 5.46± 2.29 36.36± 7.28

Optical flow (single frame) 82.47± 5.42 86.72± 6.74
Optical flow (sequence) 84.79± 5.25 93.75± 3.33

IMU 82.23± 6.55 65.56± 13.16
Ambient (shallow) - 51.39± 4.61
IMU + ambient - 74.30± 11.09

Optical flow + IMU 92.33± 5.40 96.53± 3.87
Optical flow + IMU + ambient - 98.61± 2.41

The confusion matrices for part of the above-mentioned models, for both datasets,
were computed in order to allow a more in-depth discussion on the behaviour of each
model. For the HWU-USP dataet, these matrices are shown in Figure 9, and, for the
UTD-MHAD, in Figure 10.
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Figure 9. Confusion matrices of different input modalities and architectures for classifying the HWU-USP dataset. The values
consist of the summed number of predictions over all folds.
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UTD-MHAD dataset. The values consist of the summed number of predictions over all folds.
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We have provided another analysis to evaluate how each model performs across
the different segments used to compute the final prediction. These results may lead to
important discussions when considering which approach will be adopted for a real-time
application, in which partial results computed on a limited range of time might be used
in decision-making systems. Figures 11 and 12 present, respectively, for the HWU-USP
and UTD-MHAD datasets, the maximum score on the output vectors correspondent to
the actual class, across each of the 25 segments used for prediction. For example, taken
an input that belongs to the laptop class, if the output vector of the first sequence fed to a
given classifier gives a 25% confidence for predicting the correctly, and the first sequence
of another instance from the same class gives a 32% confidence, the value considered for
the figure will be 32%.
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Figure 11. Confidence of predicting the correct label for the HWU-USP dataset, at each of the 25 segments evaluated, equally
spaced between them.
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Figure 12. Confidence of predicting the correct label fot the UTD-MHAD, at each of the 25 segments
evaluated, equally spaced between them.

Comparison with the State-of-the-Art

HWU-USP database is being presented for the first time in this paper, hence the
above-mentioned results are the first to be ever published. For this reason, there is still no
literature to compare it with. On the other hand, UTD-MHAD dataset is a widely used
benchmark which we can use to evaluate our multimodal approach with only videos and
IMU, since this dataset does not provide data from ambient sensors. In Table 7, a collection
of results from the literature was put along with the best result that we achieved. To select
those studies, we followed the criteria that videos and IMU data were both employed,
preferably without skeleton data, so that the comparison with our approach would be
as fair as possible. Besides, we only considered studies in which it was explicitly stated
that the evaluation protocol was cross-subject. However, it is hold to note, that only
Wei et al. [75] adopted a leave-one-out approach, similar to ours, while the others followed
the protocol by Chen et al. [37], which used a hold-out approach with half of the data being
used for testing.
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Table 7. Comparison between our model and others in the literature that deal with similar modalities,
for the UTD-MHAD dataset. All of those evaluations adopted a cross-subject protocol.

Method Modalities Accuracy (%)

Chen et al. [37] Depth + IMU 79.10
El Din El Madany et al. [104] Depth + IMU + skeleton 93.26
Wei et al. [75] RGB-only 76.00
Wei et al. [75] Inertial-only 90.30
Wei et al. [75] RGB + inertial 95.60
Imran and Raman [105] RGB + inertial 92.32
Ours RGB + inertial 92.33

6. Discussion

The RGB frames (i.e., the spatial stream by Simonyan and Zisserman [28]) led to
accuracy measures slightly above random choice for both datasets (i.e., 6.39% for 27 classes
on the UTD-MHAD, and 19.57% for 9 classes on the HWU-USP dataset). The depth
frames did not led to better results for UTD-MHAD (i.e., 5.46%), but led to an important
improvement for HWU-USP dataset (i.e., 36.36%). Still, both approaches led to poor results,
if compared to the other models. These results differ from those obtained for video datasets
in the literature of multiple stream classification methods [18,28], in which the spatial
stream alone led to competitive performances.

