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Abstract

Corticotropin releasing factor (CRF) systems in limbic structures are posited to mediate

stress-induced relapse in addiction, traditionally by generating distress states that spur drug

consumption as attempts at hedonic self-medication. Yet evidence suggests that activating

CRF-expressing neurons in the central amygdala (CeA) or nucleus accumbens (NAc) can

magnify incentive motivation in absence of distress, at least for sucrose rewards. However,

traditional CRF hypotheses in addiction neuroscience are primarily directed toward drug

rewards. The question remains open whether CRF systems can similarly act via incentive

motivation mechanisms to promote pursuit of drug rewards, such as cocaine. Here we

tested whether optogenetic excitation of CRF-containing neurons in either NAc medial shell,

lateral CeA, or dorsolateral BNST of transgenic Crh-Cre+ rats would spur preference and

pursuit of a particular laser-paired cocaine reward over an alternative cocaine reward, and

whether excitation served as a positively-valenced incentive itself, through laser self-stimu-

lation tests. We report that excitation of CRF-containing neurons in either NAc or CeA

recruited mesocorticolimbic circuitry to amplify incentive motivation to pursue the laser-

paired cocaine: focusing preference on the laser-paired cocaine reward in a two-choice

task, and spurred pursuit as doubled breakpoint in a progressive ratio task. Crucially indicat-

ing positive-valence, excitation of CRF neurons in NAc and CeA also was actively sought

after by most rats in self-stimulation tasks. Conversely, CRF neuronal activation in BNST

was never self-stimulated, but failed to enhance cocaine consumption. Collectively, we find

that NAc and CeA CRF-containing neurons can amplify pursuit and consumption of cocaine

by positively-valenced incentive mechanisms, without any aversive distress.

Introduction

Stress can increase drug consumption and exacerbate relapse in addiction [1–3]. Diverse

stressors activate neurons that release corticotropin releasing factor (CRF). Traditional addic-

tion neuroscience theories have posited that activation of CRF-containing neurons generates
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negatively-valenced distress states that drive drug consumption and addictive relapse, as

attempts to counteract the negative state [4–11].

For example, the hyperkatifeia/allostasis neuroscience theory of addiction, derived from

psychological opponent-process theory, posits that activation of CRF-containing neurons in

central amygdala (CeA) and bed nucleus of stria terminalis (BNST) produces negative distress,

including feelings of drug withdrawal as well as general life distress [6–8, 12, 13].

However, despite ample evidence that CRF systems can contribute to negative distress,

other findings suggest that CRF-containing neurons in CeA and nucleus accumbens (NAc)

alternatively have positively-valenced or incentive-mediated psychological routes to cause

intense pursuit and consumption of rewards [14–18]. For example, optogenetic stimulation of

CRF-containing neurons in CeA and NAc of Crh-Cre+ rats recruited reward-related mesocor-

ticolimbic circuitry to increase incentive motivation for sucrose reward, and narrowly-focused

pursuit on laser-paired sucrose [19]. Demonstrating positive-valence, most of those rats

actively worked for laser to self-stimulate their CRF-containing neurons in CeA and NAc.

Such observations indicate that CRF neural systems in CeA and NAc may increase incen-

tive motivation for sucrose reward via a positively-valenced process [19]. Incentive salience or

‘wanting’ is a specific mesolimbic-mediated motivational process that attributes positive incen-

tive value to neural representations of rewards and their cues. Incentive salience attribution

makes such reward-related stimuli become attractive, and able to elicit preference, pursuit and

consumption. The incentive-sensitization theory of addiction posits that drugs that induce

mesolimbic sensitization of accumbens dopamine-related systems cause excessive ‘wanting’ to

take drugs in susceptible individuals without increasing drug ‘liking’, even in the absence of

distress [20, 21]. Thus, excessive incentive salience provides, at least in principle, an alternative

positively-valenced motivational route by which CRF neurons in CeA or NAc could recruit

mesolimbic circuitry to cause addictive pursuit, drug consumption and relapse. That was the

primary question to be explored here.

By contrast to CeA and NAc, in the BNST (an output target of CeA), similar optogenetic

excitations of CRF-containing neurons caused an apparently aversive state that rats avoided

[19], partially consistent with the allostatic hypothesis that CRF activation in BNST mediates

distress. Yet, the aversive state generated by activation of BNST CRF neurons suppressed moti-

vation for sucrose rewards rather than increased motivation to consume rewards.

However, hyperkatifeia/allostasis and related opponent-process hypotheses of CRF func-

tion in addiction were originally intended to explain motivation for drug rewards, not sucrose

rewards [6–8, 12, 13]. It remains unknown whether the CRF neuronal incentive role found for

sucrose [19] would transfer to motivation for a drug of abuse, such as cocaine. We therefore

tested here whether optogenetic excitation of CRF-containing neurons in NAc, CeA or BNST

would similarly act via positively-valenced incentive motivation processes to increase pursuit

and consumption of intravenous cocaine rewards. We paired optogenetic excitation of CRF-

containing neurons in either NAc, CeA, or BNST of BAC transgenic Crh-Cre rats with a par-

ticular opportunity to earn intrajugular infusions of cocaine in a two-choice task: one cocaine

option paired with laser stimulation vs an equal cocaine option occurring alone, similar to a

previous study [22]. In a progressive ratio task, we further asked if CRF neuronal stimulation

in NAc, CeA or BNST increased the intensity of incentive motivation, expressed as effort

breakpoint, to self-administer cocaine. Finally, we assessed the motivational valence of exciting

CRF-containing neurons alone by determining whether Crh-Cre rats would self-administer

laser stimulation in either NAc, CeA or BNST. Together with cross-brain Fos measures of neu-

ral recruitment, our results indicate that CRF-containing neural systems in NAc and CeA

recruit mesocorticolimbic circuitry to amplify and focus incentive motivation to pursue and

consume cocaine.
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Materials and methods

Animals

Female (n = 23) and male (n = 19) transgenic Crh-Cre+ rats were bred and genotyped in

house, from breeders obtained from the Messing laboratory at the University of Texas [23].

Rats were housed in same-sex pairs at 21C˚ under reverse light cycle (lights-off 8am; testing

began 1–3 hours after lights-off) with ad libitum access to food and water until catheter

implantation surgery (>3 months old). Rats were then single-housed and maintained on a

restricted food schedule (85–90% previous body weight) for the duration of cocaine self-

administration experiments. All experimental procedures were approved by the University of

Michigan Institutional Animal Care & Use Committee in accordance with NIH animal care

and use guidelines.

Optogenetic surgery

Rats were anesthetized with isoflurane gas for surgery (induction: 4–5%, maintenance, 1–2%)

and placed in a stereotaxic apparatus (David Kopf Instruments, Tujunga, CA). Atropine (0.05

mg/kg; i.p.; Henry Schein) was given at start of surgery and cefazolin (75 mg/kg, s.c.; Henry

Schein) and carprofen (5 mg/kg; s.c.; Henry Schein) were given immediately after surgery.

Additional carprofen injections were repeated post-surgically for two-days during recovery.

Bilateral microinjections (1μl per side) into either NAc medial shell, lateral CeA, or dorso-

lateral BNST were made of either active AAV-DIO-ChR2-eYFP virus (n = 23; UNC Vector

Core) with ChR2 or inactive control virus AAV-DIO-eYFP (n = 19). Co-expression of Crh
and Cre mRNAs in NAc, CeA, and BNST neurons was previously validated using fluorescent

in situ hybridization for this transgenic line [19]. Both the active ChR2 virus and the inactive

eYFP-only virus were driven by an EF1a promoter to infect only neurons that express Cre-

recombinase.

Stereotaxic site coordinates for virus microinjections were bilaterally identical for individ-

ual rats but were staggered across rats in the following ranges so that each group’s sites filled

most of NAc medial shell, lateral CeA, and dorsolateral BNST: NAc medial shell range (from

bregma): A/P: +1.08 to +2.52, M/L: ±0.6 to 1.8, D/V: -6.0 to -7.2 (Angle used: 16 or 10 degrees,

flat skull; n = 13); lateral CeA range: A/P: -1.92 to -3.24, M/L: ± 3.6 to 4.6, D/V: -6.8 to -8.4 (flat

skull; n = 13); dorsolateral BNST range, A/P: -0.36 to +0.36, M/L: 1.4 to 1.8, D/V: -6.0 to -6.5,

(Angle used: 16 degrees, flat skull; n = 17; S1 Table in S1 File). A 1.0 μl volume of virus per

hemisphere was microinjected at each bilateral site over a 10-min period (0.1 μl / min), and

the microinjector was left in place for an additional 10-min to allow diffusion. Optic fibers

(200 μm) were bilaterally implanted in the same surgery and placed so that each fiber tip was

aimed 0.3mm dorsal to virus microinjection site and secured with skull screws and dental

cement.

