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Abstract

Vegetation dynamics are affected not only by the concurrent climate, but also by memory-induced 

lagged responses. For example, favorable climate in the past could stimulate vegetation growth to 

surpass the ecosystem carrying capacity, leaving an ecosystem vulnerable to climate stresses. 

This phenomenon, known as structural overshoot, could potentially contribute to worldwide 

drought stress and forest mortality, but the magnitude of the impact is poorly known due to 

the dynamic nature of overshoot and complex influencing timescales. Here we use a dynamic 

statistical learning approach to identify and characterize ecosystem structural overshoot globally, 

and quantify the associated drought impacts. We find that structural overshoot contributed to 

around 11% of drought events during 1981–2015, and is often associated with compound extreme 

drought and heat, causing faster vegetation declines and greater drought impacts compared to 

non-overshoot related droughts. The fraction of droughts related to overshoot is strongly related 

to mean annual temperature, with biodiversity, aridity, and land cover as secondary factors. These 

results highlight the large role vegetation dynamics play in drought development, and suggest 

that soil water depletion due to warming-induced future increases in vegetation could cause more 

frequent and stronger overshoot droughts.
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Introduction

Droughts have a large impact on global terrestrial ecosystems and the associated carbon 

and water cycles1–4. The impact of drought is dependent not only on the direct effects of 

concurrent climate anomalies5,6, but also on the ecosystem state, which itself is conditioned 

by antecedent climate7,8. For example, a period that is favorable to growth but followed 

by a water deficit can first stimulate biomass accumulation, and as a result, further deplete 

soil moisture and increase drought risks. This sequence of events represents a class of 

state dynamics known as structural overshoot9, where an ecosystem temporarily exceeds the 

time-varying, climatologically-defined baseline carrying capacity and in the process depletes 

potentially limiting water resources. Several previous studies examined the lagged impact 

of structural overshoot for specific drought events and regions7,8,10,11. Understanding of the 

global occurrence and impact of structural overshoot is limited, however, as ecosystem states 

are conditioned across multiple different time scales, and both the timescales of importance 

and the ecosystem states change over time. This lack of a global understanding of overshoot 

constitutes a large uncertainty in understanding drought development and its impacts on 

vegetation dynamics as well as the global carbon and water cycles.

Here, we use a Bayesian dynamic linear model (DLM) approach12, in combination 

with long-term (1981–2015) satellite observations, high-resolution climate data, and a 

random forest analysis, to characterize droughts related to structural overshoot (referred 

to throughout as overshoot droughts) across global ecosystems and examine their impact 

on terrestrial vegetation-water relations (Extended Data Fig. 1,2, Methods). In this study, 

we characterize drought events using a combination of climatological drought index and 

associated vegetation greenness decline represented by normalized difference vegetation 

index (NDVI13, Methods). While structural overshoot has been examined in the context 

of regional forest mortality9, here we consider a broader range of global ecosystems and 

focus on the negative lagged impacts on vegetation (Methods). The DLM method allows for 

the decomposition of satellite-retrieved NDVI time series, into multiple components (trend, 

seasonal, and de-seasonalized and detrended anomalies) through a Kalman filtering process 

(see Methods). The anomaly components consist of the direct drought stress, temperature, 

and direct and lagged effects from past vegetation anomalies at different time scales (sub­

seasonal, seasonal, intra-annual and inter-annual). This approach allows for the separation 

of the timescales of importance for all drought events globally, which enables us to robustly 

identify and characterize the role of structural overshoot in the timing, speed, frequency and 

impact of drought (see Methods, Supplementary Text 1–4).

Spatial patterns of overshoot droughts

Our approach quantifies the spatial distribution of the number of droughts and those related 

to structural overshoot during 1981–2015 (Fig. 1a,b). Globally, 11.2% of the drought events 

are overshoot related, and lagged adverse effects explain 34.7% of the NDVI declines for 

these overshoot drought events. The number of overshoot droughts generally follows the 

spatial distribution of droughts (r=0.45, p<0.001, t-test), with exceptions in southern central 

US, northeast Brazil and Australia, where overshoot occurrence relative to drought numbers 

is low. Spatial autocorrelation does not show strong influence on this covariation and is 
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therefore not considered further in our analysis (Supplementary Text 5, Supplementary Fig. 