Even though, the low accuracy obtained in our experiments was expected due to
the nature of the datasets analysed. Applied directly to RGB, or even depth images,
a CNN is able to distinguish between the objects, backgrounds and other appearance-
based aspects within a scene. Thus, it may be effective when comparing videos from
heterogeneous datasets with large inter-class variability regarding those aspects. This may
lead to comparatively high accuracy even if motion information was disregarded. The
datasets considered in this study present constant background and a limited variability
regarding other appearance aspects. Different from the UTD-MHAD, the HWU-USP
dataset was recorded from a perspective in which the subjects changed their position
constantly with respect to the depth dimension, which may explain the improvements
that happened only for this dataset when compared the depth to the spatial models.
Nevertheless, for both datasets and any other that shares these characteristics possibly
inherent to home environments, a reliable classification method might be based on motion
information.

Motion information contained in dense optical flow maps (i.e., the temporal stream)
led to expressive improvements, even on the single frame scenarios. These models were,
by far, the ones that led to the highest accuracy on the HWU-USP dataset, which points
to the relevance of motion information from computer vision on the scenario analysed.
The results were also the bests for the UTD-MHAD, however the IMU condition was still
competitive.

When comparing the single frame to the sequence optical flow architectures, HWU-USP
dataset was characterised by a greater increase in accuracy (i.e., 86.72% to 93.75%) than the
UTD-MHAD (i.e., 82.47% to 84.79%). This was probably because the HWU-USP dataset
is composed of longer recordings with longer-time dependencies. This illustrates how
the LSTM-based module is effective in modelling the long-term dependencies that were
introduced.

Compared to the video modalities, especially the optical flow (sequence), IMU-based
models performed better on the UTD-MHAD, in which the 82.23% accuracy was even
competitive when compared to the optical flow models, than in the HWU-USP dataset,
which appeared to be favourable for computer-vision approaches. This was probably
because the actions on the UTD-MHAD dataset are shorter and more well-defined, so that
the most discriminative features were present on most snippets of the inertial data. For the
HWU-USP dataset, some of the activities are complex, composed of sequences of actions
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that may, isolated, be part of different activities. The visual information contained on
videos may be more informative than the IMU data with respect to these more challenging
dependencies.

Analyses involving the binary data from the ambient sensors of the smart home
could be made only on the HWU-USP dataset, and led to promising results. On its own,
feeding a shallow fully-connected network with minimum preprocessing, this modality
led to an accuracy of 51.39%, which is expressively below the 65.56% obtained by the
one-dimensional CNN-LSTM applied to the IMU data alone. However, when combined,
the model hit the accuracy of 74.30%, the best performance obtained without the use of
optical flow data.

When combined, the models in which the optical flow models were fused to the other
modalities led to the best accuracies. For the UTD-MHAD, this approach led to 92.33%.
For the HWU-USP dataset, two conditions were considered: combining the optical flow
and the IMU models, as with the UTD-MHAD, and combining the optical flow model to
the IMU + ambient model (see neural architecture on Figure 8c). For the first condition, the
accuracy was 96.53%, an increment of almost three percent points when compared to the
optical flow model on its own. For the second condition, which was possible only because
we had made available data from the smart home sensors on the HWU-USP dataset, the
accuracy was 98.61%, which may be seen as a remarkable result.

It may be worth discussing some aspects regarding the confusion matrices shown
in Figures 9 and 10. Considering the models for the HWU-USP dataset, the most solid
observation is that the cereals and tidy activities are the most sources of wrong predictions
on the models with higher accuracy, for either the computer-vision or IMU models. The
introduction of the ambient sensors caused an important impact on the recognition of these
classes, bringing the error down to zero, which may explain its relevance of the accuracy
results of Table 6. Multimodal models provided basically a reduction on the mistakes made
in some classes, when compared to the predictions made by each single-modality model.
The UTD-MHAD models performed more uniformly across the different modalities, which
may explain why the results did not vary too much for the single-modality approaches.
For the multimodal scenario, the classes with less precision on each modality seem to have
been compensated, causing the observed increment of accuracy.