Intrajugular catheter surgery

Approximately 2 weeks after stereotaxic surgeries, rats again received pre- and post-operative

treatments as described above, and underwent an additional surgery to insert an intravenous

catheter into the jugular vein for cocaine self-administration experiments [22]. Briefly, a sub-

cutaneous anchor was secured in the mid-scapular region and its attached Silastic catheter was

passed subcutaneously up the back and dorsal neck region, and threaded into the right jugular

vein [22]. Following surgeries, rats received daily intra-catheter gentamicin infusions for 10

days to prevent infection, as well as daily intra-catheter infusions of heparinized saline that

continued throughout testing. Rats were given 7–10 days for recovery from surgery prior to
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behavioral testing. Catheter patency was confirmed with brevital sodium injections (0.2ml,

20mg/ml) before behavioral testing and again after completion of all self-administration tests

were completed (i.e., twice total per rat). Rats that failed to become ataxic within 10s were

excluded from self-administration analyses.

Laser parameters

Optogenetic blue laser (473nm) excitation was delivered at 10Hz (10ms-ON-90ms-OFF; 2-

3mW) [19, 24], using durations described below.

Two-choice cocaine preference task

An instrumental two-choice task tested whether pairing laser excitation of CRF-containing

neurons in NAc, CeA, or BNST with earning an i.v. cocaine reward made that infusion more

or less valuable than an identical cocaine infusion delivered without laser [22]. Briefly, rats

were trained to nose poke into two retractable portholes on a fixed-ratio 1 schedule for i.v.

cocaine self-administration. A nose poke into one assigned porthole (Laser+Cocaine) would

deliver 8-sec of laser stimulation together with an intrajugular infusion of cocaine (0.3mg/kg

for each rat, 50ul volume dissolved in a sterile saline solution, 2.8-sec per infusion, National

Institute on Drug Abuse) and 8-sec of a distinct paired sound cue (tone or white noise). A

nose poke into the Cocaine-alone porthole earned an identical cocaine infusion and alternate

paired sound cue, but no laser. Both portholes retracted for a 20-sec timeout following each

infusion earned from either porthole.

Test sessions started with several single-choice trials, in which only one porthole was pre-

sented at a time (Laser+Cocaine or Cocaine-alone) and then was retracted after a nosepoke. A

single-choice trial with the other porthole was then offered. Both single-choice trials were then

repeated once more. Following these 4 single-choice exposures, two-choice trials were offered

for the remainder of the 1-hr daily session, allowing rats to choose either porthole. Rats that

failed to earn at least 5 daily cocaine infusions on days 1–3 were excluded from analyses (4 of

36).

Progressive ratio test

To test whether laser excitation of CRF-containing neurons changed the magnitude of incen-

tive motivation for cocaine rewards, rats underwent two days of progressive ratio (PR) testing

in 1-hr sessions. On one day, only the Laser+Cocaine porthole was available, and on the other

day only the Cocaine-alone porthole was available (order counter-balanced). Earning an infu-

sion increased the number of responses required to earn the next cocaine infusion on a PR

schedule (progressive ratio schedule = 1, 2, 4, 6, 9, 12, 15, 20, 25, 32, 40, 50, 62, 77, 95, 118, 145,

178, 219, 268, etc.; PR = [5e(reward number × 0.2)] − 5) [22]. The effort breakpoint reached when

responding stopped was compared between conditions (i.e., the maximum effort price paid in

terms of responses to earn cocaine within each 1-hr session).

Spout-touch laser self-stimulation

To evaluate the incentive value of laser by itself, rats could earn laser illuminations (3-sec) by

touching an empty waterspout designated as Laser-spout. Touching an alternative Inactive-
spout delivered nothing, as a control measure of exploration. Self-stimulation sessions (30min)

occurred over 3 days. On day 1 rats were assessed for self-stimulation criteria and days 2–3

were statistically analyzed for consistency. Robust self-stimulation criterion required earning

�50 laser illuminations and at least twice as many touches on Laser-spout as on Inactive-spout.

PLOS ONE CRF systems promote incentive motivation for cocaine

PLOS ONE | https://doi.org/10.1371/journal.pone.0267345 May 3, 2022 4 / 26

https://doi.org/10.1371/journal.pone.0267345


Low self-stimulation criterion required at least�10 laser illuminations, with twice as many

touches on Laser-spout as on Inactive-spout [19, 25].

Histology

Histology and immunohistochemistry followed previously reported procedures [19]. Rats

underwent a final 30-min laser stimulation session for Fos inducement that ended 45 minutes

before transcardial perfusions. Brains were extracted, sectioned into 40μm slices (Leica, Wet-

zlar, Germany), mounted onto slides, and stained for Fos protein and GFP expression. Briefly,

tissue was rinsed three times for 10min in sodium phosphate buffer (NaPB) and blocked in 5%

normal donkey serum (60min) before overnight incubation in rabbit anti-cFos (1:2500; Cata-

log#: 226 003; Lot #: 4–63; RRID:AB_2231974; Synaptic Systems, Göttingen, Germany) and

chicken anti-GFP (1:2000; Catalog#: AB13970; Lot #: GR3190550-30; RRID:AB_300798;

Abcam, Cambridge, MA). Slices were again rinsed 3x in NaPB for 10min and placed for 2

hours in biotinylated donkey anti-rabbit (1:300; Catalog #: AB2340593; Lot #: 128703; RRID:

AB2340593; Jackson Immunoresearch, West Grove, PA) and donkey anti-chicken AlexaFluor

488 (1:300; Code #: AB2340375; Lot #: 144438; RRID:AB_2340375; Jackson Immunoresearch,

West Grove, PA). Following 3 more rinses in NaPb, tissue was then incubated for 90min in

tertiary containing Streptavidin Cy3 (1:300; Catalog #: AB2337244, Lot #: 141873, RRID:

AB_2337244; Jackson Immunoresearch, West Grove, PA), before three final 10min rinses.

Slices were mounted onto slides (Fischer), coverslipped with Prolong-gold with DAPI (Invi-

trogen), and imaged using a digital camera (Qimaging, Surrey, BC, Canada) attached to a fluo-

rescent microscope (Leica, Wetzlar, Germany). Viral expression of ChR2 virus was confirmed

and visualized using filter cubes with excitation bands of 490-510nm.

Assessment of distant Fos recruitment

Coronal whole-brain images (10x) were used to manually count Fos+ neurons using previous

methods [19, 26]. Functional connectivity recruited by CRF ChR2 stimulation, reflected as

changes of neural activity in distant brain structures, was measured by Fos protein expression

in mesocorticolimbic structures: anteromedial orbitofrontal cortex (OFC), infralimbic cortex

(IF), anterior NAc shell (aNAcSh), posterior NAcSh (pNAcSh), NAc core (NAcC), anterior

ventral pallidum (aVP), PVP, anterior BNST (aBNST), pBNST, anterior lateral hypothalamus

(aLH), pLH, paraventricular nucleus of the hypothalamus (PVN), basolateral amygdala (BLA),

CeA, medial amygdala (MeA), ventral tegmentum (VTA), substantia nigra (SN), and midbrain

periaqueductal grey (PAG). In each structure targeted in coronal whole-brain images (10x

magnification) 3 boxes for counting Fos+ neurons ranging in size between 6–49 μm2 were

placed at approximately the same subregional location in each rat in the structure, for CRF

ChR2 rats, control eYFP rats, and control naïve unoperated rats [27]. Raw cell counts of Fos

+ neurons in each structure were compared between three groups in a one-way ANOVA fol-

lowed by Bonferonni corrected t-tests. Box size was tailored for each structure to contain ~10

Fos+ neurons in naïve unoperated brain tissue. Percent enhancement in Fos expression

recruited in each structure by NAc, CeA, or BNST laser illumination in Crh-Cre+ ChR2 rats

was calculated by comparison to equivalent structures in inactive eYFP control rats that

received similar laser illuminations prior to euthanasia.