2). The fraction of drought events related to overshoot shows a clear latitudinal pattern, 

with a decreasing trend from north to south (Fig. 1c, Supplementary Fig. 3). Overshoot 

droughts are influenced by lagged adverse effects at different time scales (Extended Data 

Fig. 3), with a strong dependence on growing season length (Extended Data Fig. 4). The 

sub-seasonal scale overshoot component contributes most to the global overshoot events, 

especially in northern high latitudes10. Lagged adverse effects from the sub-seasonal scale 

also have the largest impact on NDVI decline (51.8%), which also dominates hotspot regions 

such as boreal ecosystems in Alaska and Siberia, and agroecosystems in North China Plain 

and northern India (Fig. 1d,e, Extended Data Fig. 3).

Controlling factors and underlying mechanisms

To understand which factors contribute to the number and impact of overshoot droughts, we 

built random forest models using various climate variables and ecosystem characteristics to 

predict the spatial pattern of the fraction of drought related to overshoot and the fraction 

of lagged adverse effects to total drought impact (see Methods). The resulting models can 

explain 63.9% and 50.5% of the spatial out-of-bag variance for the fraction of overshoot 

number and impact, respectively. Based on these models, we obtain the rank importance 

of variables that drive these spatial patterns, and the partial dependence of the fraction of 

overshoot number and impact along each variable (Fig. 2).

Overshoot droughts are more prevalent in stressed or seasonally stressed environments, 

usually with a shorter growing season (Fig. 2k). Positive climate anomalies in stressed 

environments can act as a stimulus for vegetation growth, allowing temporary exceedance 

of climatologically-defined ecosystem carrying capacity. Temperature stress, in comparison 

to water stress, can lead to more frequent and greater impacts of overshoot drought 

events (Fig. 2a,h). In cold regions (mean annual temperature less than 0°C), temperature 

is the primary limiting factor for both vegetation phenology and productivity during the 

entire growing seasons14,15. A positive temperature anomaly in the early growing season 

exponentially increases water consumption16, potentially leading to higher drought risk and 

stronger lagged effect. In comparison, mean annual precipitation plays a less important 

role. This is likely due to the fact that soil water is mostly low and has limited buffering 

capacity in dry regions, ecosystems are therefore more responsive to concurrent precipitation 

anomalies and relatively less dependent on the lagged effect17. As expected, the number and 

impact of overshoot drought events also increases with larger interannual variations of mean 

annual temperature (MAT) but much less with precipitation (Fig. 2b,f). Increases in climate 

variability not only increase the chances of a more favorable environment for plant growth 

in earlier periods, but also induce more frequent extreme heat and dry anomalies, leading to 

water deficit and potential drought.

Ecosystem biodiversity also plays a critical role in regulating overshoot drought occurrence. 

The number and impact of overshoot droughts decrease when the number of native 

species is greater than 500 (Fig. 2d). Low biodiversity is associated with synchronous 

plant behavior (e.g., expansive growth when the environment is favorable, and soil water 

depletion at similar rooting depths18). In addition, ecosystems with low biodiversity are 
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expected to have weaker drought resistance, and thus lagged adverse effects tend to have 

a greater proportional impact19. Vegetation coverage, represented by mean annual NDVI, 

also positively affects the number of overshoot drought events (Fig. 2g). Higher vegetation 

coverage increases the plants’ role in linking the energy and water fluxes between soils 

and the atmosphere20. Anomalies in high vegetation coverage ecosystems would therefore 

have a greater impact on soil water and are more likely to induce a lagged adverse effect. 

Land cover type also plays an important role, with a higher number and impact of overshoot 

drought events for boreal forest and woody savannas (Fig. 2e).

In contrast, soil characteristics (clay fraction), terrestrial water decay time estimated 

from Gravity Recovery and Climate Experiment satellites (GRACEτ, Methods), and 

asynchronicity between peak temperature and precipitation show little role in determining 

the number and impact of overshoot drought events. We also test the robustness of these 

results by predicting the absolute overshoot drought number and lagged effect instead 

of their fractions with two other random forest models, and find similar environmental 

dependences (see Methods, Supplementary Fig. 4).

Overshoot and compound drought and heat

We further analyze the temporal occurrence of overshoot droughts. In the northern mid- to 

high-latitudes (>30°N), 51.2% overshoot drought events happen in July and August (Fig. 

3a). For the Southern Hemisphere, two peaks can be observed in March and September, 

which is likely due to the double growing season experienced in many water-limited regions. 

Similar patterns can also be observed in parts of dry Mediterranean climate regions in the 

Northern Hemisphere, where overshoot drought may happen in either peak growing season. 