The confidence scores through time, shown in Figures 11 and 12, seem to have been
expressively improved on the UTD-MHAD when comparing the single frame to the
sequence approaches. However, these accuracy improvements were more prominent on
the HWU-USP dataset, even though the differences of the confidence scores through time
seemed to be smaller on these figures. This was because the activities from the UTD-MHAD
dataset were all short and made of simple gestures, hence a small snippet on the middle
of a video recording could be more informative of the actual activity, providing a correct
prediction with high confidence. The same is usually not true for the HWU-USP dataset.

For the UTD-MHAD, the confidence over segments (Figure 12) also presented impor-
tant differences between the conditions. The optical flow (sequence) model provided high
confidence scores on the segments closer to the middle of the recordings, in which it differs
from the optical flow (sequence), with confidence scores approximately uniform on the whole
sequences. For several classes, the IMU model provided high confidence scores only for
the first half segments of each modality. The multimodal IMU + optical flow provided an
improved version of the optical flow (sequence) model, except for activity 22, which appears
to have its confidence degraded by the IMU scores.

On the other hand, for the HWU-USP activities dataset (Figure 11), a diverse behaviour
of the classifiers on each modality was observed. Regarding the optical flow conditions,
the sequence approach is less uniform across segments than the single frame, but seems to
provide higher confidence on certain parts of the activities. The activities performed with
participants sitting down and performing repetitive movements (i.e., laptop, smartphone and
newspaper) led to higher confidence scores for the IMU modality. The combination between
IMU and ambient sensors increased drastically the confidence of the cereals class across
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all segments. The tea activity led to high confidence scores on its ending, especially when
considering the optical flow (sequence) model. An increment on this same region may also
be seen when combining the ambient sensors to the IMU, which may be due to the power
measurements, which change only during the final moments of the tea activity, when the
participant turns on the kettle. Few differences may be seen when comparing the IMU +
optical flow and the IMU + smart home + optical flow conditions, however the final segments
of the cereals activity seems to reflect the most noticeable increment.

By analysing the confusion matrices in Figure 9 and the heat maps in Figure 11, it
becomes clear that the predictions on the cereals class were the most benefited, which
explained the expressive improvements aggregated to the IMU + ambient and the optical
flow + IMU + ambient models with respect to the conditions without this modality. The
increment of the confidence on the last segments of the tea activity (Figure 11) is also worth
a mention, since it was probably due to the power measurements of the kettle, which was
turned on at the end of all recording sessions of this activity. In any case, the improvements
provided by the multimodal models give additional confirmation on the usefulness of
combining videos and IMU modalities whenever they are both available, corroborating to
other results from related work [35,75,106].

Comparisons with the state-of-the-art datasets, made only with the UTD-MHAD,
pointed that, with respect to videos and inertial sensors, our methods led to results that
were compatible. Our best approach led to an accuracy of 92.33%. The reference results,
79.10% for the multimodal condition, provided on the presentation paper of the UTD-
MHAD dataset, were successively surpassed on the following years. Models that consider
skeleton data led to the higher accuracies, such as in El Din El Madany et al. [104], which
hit 93.26%. Nonetheless, these results are not comparable to ours, since this approach
considered information extracted from skeleton joints, an additional, rich data input.

Different approaches restricted to the IMU and the video data have also been proposed.
Imran and Raman [105] performed experiments with different sets of modalities, and hit
92.32% using RGB videos and inertial sensors, a result which is very close to ours. The
most successful approach restricted to these modalities, nonetheless, was provided by Wei
et al. [75], which hit 95.60%. This was the only result on the literature that surpassed ours
without the use of skeleton information. We have included the RGB-only and inertial-only
results in order to situate their results with respect to ours. It is important to note that
the video-based method presented by them actually performed less accurate than ours
(76.0%, against 84.8% of our approach), which means that the overall accuracy on their
work benefited especially from the inertial-only model, which hit 90.3%, against 82.2% of
ours.

However, the IMU architecture was based on a two-dimensional matrix representation
of the input data, which required the whole sequence to provide a representation. This
would not allow a segment-wise classification such as the approach proposed by us, in
which the neural network processed two-seconds long data segments, and therefore its
application would not be possible in scenarios with partial data, such as the real-time
decision-making systems that would be expected on AAL environments.