Statistical analysis

Behavioral data were analyzed using mixed-model ANOVAs with between-subject (i.e., ChR2/

eYFP) and/or within-subject factors (i.e., days), followed by paired t-tests with Bonferroni cor-

rections (IBM, SPSS Statistics). Wilcoxon Z was used for nonparametric data. Independent
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pairwise comparisons were used for distant Fos analysis. For all analyses p = 0.05, two-tailed.

Cohen’s D and r ¼ Zffiffiffiffiffiffiffiffiffiffi
N1þN2
p were used to calculate effect sizes.

Results

Local Fos plumes around illuminated CRF ChR2 fibers

At sites in NAc, CeA, and BNST, ChR2 laser stimulation of CRF-expressing neurons in CRF

ChR2 rats produced local Fos plumes of 0.17–0.36mm radius immediately surrounding illumi-

nated optic fiber tips, containing 150–200% elevation of Fos expression above eYFP control lev-

els at equivalent sites. The size of these radii suggests that laser illumination locally activated

ChR2-infected CRF-containing neurons in zones of approximately ~0.4–0.7 mm diameter simi-

larly in all three structures (Fig 1). Therefore the 0.7mm maximal diameter size was used to

depict local neuronal activations for placement symbols in localization-of-function maps (Fig 2).

Distant Fos activation in mesocorticolimbic circuitry

In NAc ChR2 rats (n = 6; Fig 3A and Table 1 and S2 Table in S1 File), laser stimulation of

CRF-expressing neurons recruited >150–350% increases in distant Fos expression in several

mesocorticolimbic structures: NAcC, aVP, pVP, aLH, pLH, pBNST, MeA, CeA, and VTA.

In CeA ChR2 rats (n = 6), laser excitation of CRF-containing neurons similarly recruited

>150–350% increases in distant Fos expression in several of the same structures: NAcC,

aNAcSh, pNAcSh, aVP, pVP, aLH, aBNST, pBNST, MeA, and VTA (Fig 3B and Table 2, and

S3 Table in S1 File).

By contrast in BNST ChR2 rats, laser excitation CRF-containing neurons (n = 6) failed to

recruit comparably intense Fos increases in reward-related NAc, VP, VTA or LH structures.

Instead BNST CRF neuronal stimulation recruited >150–200% increases in Fos in other struc-

tures linked to distress or pain, such as PVN and PAG, as well as producing marginal trends

toward increase in CeA, BLA and OFC (Fig 3C and Table 3 and S4 Table in S1 File).

NAc and CeA CRF neurons focus ‘wanting’ for laser-paired cocaine in two-

choice task

NAc CRF neuronal stimulation in two-choice task. For ChR2 rats (n = 7) with virus/

fiber sites in NAc, ChR2 laser stimulation paired with one cocaine option in the two-choice

task caused rats to pursue that Laser+Cocaine option by a 4:1 ratio over their relatively ignored

Cocaine-alone option across test days (F1,6 = 6.970, p = 0.039; Fig 4A). Consequently, NAc

ChR2 rats earned 13.8±3.0 cocaine infusions on average from the Laser+Cocaine porthole on

day 10 versus only 3.3±0.6 Cocaine-alone infusions (t6 = 3.035, p = 0.023, d = 3.16, 95% CI:

[1.9,17.2]). Unlike NAc ChR2 rats, control NAc eYFP rats with inactive virus (n = 6) chose

essentially equally between Laser+Cocaine and Cocaine-alone options across all test days (F1,5

= 1.367, p = 0.295; Fig 4B). NAc ChR2 rats also escalated their overall cocaine intake across the

10 test days, reaching magnitudes nearly twice as high as final intake levels of NAc eYFP con-

trol rats (F9,3 = 9.555, p = 0.045; Fig 4C).

CeA CRF neuronal stimulation in two-choice task. For CeA ChR2 rats, excitation of

CRF-containing neurons in the two-choice task (n = 6) focused cocaine pursuit on the Laser+-
Cocaine option by a 4:1 ratio over the Cocaine-alone option across testing (F1,5 = 14.669,

p = 0.012; Fig 5A). On day 10 CeA ChR2 rats earned 12.8±3.4 Laser+Cocaine infusions versus

only 3.8±1.3 Cocaine-alone infusions (t5 = 3.022, p = 0.029, d = 1.58, 95% CI:[1.3,16.7]). By

contrast, CeA eYFP control rats chose equally between cocaine options across all test days (F1,5

= 0.540, p = 0.495; Fig 5B). CeA ChR2 stimulation also appeared to escalate total cocaine
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consumption to higher magnitudes than CeA eYFP controls throughout testing (F1,10 =

10.329, p = 0.009; Fig 5C).

Fig 1. Photomicrograph of virus expression and local Fos plumes. Photomicrographs display ChR2 virus expression (green) in neurons of Crh-Cre rats,

and laser-induced local Fos expression in neurons (purple) located within plumes surrounding optogenetic fiber tips (mapped at right). Fiber/virus sites are

in A) nucleus accumbens (NAc) medial shell, B) central nucleus of the amygdala (CeA), and C) bed nucleus of the stria terminalis (BNST). We previously

reported co-expression of Crh mRNA and Cre mRNAs in the same neurons within NAc, CeA and BNST using fluorescent in situ hybridization to validate

this transgenic Crh-Cre rat line (19). Laser Fos plume diagrams at right show the average plume diameter and % elevation intensity of local Fos expression

immediately surrounding the fiber tips, induced by laser stimulation of CRF-containing neurons in CRF ChR2 rats, compared to control levels measured at

the same box sites in eYFP rats after identical laser illuminations. Light blue reflects>150% Fos elevation and dark blue reflects>200% Fos elevation over

eYFP baseline levels measured in the inactive virus control group. Scale bars show 0.1mm for reference. NAcSh, nucleus accumbens shell; NAcC, nucleus

accumbens core; LS, lateral septum; opt, optic tract; CeL, lateral central amygdala; BLA, basolateral amygdala; mBNST, medial bed nucleus of stria

terminalis; dlBNST, dorsolateral bed nucleus of stria terminalis.

https://doi.org/10.1371/journal.pone.0267345.g001

Fig 2. Localization of function maps for Laser+Cocaine preference. Localization of function maps show the

magnitude of behavioral effects induced at corresponding histological sites of optic fibers in individual ChR2 CRF rats:

A) nucleus accumbens (NAc) medial shell, B) central nucleus of the amygdala (CeA), and C) dorsolateral bed nucleus

of the stria terminalis (BNST). Colors indicate intensity (%) of laser-induced pursuit with reds indicating stronger

preference for Laser+Cocaine in the two-choice task. Conversely, blue colors indicate avoidance of Laser+Cocaine (or

preference for Cocaine alone). Symbol sizes are scaled to match maximum 0.7mm diameter measured for illuminated

ChR2 Fos plumes. Also see S1 Table in S1 File. LS, lateral septum; LV, lateral ventricle; CPu, caudate putamen; NAc,

nucleus accumbens; VP, ventral pallidum; ac, anterior commissure; ic, internal capsule; MeA, medial amygdala; GP,

globus pallidus; IntC, intercalated amygdala; BMA, basomedial amygdala; BLA, basolateral amygdala; fx, fornix; Shy,

septohypothalamic nucleus, MPA, medial preoptic area; LPO, lateral preoptic area.

https://doi.org/10.1371/journal.pone.0267345.g002
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NAc and CeA CRF neurons amplify cocaine breakpoint motivation

A PR task measured the magnitude of incentive motivation, expressed as maximum break-

point that rats were willing to exert for cocaine as price increased throughout each session.

Fig 3. Distant Fos recruitment of mesocorticolimbic activity. A) After NAc medial shell ChR2 excitation of CRF-

containing neurons, distant 150–300% increases in Fos expression over eYFP control levels were recruited in several

mesocorticolimbic structures related to incentive motivation for rewards: nucleus accumbens core (NAcC), anterior

and posterior ventral pallidum (aVP, pVP), posterior bed nucleus of stria terminalis (pBNST), anterior and posterior

lateral hypothalamus (aLH, pLH), medial amygdala (MeA), central amygdala (CeA), and ventral tegmentum (VTA).