We also compare the start date for overshoot drought and non-overshoot droughts. To make 

these dates comparable across space, they are normalized by the peak growing season, 

and the results are summarized in four aridity regions (Fig. 3b–e). For dryland regions, 

non-overshoot droughts are more likely to happen before the peak growing season, while 

overshoot droughts are more likely to happen in the mid- to late growing season (Fig. 3b–

c). These significant differences in drought timing (P<0.0001, paired two-sided t-test) also 

suggests that overshoot droughts are more likely to happen in warmer months, especially 

for semi-arid and dry sub-humid regions (Fig. 3f–i, Extended Data Fig. 5a). Considering the 

positive temperature anomalies during the drought period, overshoot droughts tend to have 

higher risk of extreme temperature. This compound drought and heat can be detrimental 

to ecosystem functioning and related ecosystem services, particularly for the mid-latitude 

semi-arid to dry sub-humid regions21–23, which are also major crop production areas and 

densely populated.

Overshoot and the development speed of drought impacts

Globally, overshoot droughts are associated with a faster NDVI decline than non-overshoot 

droughts (P<0.0001, paired two-sided t-test) (Fig. 4). Similar patterns can also be found if 

comparing the maximum NDVI decrease speed or the NDVI changes at the zero-crossing 

month (Extended Data Fig. 6). This faster decrease in NDVI is often accompanied with 

larger differences in NDVI anomalies between the start and end of the drought development 
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period (Fig. 4b–g). Using soil moisture data from ERA5 reanalysis24 and a machine learning 

approach25, we also find faster soil moisture decline for overshoot droughts than non­

overshoot droughts (P<0.0001, paired two-sided t-test) (Extended Data Fig. 7). However, 

the differences in soil moisture changes are much smaller than the differences in vegetation 

declines (P<0.0001, unpaired two-sided t-test), potentially because the interannual variations 

of vegetation is not used as a forcing in these datasets, and their effects on soil moisture may 

thus be underestimated.

Due to the rapid onset and intensification of vegetation deterioration, the majority of 

overshoot droughts we identify can also be classified as flash droughts26,27. Flash droughts 

occur most frequently in mid latitude semi-arid or dry sub-humid regions where overshoot 

impacts are dominated by the sub-seasonal and seasonal lagged effects (Extended Data Fig. 

3). Most overshoot droughts develop very quickly (mostly 2–3 months), and are on average 

1–2 months shorter than non-overshoot droughts in these semi-arid regions (Extended Data 

Fig. 8).

In addition, overshoot droughts usually lead to stronger drought impacts for dry sub-humid 

and humid regions, as shown by a more negative NDVI anomaly compared to the 

standardized precipitation evapotranspiration index (SPEI) anomaly (Extended Data Fig. 

9). SPEI is a widely used drought severity indicator which calculates the standardized 

surface water balance anomaly from meteorological variables. To understand how overshoot 

modulates the drought severity (assessed by minimum SPEI) and impact (assessed by 

minimum of standardized NDVI, NDVIz) relationship, we build three nested linear models 

to predict NDVIz anomalies from SPEI values during droughts. The first model does not 

consider overshoot effect. The second considers the effect on intercepts only, and the third 

considers the effect on both the regression slopes and intercepts (Methods, Extended Data 

Fig. 10). The results from this model comparison can be summarized into five types of 

severity-impact responses (see Methods, Fig. 5b). For about a quarter of the area where the 

three models are evaluated, overshoot exacerbates drought impact to the same degree across 

different drought severities (Type 1 in Fig. 5). The nested models predict an additional 

NDVIz decline of −0.58±0.30. In another quarter of area, overshoot leads to stronger impact 

when drought severity is low, causing a decrease of NDVIz by −0.07±0.28 (Type 2 in Fig. 5). 

By contrast, only 3% of area indicates overshoot has stronger impact when drought severity 

is high, with an additional NDVIz decline by −0.27±0.24 (Type 3 in Fig. 5). Overshoot 

alleviates the drought impact for only 4% of the area (Type 4 in Fig. 5). This may be due to a 

mismatch in timing when drought or overshoot impact reach their maximum.