7. Conclusions

In this paper, we presented the HWU-USP activities dataset, collected at the RALT lab
in Edinburgh at Heriot-Watt University. More specifically, the dataset was composed of
RGB and depth videos from the camera of a TIAGo robot, data from IMU sensors attached
to the users’ wrist and waist, and a set of ambient sensors (i.e., switches at the doors of
wardrobes and drawers, motion sensors and power measurements) from a smart home.
The objective was to build and study a multimodal dataset composed of RGB and depth
videos, inertial and ambient sensors from a smart home in the context of activities of daily
living, all of them sharing a kitchen environment and performed in the context of a regular
breakfast. A set of 16 participants performed 9 activities, resulting in a total of 144 instances
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that composed 116 min of recordings in total. All data were stored, made anonymous and
will be available to the research community.

This dataset allowed the proposal of multimodal approaches involving not only videos
and data from inertial sensors, but also ambient sensors. To the best of our knowledge,
this is the first public multimodal activities dataset that provides these three modalities
altogether and synchronously. We also proposed a deep learning framework to perform
experiments on a multimodal approach. It is based on two-dimensional CNN modules
for feature extraction on RGB frames, depth images and optical flow pairs, and LSTM
layers for temporal modelling, when applicable. Data from inertial sensors were fed to a
similar architecture, with a one-dimensional CNN being applied to extract features to be
modelled by a LSTM module. For these modalities, we performed the same experiments
on both the HWU-USP and the UTD-MHAD datasets. Results varied from one modality
to another, especially for the HWU-USP, in which the architectures based on computer
vision, specifically after computing dense optical flow, performed significantly better. These
differences were smaller for the UTD-MHAD dataset.

The data from the ambient sensors, present only on the new HWU-USP, were intro-
duced as an additional channel of information on the neural network that processed the
inertial data, with no feature extraction: the binary variables were fed to a fully-connected
layer whose output was concatenated to the IMU features extracted by the CNN-LSTM
modules. The presentation of this fusion architecture is another contribution of our work
As expected, the introduction of this modality led to expressive improvements in accuracy.
The best multimodal model led to a very high accuracy, which points to the relevance of
considering different sources of data to perform activity recognition tasks.

Future work will apply the models trained with this dataset to experiments in the
smart home, allowing interventions to be made based on the predictions provided. This
may be promising for application scenarios involving human–robot interaction (HRI). For
example, a robot may use the successive predictions of an activity recognition framework
to decide whether it might remember an user to take his medicines when he is having a
meal, or bring an used glass from the living room to the kitchen when the user is washing
the dishes. This may be important for designing Ambient Assisted Living solutions with
automated technologies, such as robot carers, for monitoring the inhabitants of a smart
environment. Moreover, fine-grained annotations may be provided for training models
that suit most of those application scenarios and in accordance with the necessities that
may arise during those experiments.

To react proactively to the users’ needs, this type of applications requires a framework
able to provide reliable predictions in real-time, before the user finishes his current activ-
ity. This requirement was addressed by our approach, which relied on two-seconds-long
segments, whose predictions may be combined to provide better results. In this sense,
another direction for future research is to analyse how these predictions may be employed
in real-world scenarios in order to complete the most adequate proactive behaviours in
a timely manner. We provided an analysis of the confidence of the predictions across
segments, which may give a hint on the performance of the framework in real-time appli-
cations. For other applications, in which those requirements are absent, experiments with
longer segment lengths may be designed, which may foster research on novel learning
architectures.

Although the classification methods provided excellent results when the video modal-
ity was present, there is still room for improvements regarding the other modalities. Such
developments are important because, for real AAL environments, the video data may
be frequently unavailable. This may be due to privacy issues or technical limitations,
for example if the videos can only be registered by the camera of a social robot, which
may not always be accompanying all the inhabitants of the environment. Yet, the very
high accuracies provided by the video methods may serve to provide labels on a semi-
supervised scenario for new data collections, which may rely on more cameras and more
visual perspectives.
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