B) After CeA ChR2 excitation of CRF neurons, 150–300% increases in distant Fos were recruited in: NAcC, anterior

and posterior NAc shell (aNAcSh, pNAcSh), aVP, pVP, anterior BNST (aBNST), pBNST, aLH, pLH, MeA and VTA.

C) In contrast for BNST, ChR2 excitation of CRF-containing neurons recruited 150–300% increases in Fos in several

distinct structures related to avoidance/pain/distress: paraventricular nucleus of the hypothalamus (PVN) and

midbrain periaqueductal grey (PAG). All analyses were performed on raw cell counts (see S2-S4 Tables in S1 File). Bar

graphs depict means and SEMs of percent change from eYFP control rats and colors denote the degree of change.

Circles show individual ChR2 CRF rats. SN, substantia nigra; IF, infralimbic cortex. �p<0.05, ��p<0.01, ���p<0.001.

https://doi.org/10.1371/journal.pone.0267345.g003

Table 1. Brain-wide Fos activation following CRF-containing neuron excitation in NAc.

NAc CRF neurons Fos+ count Mean ± SEM ANOVA F-statistic,

p-value

NAc ChR2 vs. eYFP Bonferroni

adjusted p-value

Region Naïve control (n = 4) NAc ChR2 (n = 6) NAc eYFP (n = 6) F p p 95% CI d

IF 22.3 ± 2.6 22.5 ± 2.1 15 ± 2.1 3.729 0.052
OFC 58 ± 5.2 55.3 ± 4.2 42.2 ± 4.2 3.586 0.058

NAcC 32 ± 5.9 69.7 ± 4.8 29.3 ± 4.8 20.772 <0.001��� <0.001��� 22, 59 3.12

aVP 16 ± 2.5 53 ± 2.1 2.8 ± 2.1 76.282 <0.001��� <0.001��� 19, 35 5.08

pVP 30.3± 3.7 50.7 ± 3.1 25.8 ± 3.1 18.619 <0.001��� <0.001��� 13, 37 3.17

aBNST 31.5 ± 11 40.3 ± 9.9 30.7 ± 4.9 2.196 0.151
pBNST 29.5 ± 6.4 58.7 ± 5.2 37.7 ± 5.2 7.318 0.007�� 0.04� 1, 41 1.49

aLH 19.5 ± 4.2 46.2 ± 3.4 27.3 ± 3.4 13.748 0.001�� 0.006�� 5, 32 2.26

pLH 25 ± 3.6 46 ± 2.9 23.5 ± 2.9 17.78 <0.001��� <0.001��� 11, 34 3.21

PVN 21 ± 3.7 37.3 ± 2.9 27 ± 2.9 6.664 0.01�� 0.083
MeA 23.5 ± 4.6 51.5 ± 3.8 30.7 ± 3.8 12.965 0.001�� 0.006�� 6, 36 2.32

CeA 13.8 ± 2.4 36 ± 2 15 ± 2 34.77 <0.001��� <0.001��� 13, 29 4.20

BLA 22 ± 3.7 32.7 ± 3 27.2 ± 3 2.495 0.121
VTA 20 ± 4.9 53.2 ± 4 26.8 ± 4.9 16.33 0.001�� 0.005�� 9, 44 2.76

SN 16 ± 1.7 21.5 ± 1.4 17 ± 1.7 3.669 0.06
PAG 26 ± 4.4 28.8 ± 3.6 23 ± 5 0.451 0.649

Table shows Fos+ protein quantification in mesocorticolimbic regions after final exposure to ChR2 excitation in NAc (top; n = 3 female, n = 3 male). Fos+ protein

quantification in mesocorticolimbic regions (left columns) for naïve unoperated control rats, ChR2 rats, and eYFP rats, were compared with a one-way ANOVA for

each structure targeted. “Fos+ Count” reflects mean of each group at each site ± standard error (SEM). Follow up two-tailed t-tests with Bonferonni corrections were

performed between ChR2, eYFP, and naiive control groups. The right column includes p-values, confidence intervals, and effect sizes for instances where ChR2 rats

were found to significantly differ from eYFP controls. Percent change in ChR2 rats from eYFP controls are depicted in Fig 3. IF, infralimbic cortex; OFC, orbitofrontal

cortex; aNAcSh, anterior nucleus accumbens shell; pNAcSh, posterior nucleus accumbens shell; NAcC, nucleus accumbens core; aVP, anterior ventral pallidum; pVP,

posterior ventral pallidum; aBNST, anterior bed nucleus of stria terminalis; pBNST, posterior bed nucleus of stria terminalis; aLH, anterior lateral hypothalamus; pLH,

posterior lateral hypothalamus; PVN, hypothalamic paraventricular nucleus; MeA, medial amygdala; CeA, central amygdala; BLA, basolateral amygdala; VTA, ventral

tegmentum; SN, substantia nigra; PAG, midbrain periaqueductal gray.

�p<0.05,

��p<0.01,

���p<0.001

https://doi.org/10.1371/journal.pone.0267345.t001
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Laser excitation of CRF-containing neurons in NAc doubled effort breakpoint to obtain

cocaine in NAc ChR2 rats, which reached 10.4±2.6 nosepokes per infusion for on the Laser+-
Cocaine day versus breakpoints of only 5.4±1.2 on the Cocaine-alone day (n = 7; Wilcoxon

Z = 2.207, p = 0.027, r = 0.83; Fig 4D). NAc ChR2 rats made 22.4±8.5 total nosepokes on the

Laser+Cocaine day, or 300% more than on the Cocaine-alone day (7.9±2.9; Z = 2.336,

p = 0.018, r = 0.89). In contrast, NAc eYFP control rats (n = 6) did not differ in their break-

points between test days (Z = 0.677, p = 0.498).

For CeA ChR2 rats, excitation of CRF-containing neurons doubled their effort to obtain

cocaine, which reached breakpoints of 8.0±1.0 nosepokes per infusion on the Laser+Cocaine
day, or >200% higher than on the Cocaine-alone day (3.0±0.8; n = 6; Z = 2.207, p = 0.027,

r = 0.90; Fig 5D). CeA ChR2 rats also made 15.2±3.6 nosepokes on the Laser+Cocaine day ver-

sus 3.2±1.5 nosepokes on the Cocaine-alone day (Z = 2.226, p = 0.026, r = 0.91). In contrast,

CeA eYFP control rats (n = 6) did not differ in breakpoints between the PR test days

(Z = 0.962, p = 0.336), and therefore significantly differed from CeA ChR2 rats in breakpoint

pattern (F1,10 = 16.900, p = 0.002).

Table 2. Brain-wide Fos activation following CRF-containing neuron excitation in CeA.

CeA CRF neurons Fos+ count Mean ± SEM ANOVA F-statistic,

p-value

CeA ChR2 vs. eYFP Bonferroni

adjusted p-value

Region Naïve control (n = 4) CeA ChR2 (n = 6) CeA eYFP (n = 5) F p p 95% CI d

IF 22.3 ± 3 22.8 ± 2.4 19.8 ± 2.7 0.377 0.693
OFC 58 ± 7.1 53.2 ± 5.8 46.4 ± 6.3 0.77 0.485

NAcC 32 ± 7.2 83 ± 5.9 38.4 ± 6.4 19.8 <0.001��� <0.001��� 20, 68 2.80

aNAcSh 38.5 ± 4.6 55.7 ± 3.7 35.8 ± 4.1 7.6 0.007�� 0.011� 4, 35 2.44

pNAcSh 39 ± 4.5 87 ± 3.6 43.8 ± 4 47.011 <0.001��� <0.001��� 28, 58 4.34

aVP 16 ± 4.9 50.2 ± 4 28.2 ± 4.4 15.684 <0.001��� 0.009�� 6, 39 1.98

pVP 30.3± 3.7 55.7 ± 3.1 32.2 ± 3.3 19.139 <0.001��� 0.001�� 11, 36 3.33

aBNST 31.5 ± 4.9 43.5 ± 4 26.4 ± 4.4 4.459 0.036� 0.041� 1, 34 2.46

pBNST 29.5 ± 5 60.2 ± 4.1 37.4 ± 4.5 13.133 0.001�� 0.008�� 6, 40 2.09

aLH 19.5 ± 2.7 45.3 ± 2.2 24.6 ± 2.4 34.472 <0.001��� <0.001��� 12, 30 3.91

pLH 25 ± 4.1 45.3 ± 3.3 29 ± 3.6 9.154 0.004�� 0.019� 3, 30 2.04

PVN 21 ± 3.8 35.7 ± 3.1 35 ± 3.4 5.203 0.024� >0.05
MeA 23.5 ± 3.2 45.3 ± 2.7 27.6 ± 2.9 16.783 <0.001��� 0.002�� 7, 29 2.81

BLA 22 ± 5.8 39.2 ± 4.7 32.4 ± 5.1 2.646 0.112
VTA 20 ± 3.9 43.3 ± 3.2 21.6 ± 3.5 14.621 0.001�� 0.002�� 8, 35 2.76

SN 16 ± 3.6 25.5 ± 2.9 15.2 ± 3.2 3.413 0.067
PAG 26 ± 4.4 33 ± 3.2 21.4 ± 3.5 2.977 0.089

Table shows Fos+ protein quantification in mesocorticolimbic regions after final exposure to ChR2 excitation in CeA (n = 3 female, n = 3 male). Fos+ protein

quantification in mesocorticolimbic regions (left columns) for naïve unoperated control rats, ChR2 rats, and eYFP rats, were compared with a one-way ANOVA for

each structure targeted. “Fos+ Count” reflects the mean of each group at each site ± standard error (SEM). Follow up two-tailed t-tests with Bonferonni corrections were

performed between ChR2, eYFP, and naiive control groups. The right column includes p-values, confidence intervals, and effect sizes for instances where ChR2 rats

were found to significantly differ from eYFP controls. Percent change in ChR2 rats from eYFP controls are depicted in Fig 3. IF, infralimbic cortex; OFC, orbitofrontal

cortex; aNAcSh, anterior nucleus accumbens shell; pNAcSh, posterior nucleus accumbens shell; NAcC, nucleus accumbens core; aVP, anterior ventral pallidum; pVP,

posterior ventral pallidum; aBNST, anterior bed nucleus of stria terminalis; pBNST, posterior bed nucleus of stria terminalis; aLH, anterior lateral hypothalamus; pLH,

posterior lateral hypothalamus; PVN, hypothalamic paraventricular nucleus; MeA, medial amygdala; CeA, central amygdala; BLA, basolateral amygdala; VTA, ventral

tegmentum; SN, substantia nigra; PAG, midbrain periaqueductal gray.

�p<0.05,

��p<0.01,

���p<0.001

https://doi.org/10.1371/journal.pone.0267345.t002
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BNST CRF stimulation fails to alter cocaine preference

For BNST ChR2 rats in the two-choice task, paired laser excitation of CRF-containing neurons

in BNST (n = 6) did not alter preference between the Laser+Cocaine and Cocaine-alone options.

BNST ChR2 rats chose equally between cocaine options at nearly a 1:1 ratio across all test days

(F1,5 = 0.000, p = 1.000; Fig 6A). Similarly, BNST eYFP control rats pursued Laser+Cocaine and

Cocaine-alone options equally throughout testing (F1,5 = 3.773, p = 0.110; Fig 6B and 6C).

Across the 10 test days, BNST ChR2 rats consumed only one-third of the total cocaine on

average than the amount consumed by either NAc or CeA ChR2 rats in the two-choice task

(F1,17 = 7.496, p = 0.014).

BNST CRF stimulation does not alter breakpoint. In the progressive ratio task, laser

excitation of CRF neurons in BNST failed to alter breakpoint effort for cocaine, as BNST ChR2

rats reached similar effort breakpoints on the Laser+Cocaine day (5.2±2.6) and on the

Cocaine-alone day (4.3±2.0; n = 5 Wilcoxon Z = 0.921, p = 0.357; Fig 6D). Control BNST eYFP

rats also reached similar breakpoints for Laser+Cocaine and Cocaine-alone (n = 6; Z = 0.962,

p = 0.336).

Table 3. Brain-wide Fos activation following CRF-containing neuron excitation BNST.

BNST CRF neurons Fos+ count Mean ± SEM ANOVA F-statistic,

p-value

BNST ChR2 vs. eYFP Bonferroni

adjusted p-value

Region Naïve control (n = 4) BNST ChR2 (n = 6) BNST eYFP (n = 4) F p P 95% CI d

IF 22.3 ± 3.6 17.1 ± 3 18.3 ± 3.6 0.619 0.556
OFC 58 ± 8.1 52.3 ± 6.7 33.8 ± 8.1 2.503 0.127

NAcC 32 ± 8.9 48.8 ± 7.3 40.1 ± 8.9 1.077 0.374
aNAcSh 38.5 ± 6.1 35.5 ± 4.9 31.8 ± 6.1 0.313 0.738
pNAcSh 39 ± 5.7 47.7 ± 4.7 44 ± 5.7 0.695 0.52

aVP 16 ± 3 27.5 ± 2.4 30.8 ± 3 6.919 0.011� >0.05
pVP 30.3± 3.7 38.2 ± 3.1 36.8 ± 3.7 1.425 0.282
aLH 19.5 ± 2.8 29.7 ± 2.3 28 ± 2.8 4.129 0.046� >0.05
pLH 25 ± 3.8 34.8 ± 3.2 25.8 ± 3.9 2.583 0.120
PVN 21 ± 2.3 34.5 ± 1.9 20.8 ± 2.3 14.453 0.001�� 0.003�� 5, 22 3.61

MeA 23.5 ± 4.2 33.8 ± 3.4 28.3 ± 4.2 1.877 0.199
CeA 13.8 ± 2.4 20.3 ± 1.9 12.3 ± 2.4 4.142 0.046� 0.071
BLA 22 ± 5.9 28 ± 4.8 21.8 ± 5.9 3.212 0.08
VTA 20 ± 4.7 35.2 ± 3.8 30.3 ± 4.7 3.206 0.08
SN 16 ± 2 21.7 ± 1.7 17 ± 2 2.806 0.104

PAG 26 ± 3.2 31.2 ± 2.7 17.3 ± 3.3 5.381 0.023� 0.022� 1, 26 3.55

Table shows Fos+ protein quantification in mesocorticolimbic regions after final exposure to ChR2 excitation in BNST (n = 3 female, n = 3 male ChR2 group). Fos

+ protein quantification in mesocorticolimbic regions (left columns) for naïve unoperated control rats, ChR2 rats, and eYFP rats, were compared with a one-way

ANOVA for each structure targeted. “Fos+ Count” reflects mean of each group at each site ± standard error (SEM). Follow up two-tailed t-tests with Bonferonni

corrections were performed between ChR2, eYFP, and naiive control groups. The right column includes p-values, confidence intervals, and effect sizes for instances

where ChR2 rats were found to significantly differ from eYFP controls. Percent change in ChR2 rats from eYFP controls are depicted in Fig 3. IF, infralimbic cortex;

OFC, orbitofrontal cortex; aNAcSh, anterior nucleus accumbens shell; pNAcSh, posterior nucleus accumbens shell; NAcC, nucleus accumbens core; aVP, anterior

ventral pallidum; pVP, posterior ventral pallidum; aBNST, anterior bed nucleus of stria terminalis; pBNST, posterior bed nucleus of stria terminalis; aLH, anterior lateral

hypothalamus; pLH, posterior lateral hypothalamus; PVN, hypothalamic paraventricular nucleus; MeA, medial amygdala; CeA, central amygdala; BLA, basolateral

amygdala; VTA, ventral tegmentum; SN, substantia nigra; PAG, midbrain periaqueductal gray.

�p<0.05,

��p<0.01,

���p<0.001

https://doi.org/10.1371/journal.pone.0267345.t003
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Fig 4. NAc ChR2 stimulation of CRF-containing neurons amplifies motivation and focuses preference on laser-paired cocaine. A) In the two-choice task,

ChR2 excitation of CRF-containing neurons in NAc medial shell focused preference and cocaine pursuit on the Laser+Cocaine option by a 4:1 ratio over

Cocaine alone in the two-choice task (n = 7). B) In comparison, control NAc eYFP rats chose equally between the two cocaine options (n = 6). C) NAc ChR2

rats also escalated total cocaine intake (Laser+Cocaine plus Cocaine alone options combined) to higher magnitudes than eYFP controls in two-choice task. D)
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Laser self-stimulation: NAc and CeA CRF groups

In the spout-touch laser self-stimulation task, rats could earn 3-sec bins of laser illumination

by touching a designated empty Laser-spout, while touching the other Inactive-spout earned

nothing as a control measure of exploration. Rats were classified as robust self-stimulators if

they made�50 Laser-spout touches and twice as many Laser-spout as Inactive-spout touches.

Rats were classified as low self-stimulators if they made at least�10 (but <50) touches on

Laser-spout and twice as many Laser-spout as Inactive-spout touches. Rats that met neither cri-

terion were classified as failing to self-stimulate. Self-stimulation status was initially classified

on day 1 and was retested for consistency on days 2–3.

NAc: Low CRF laser self-stimulation. As a whole group overall, NAc ChR2 rats touched

the Laser-spout>300% more (28.0±6.2 touches) than the Inactive-spout (8.7±2.7) across the 3

self-stimulation task days (F1,6 = 10.866, p = 0.016; Fig 7A). In contrast NAc eYFP rats (n = 6)

touched equally between spouts across the 3 days of testing, significantly differing from NAc

ChR2 rats (F1,11 = 7.289, p = 0.021). Individually, five out of seven NAc ChR2 rats met the

lesser�10 Laser-spout criterion for low self-stimulation on day 1. The remaining 2 NAc ChR2

rats failed to self-stimulate by either criterion. The 5 NAc ChR2 rats classified as self-stimula-

tors continued to self-stimulate at moderate levels on days 2–3, making Laser-spout 39.8 ± 5.2

touches, or>400% more than their Inactive-spout contacts (9.9±4.9; n = 5; F1,4 = 22.305,

p = 0.009; Fig 7A). The remaining 2 NAc ChR2 individuals continued to fail to meet self-stim-

ulation criteria on days 2–3.

CeA: Moderate CRF neuronal self-stimulation. As a group overall, CeA ChR2 rats

showed a trend toward low rates of self-stimulation, making 37.4±9.4 Laser-spout touches ver-

sus 14.8±7.1 Inactive-spout touches (n = 8; F1,7 = 4.676, p = 0.067; Fig 7B). In contrast, control

CeA eYFP rats (n = 6) made similar Laser-spout and Inactive-spout touches throughout the 3

test days (n = 6; F1,5 = 0.267, p = 0.628).

Individually, two of eight CeA ChR2 rats met the criterion for robust self-stimulation on

day 1, while four met the criterion for low self-stimulation. Two CeA ChR2 rats failed to meet

any self-stimulation criteria on day 1. On days 2–3, the six CeA ChR2 self-stimulators contin-

ued to self-stimulate at moderate rates of 40.7±10.6 laser illuminations per session versus 7.2

±2.3 Inactive-spout touches (n = 6; F1,5 = 11.989, p = 0.018; Fig 7B), whereas the remaining two

continued to fail to self-stimulate by either criterion.

BNST: No self-stimulation. As a group overall, BNST ChR2 rats failed to self-stimulate

CRF-containing neurons by any criteria. Individually as well, all BNST ChR2 rats failed to

meet criteria for laser self-stimulation, touching the Laser-spout (23.0±6.9) and Inactive-spout
(23.6±6.4) roughly equally (n = 8; F1,7 = 0.000, p = 0.991; Fig 7C). BNST eYFP controls also

responded similarly between spouts (n = 7; F1,6 = 2.355, p = 0.176).

Does laser self-stimulation correlate with increased cocaine pursuit?. Did NAc and

CeA control of cocaine pursuit simply reflect a sum of laser value added to cocaine value? Or

does NAc ChR2 and CeA ChR2 stimulation directly transform and amplify the value of paired

cocaine, independently of laser value on its own? To assess these alternatives, we measured

correlations between each individual’s laser self-stimulation and laser-paired cocaine pursuit

in rats classified as self-stimulators.

Correlation results showed that laser self-stimulation levels failed to correlate or explain

pursuit of paired Laser+Cocaine option in the two-choice task for either NAc ChR2 rats (n = 5,

In the progressive ratio (PR) task that measures effort breakpoint, NAc CRF-containing neuron excitation nearly doubled breakpoint in the Laser+Cocaine
session over the Cocaine alone session (n = 7; left panel). Laser did not affect the breakpoint of NAc eYFP control rats (n = 6). Right panel depicts timeframe of

behavioral responses for cocaine during the 1hr PR sessions. Means and SEM reported. �p<0.05, ��p<0.01.

https://doi.org/10.1371/journal.pone.0267345.g004
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Fig 5. CeA ChR2 stimulation of CRF-containing neurons amplifies motivation and focuses preference on laser-paired cocaine. A) In the two-choice task,

ChR2 excitation of CRF-containing neurons in the lateral CeA amplified cocaine pursuit and focused preference on the Laser+Cocaine option by a 4:1 ratio over

Cocaine alone test (n = 6). B) In comparison, control CeA eYFP rats chose equally between options (n = 6). C) CeA ChR2 rats also had higher total cocaine

intake in the two-choice task across all days than eYFP controls (combined intakes from both Laser+Cocaine plus Cocaine alone). D) In a separate progressive

ratio (PR) breakpoint test of incentive motivation intensity, CeA CRF neuronal excitation doubled effort breakpoint for cocaine in the Laser+Cocaine session

over breakpoint of the same CeA ChR2 rats in their Cocaine alone session (n = 6; left panel). Laser did not affect breakpoint of CeA eYFP control rats (n = 6).

Right panel depicts timeframe of behavioral responses for cocaine during the 1hr PR sessions. Means and SEM reported. �p<0.05, ��p<0.01.

https://doi.org/10.1371/journal.pone.0267345.g005
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Fig 6. BNST ChR2 stimulation of CRF-containing neurons fails to change cocaine pursuit. Pairing ChR2 excitation of CRF neurons in BNST with one

cocaine option failed to alter cocaine pursuit in the two-choice task for A) BNST ChR2 rats (n = 6); or B) BNST eYFP inactive control rats, (n = 6). C) BNST

ChR2 stimulation had little no effect on total cocaine consumption in the two-choice task compared to eYFP controls plus Cocaine alone infusions). D) In

progressive ratio (PR) tests, CRF-containing neuronal excitation failed to alter effort breakpoint of BNST ChR2 rats (n = 5; left panel), which remained similar

also to the unchanging breakpoint of BNST eYFP control rats (n = 6). Right panel depicts timeframe of behavioral responses for cocaine during the 1hr PR

sessions. Means and SEM reported.

https://doi.org/10.1371/journal.pone.0267345.g006
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r = -0.078, p = 0.905) or CeA ChR2 rats (n = 5, r = -0.206, p = 0.739; Fig 8A). Similarly, laser

self-stimulation failed to correlate with cocaine breakpoint increases in the progressive ratio

task for either NAc ChR2 rats (r = -0.440, p = 0.459) or CeA ChR2 rats (r = 0.036, p = 0.955;

Fig 8B). For example, individual NAc or CeA ChR2 rats that failed to meet any criteria for

laser self-stimulation still showed 5:1 increases laser-paired cocaine pursuit and a laser-

induced doubling of cocaine breakpoint, which were as high in magnitude as those of laser

self-stimulators (Fig 8A and 8B). However, laser-paired cocaine preference was found to posi-

tively predict laser-based enhancement of cocaine breakpoint using a simple linear regression

for both NAc ChR2 rats (F1,5 = 25.194, p = 0.007; R2 = 0.863) and CeA ChR2 rats (F1,5 =

14.612, p = 0.019; R2 = 0.785; Fig 8C), indicating that the degree of laser-induced amplification

of paired cocaine value was reliably similar across both paradigms.

Unilateral vs bilateral CRF ChR2 stimulation: Both behaviorally effective

CeA ChR2 rats with bilateral fiber/virus placements in CeA sites (n = 4) showed a 4:1 prefer-

ence for their Laser+Cocaine option over the Cocaine Alone option. By comparison, CeA

ChR2 rats with unilateral fiber/virus sites in CeA (n = 2; with contralateral sites were in the

optic tract or basolateral amygdala) showed a nearly equivalent 3:1 preference for Laser+-
Cocaine option over Cocaine alone option. While a quantitative assessment would require

greater N’s, we conclude that unilateral CeA CRF neuronal stimulation is sufficient to induce a

preference for laser-paired cocaine. In the progressive ratio task, bilateral CeA ChR2 stimula-

tion increased breakpoint for cocaine by 250% over the same rats’ breakpoint in absence of

laser, and unilateral CeA ChR2 rats’ stimulation similarly increased breakpoint on laser day by

250% over baseline breakpoint in absence of laser. Again, unilateral and bilateral CeA CRF

neuronal stimulation appear roughly comparable in enhancing motivation to consume

Fig 7. Laser self-stimulation of CRF-containing neurons in NAc and CeA, but not BNST. A) ChR2 rats could self-stimulate laser to excite CRF-containing

neurons by touching a designated Laser spout to earn 3sec illuminations, whereas touching an Inactive spout delivered nothing. NAc ChR2 rats as an entire

group demonstrated significant self-stimulation across all 3 days of testing (n = 7). NAc ChR2 individuals that met criteria for laser self-stimulation on day 1

(n = 5, ChR2 SS) continued to self-stimulate on days 2–3 by touching their Laser-spout>400% more than the Inactive-spout. B) CeA ChR2 rats as an entire

group showed only a nonsignificant trend toward laser self-stimulation (n = 8). However, CeA ChR2 individuals that met self-stimulation criteria on day 1

(n = 6; ChR2 SS) continued to self-stimulate on days 2–3. touching their Laser-spout 400% more than the Inactive-spout. By contrast, control NAc eYFP (n = 6)

and CeA eYFP rats (n = 6) failed to self-stimulate, and merely touched randomly at low rates. C) BNST ChR2 rats failed as a group to self-stimulate for laser

excitation of CRF-containing neurons (n = 8) across all 3 test days, similar to eYFP controls (n = 7). No BNST ChR2 individuals met criteria for self-stimulation

on any day. Means and SEM reported. �p<0.05, ��p<0.01.

https://doi.org/10.1371/journal.pone.0267345.g007
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cocaine. In the laser self-stimulation task, CeA ChR2 unilateral rats showed if anything stron-

ger laser self-stimulation (n = 4, Laser illuminations: 42.9±14.0, Inactive spout touches: 7.8

±10.0) than bilateral CeA ChR2 rats (n = 4, Laser illuminations: 31.9±14.0, Inactive spout

touches: 21.7±10.0). Again, while quantitative assessment would require larger groups, we con-

clude that unilateral and bilateral CeA CRF neuronal excitations are both sufficient to support

CRF neuronal self-stimulation behavior.

NAc ChR2 rats with bilateral sites in NAc shell (n = 3) showed stronger laser-induced pref-

erences of 5:1 for their Laser+Cocaine option over their Cocaine Alone option in the 2-choice

task compared to unilateral NAc ChR2 rats n = 4) that showed only a 2.5:1 preference for or

Laser + Cocaine option over Cocaine alone option. Bilateral NAc ChR2 rats similarly showed

higher 300% enhancements of breakpoint on Laser+Cocaine day compared to no-laser break-

point, whereas unilateral rats showed only a 150% elevation of breakpoint on Laser+Cocaine
day over no-laser breakpoint. We conclude that bilateral NAc CRF neuronal stimulation may

well be more potent at enhancing incentive motivation for cocaine than unilateral stimulation.

However, it appears that even unilateral NAc CRF neuronal stimulation may be sufficient

enhance incentive motivation for cocaine over baseline levels. In the laser self-stimulation

task, unilateral NAc ChR2 rats (n = 4) showed nearly identical levels of behavioral NAc CRF

self-stimulation as bilateral NAc ChR2 rats (n = 3; Bilateral Laser illuminations: 29.0±10.4,

Inactive spout touches: 11.4±4.2; Unilateral Laser illuminations: 27.2±9.0, Inactive spout

Fig 8. Laser-paired cocaine preference predicts cocaine breakpoint, not self-stimulation in NAc and CeA ChR2 rats. Laser self-stimulation by NAc

ChR2 rats (red/purple squares & dashed line) or CeA ChR2 rats (blue squares & dashed line) did not correlate with their degree of laser-induced

amplification of cocaine value. A) Lack of correlation between self-stimulation and paired cocaine preference in two-choice task. B) Lack of correlation

between self-stimulation and intensity of paired cocaine motivation in breakpoint task. Even rats that met criteria for laser self-stimulation failed to show

correlation with strength of laser-paired cocaine preference or pursuit. C) The magnitude of laser-induced increase in cocaine value was stable across both

progressive ratio and two-choice tasks for NAc ChR2 and CeA ChR2 rats, as indicated by a simple linear regression analysis. Regression lines with β-

coefficients and R2 values depicted.

https://doi.org/10.1371/journal.pone.0267345.g008
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touches: 6.6±3.6). This supports a conclusion that even unilateral stimulation of CRF neurons

in NAc shell is sufficient to produce detectable incentive effects on behavior.

Neurobiologically, regarding Fos recruitment in distant mesolimbic structures, unilateral

ChR2 CRF neuronal stimulation in rats that had only one fiber/virus site within their target

structure (and a contralateral site instead in an adjacent structure) still evinced recruitment of

increases in distant Fos expression in mesocorticolimbic structures. In only one distant struc-

ture (infralimbic cortex following BNST CRF stimulation) was unilateral-evoked Fos lower

than bilateral-evoked Fos. Conversely, for NAc CRF stimulations, distant Fos in VTA and sub-

stantia nigra was actually higher after unilateral NAc stimulation than after bilateral stimula-

tion. For most other structure/stimulation combinations, increases in Fos were evoked by both

unilateral and bilateral CRF neuronal stimulations. We conclude overall that unilateral CRF

neuronal stimulation in CeA, NAc and BNST may be sufficient to recruit mescorticolimbic

Fos activations, though there may be moderate quantitative differences in a few cases. For this

reason, both bilateral and unilateral rats are included in behavioral analyses above, and any dif-

ferences noted when detected.

Lack of overall sex differences in CRF ChR2 effects

Although moderate sex differences have been reported in cocaine self-administration and in

CRF system anatomy and effects, there were no detectable sex differences here in overall

cocaine intake of females (n = 21) and males (n = 16) over days in the two-choice task (F1,29 =

0.123, p = 0.729). Females and males also consumed similar amounts of cocaine overall in the

progressive ratio task (female n = 21; male n = 15; F1,30 = 0.321, p = 0.575). There were also no

significant interactions between sex and laser conditions or limbic sites overall, although we

note that N’s became too small to detect potential sex differences in the relative intensity of

effects for specific site/experiment/laser combinations, especially if any quantitative sex differ-

ences are small to moderate in size. Given the overall comparable cocaine pursuit of both sexes

here, females and males were analyzed together except where explicitly stated.

Similarly, regarding laser self-stimulation of CRF neurons, there was no overall sex differ-

ence between female and male Crh-Cre rats with ChR2 virus in laser self-stimulation patterns

(females n = 22, males n = 14; F1,33 = 0.528, p = 0.473). We caution that both for cocaine self-

administration and laser self-stimulation, the numbers of females versus males in specific ana-

tomical site groups were not sufficiently powered to rule out the possibility of slight quantita-

tive sex differences. However, overall similarity in qualitative effects here suggests that females

and males do not at least differ categorically in propensity for CRF neuronal laser self-stimula-

tion or in optogenetic CRF neuronal effects on motivation for cocaine.

Discussion

Pairing optogenetic excitation of CRF-containing neurons in NAc or CeA with a particular i.v.

cocaine reward in Crh-Cre rats doubled the intensity of pursuit and consumption of the laser-

paired cocaine option, while the same rats relatively neglected their alternative option of cocaine

without laser. Laser excitation of CRF-containing neurons in NAc or CeA caused: 1) an overall

4:1 preference for the Laser+Cocaine option over the equal Cocaine-alone option by the end of

testing, narrowing the focus of incentive motivation; 2) increases in the amplitude of their

incentive motivation for laser-paired cocaine, expressed as a doubling of breakpoint in the pro-

gressive ratio task, as well as by escalated cocaine consumption in the two-choice task; and 3) a

slight but detectable positive motivational valence of CRF-containing neuronal activation itself,

revealed as low to moderate levels of laser self-stimulation by most CeA and NAc ChR2 rats.

Evidence that increased recruitment of mesocorticolimbic circuitry mediated the enhancement
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of incentive motivation was provided by observing increases of neuronal Fos activation in VTA,

NAc, VP, etc after laser ChR2 stimulations of CRF neurons in either CeA or NAc.

Our results demonstrate for the first time that stimulating CRF-containing neurons in

either NAc or CeA can promote choice, pursuit, and consumption of a drug such as cocaine

via a positively-valenced incentive motivation process, just as similar CRF neuronal stimula-

tion promotes incentive motivation for sucrose reward [19].

CRF peptide versus co-released neurotransmitters?

We emphasize that our current study is meant to examine the roles of CRF neurons in motiva-

tion for cocaine, a relatively unstudied aspect of CRF motivational systems. Our results do not

make claims for the role of CRF peptide specifically as a neurotransmitter, or for roles of par-

ticular CRF neurochemical receptors. That is because CRF-expressing neurons, in addition to

releasing CRF peptide, also co-release several other neurotransmitters, including GABA, gluta-

mate, dynorphin, neurotensin, and somatostatin [28–31]. Future research could examine

which of these neurochemical signals released by CRF-containing neurons in NAc or CeA are

most responsible for amplifying ‘wanting’ of cocaine rewards. Conceivably, a contributing role

for at least some co-released neurotransmitters could be related to why CRFR1 antagonists

sometimes fail to block stress-induced craving in clinical studies [32–35].

Contributions of CRF neuronal projections?

Future research could also identify which CRF-releasing anatomical projections mediate

incentive motivation for cocaine. CRF-containing neurons in CeA project to downstream tar-

gets in LH, VP, VTA, PBN and BNST [23, 30, 36–38]. Projections to LH, VP, or VTA may be

primary candidates to mediate incentive motivation, as stimulation of CeA-BNST projections

are reliably reported to induce negatively-valenced motivation [37, 39–41]. In NAc medial

shell, CRF-containing neurons may make mostly local connections within NAc, including to

cholinergic interneurons that may modulate local dopamine release [15, 42].

CRF-containing neurons in BNST lack incentive roles

In contrast to most NAc ChR2 and CeA ChR2 rats, BNST ChR2 rats uniformly failed to self-

stimulate laser here, and excitation of CRF-containing neurons in BNST failed to increase

cocaine pursuit. Instead, activation of CRF-containing neurons in BNST prevented the usual

escalation of cocaine intake that otherwise occurred over multiple days in the two-choice task,

consequently reducing final cocaine intake in comparison to NAc and CeA ChR2 rats. In the

progressive ratio task, stimulation of CRF-containing neurons in BNST failed to alter cocaine

breakpoint, somewhat different than in our previous study where BNST stimulation reduced

sucrose breakpoint [19]. Also, stimulation of CRF-containing neurons in BNST failed to alter

cocaine preference here in the two-choice task, whereas it caused avoidance of the laser-paired

sucrose reward in our previous study. These slight BNST differences in cocaine vs sucrose

results between the two studies might reflect group differences or procedural differences

between the two studies (e.g., single-housing and food restriction was used for cocaine groups

but not sucrose groups), or reflect unique features of cocaine that are not shared by sucrose as

rewards. However, BNST CRF-containing neuron excitation here did confirm previously

found recruitment of Fos activation in downstream structures related to stress or pain, includ-

ing PAG and PVN [19].
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Laser CRF self-stimulation is insufficient to account for cocaine pursuit

Approximately ~75%-80% of NAc ChR2 rats and CeA ChR2 rats self-stimulated for laser illu-

mination at least at low to moderate levels, implying that CRF-containing neuronal excitation

in NAc and CeA carried positive incentive value [17, 19]. That raises the question of whether

NAc ChR2 and CeA ChR2 rats preferred their Laser+Cocaine option in the two-choice task

because it simply combined the sum of two separate incentives? We believe that is unlikely,

because the 20% of NAc ChR2 and CeA ChR2 individuals that failed to self-stimulate at all still

showed laser-induced pursuit of Laser+Cocaine comparable to other rats that did self-stimulate

for laser excitations of their CRF neurons. Further, the intensity of laser self-stimulation across

rats that did self-stimulate failed to correlate with their intensity of Laser+Cocaine pursuit.

Instead, we suggest that CRF-containing neuronal activation in NAc or CeA directly trans-

formed the incentive value of laser-paired cocaine in a multiplicative manner, making that par-

ticular option more intensely ‘wanted’. Thus, the incentive salience value of laser-paired

cocaine became more than the sum of its parts [19, 22, 25, 43].

That incentive transformation hypothesis is similar to the interpretation of previous opto-

genetic CeA studies that induced intense, focused pursuit of laser-paired cocaine, sucrose, or

even a shock-rod [19, 22, 25, 43]. Such affectively potent stimuli may serve as better targets for

optogenetic attribution of intense incentive salience than neutral stimuli (i.e., empty spouts for

self-stimulation) because they themselves elicit emotional reactions and mesocorticolimbic

activations, making them able to serve effectively as unconditioned stimuli in Pavlovian para-

digms. We hypothesize that simultaneous laser excitation of CRF-containing systems in NAc

or CeA, combined with cocaine-induced activation of mesocorticolimbic circuitry, powerfully

amplifies the magnitude of incentive salience assigned to cues for the laser-paired cocaine.

This makes that particular cocaine option and its cues become intensely ‘wanted’. Such trans-

formation of laser-paired cocaine value may explain why excitation of CRF-containing neu-

rons in CeA or NAc can create a narrowly-focused motivation for cocaine, yet the laser

remains a relatively weak reinforcer by itself in self-stimulation tasks.

Implications for addiction neuroscience

CRF-containing neurons in CeA and BNST have been implicated in distressing feelings of

drug withdrawal and anxiety-like states [5, 44–46]. Evidence suggests that CRF systems neu-

rons in CeA and BNST also contribute to anxiety and fear learning [24, 28, 37, 40, 47–51].

Such findings have fueled assumptions in neuroscience research that activation of CRF-con-

taining neurons is intrinsically aversive.

Our results support an alternative hypothesis for how activation of CRF-containing neu-

rons, at least in NAc and CeA, can promote pursuit and consumption of cocaine and related

rewards via a positively-valenced motivation process, such as incentive salience or ‘wanting’.

This incentive motivation hypothesis provides an alternative way of understanding how CRF-

containing neurons activated by stress may increase in pursuit and consumption of rewards.

Our findings add to the growing body of literature supporting a range of flexibly-valenced

motivational roles for CRF systems, capable of initiating bio-behavioral responses to both posi-

tive and negative stimuli [10, 11, 15–17, 42, 52].

Valence flexibility of CRF neurons?

We acknowledge that the motivational valence of CRF neuronal excitation in NAc or CeA

might conceivably flip in other circumstances from a positively-valenced incentive motivation

role to the opposite negatively-valenced or aversive role that has been traditionally posited. For

example, diverse aversive states including withdrawal following chronic drug use, such as
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those modeled by long-access procedures for cocaine-self administration, might conceivably

flip CeA or NAc CRF-containing neurons to an aversive role, or endow BNST CRF-containing

neurons with a novel ability to increase cocaine pursuit [7, 8, 53, 54]. Such valence reversals

might occur under diverse motivational conditions, as CRF neural signals can flexibly initiate

bio-behavioral responses to both positive incentives and negative stressors [52].

Conclusion

Understanding the role of CRF-containing neurons in motivation will be integral to under-

standing potential contributions to mood disorders and addictive relapse. Our results suggest

that CRF-containing neurons in either NAc shell or CeA can cause intense pursuit and

increased consumption of cocaine through a positively-valenced motivational process, such as

incentive salience or ‘wanting’ for drugs. This is similar to incentive roles of CRF-containing

neurons in NAc and CeA that promote sucrose pursuit [14, 16, 19], and is compatible with

suggestions that CRF system activation promotes over-eating of “comfort foods” primarily via

positively-valenced processes that increase ‘wanting’ for those foods [55].

Incentive roles of CRF-containing neurons may help explain why relapse in drug pursuit

and addiction and binge eating can be triggered by positively-valenced stressors, such as form-

ing a new romantic relationship or winning the lottery [56–61]. Incentive motivation roles of

CRF-containing neurons may also help explain why vulnerability to relapse in addiction per-

sists long after aversive withdrawal feelings and other life distresses subside [62, 63]. Ulti-

mately, the multiple motivational roles of CRF neural systems may be crucial to understanding

the brain mechanisms underlying mood disorders as well as addictive relapse and substance

abuse [16].
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