Our analysis, based on a dynamic statistical learning approach applied to long-term satellite 

vegetation records, provides a global understanding of the role of vegetation structural 

overshoot in the timing, speed and impact of drought events. Overshoot droughts are found 

to develop faster and be more likely to compound with extreme heat than non-overshoot 

droughts, exacerbating the drought impact on ecosystem function and the associated societal 

services. Overshoot droughts are also expected to be associated with increased competition, 

changes in species composition and functional groups. It is not possible however to 

analyze these ecological processes at global scales in our study and they therefore warrant 

further analysis. Soil water balance may be the key to link the lagged adverse effects, 
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but land-atmosphere feedbacks28,29 and other processes such as plant phenology30,31, and 

fire disturbance play potentially important roles. Current drought indices, including those 

relying on potential evapotranspiration, do not consider vegetation status in calculating 

the water balance, may therefore underestimate drought severity when structural overshoot 

happens. Global climate change can promote faster vegetation growth32 and soil water 

depletion33, together with more frequent and severe climate extremes, potentially increasing 

the overshoot drought occurrence and impact. Continuous satellite monitoring and improved 

model simulation are needed to help better understand the changes of overshoot and improve 

the prediction of future drought impacts.

Methods

GIMMS NDVI and Climate datasets

We use the normalized difference vegetation index (NDVI) from Global Inventory 

Monitoring and Modeling System (GIMMS) 3gv1 (1981–2015, ref13) which provides 

long-term records for vegetation activity. NDVI is a remotely sensed indicator based on 

the unique spectral characteristics of vegetation and has been demonstrated to be strongly 

related to ecosystem leaf area index and photosynthetic capacity34–36. It can therefore 

represent the aggregated ecosystem response to climatic anomalies and drought stress. This 

dataset is first quality checked and aggregated to monthly 0.5° × 0.5° resolution to match 

the resolution of other datasets and to reduce the uncertainty. In many northern regions, 

the quality flags are not always effective, especially when mixed snow pixels exist. Since 

the DLM is sensitive to these de-seasonalized anomalies, and drought and water limitations 

are not likely to happen during these cold and snow-covered periods, we therefore use an 

additional temperature threshold to filter out these potential contaminated pixels: if the mean 

air temperature for a specific month is below 0 °C, the land surface may be covered by snow 

and the corresponding NDVI is set to NA.

We use both precipitation and temperature as environmental variables in the DLM. The 

precipitation dataset is from the Global Precipitation Climatology Centre (GPCC)37. This 

dataset provides monthly precipitation at a 0.5° × 0.5° spatial resolution. The dataset 

is generated using a spatial statistical method based on observations from global gauge 

network which extends beyond Global Historical Climatology Network (GHCN). Compared 

to other precipitation datasets (for example, the Climatic Research Unit gridded Time Series 

(CRU TS4.04)), this dataset uses more stations and is often considered to be a more reliable 

estimate of precipitation at the global scale39. We use the monthly air temperature dataset 

from CRU TS 4.04 (ref38). CRU generates gridded climate dataset from weather station data 

and a spatial statistical method. We also use a standardized precipitation evapotranspiration 

index (SPEI40) dataset for drought identification and drought severity assessment. SPEI is 

a widely used climatological drought index that calculates the standardized water balance 

anomalies (precipitation minus potential evapotranspiration) at different time scales. It is 

therefore an optimal index to evaluate the drought severity-impact relationship and the role 

overshoot plays in this process. We use a 3-month SPEI dataset based on the CRU dataset so 

that it can capture the short-term water deficit.
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Bayesian multivariate dynamic linear model (DLM)

The multivariate dynamic linear model is a type of linear model for time series analysis12. 

Compared to a multivariate regression model, it allows the regression coefficients to change 

over time, which can better capture the time-varying relationship between vegetation status 

in the past and at present. This method was introduced by Harrison and Stevens41 and well 

documented by West and Harrison12. In this study, we modify the model structure used 

by Liu et al. (ref42), by further considering the lagged effect of vegetation anomalies from 

previous months along with concurrent climate anomalies. For each pixel, the DLM predicts 

the time series of the target variable (yt, satellite retrieved NDVI) using an observation 

equation (Eq. 1) and a state evolution equation (Eq. 2):

yt = Ft
Tθt + υt (1)

θt = Gθt − 1 + wt (2)

where yt is the observed NDVI at each month t after removing the mean. Ft is a 

vector consisting of three components, a constant for local mean and trend (Ftrend = 

[1,0]), a constant for three seasonal components (Fseas = [1,0,1,0,1,0]), and a regression 

component including the temperature, precipitation and NDVI anomalies (δ) from previous 

months which change with time t (Freg,t = [δTempt, δPrect−1,t−3, δNDVIt−1, δNDVIt−2,t−3, 

δNDVIt−4,t−6, δNDVIt−7,t−12, δNDVIt−13,t−24]).

The subscript of each variable indicates the starting and ending months used to calculate the 

mean value, using the de-seasonalized and detrended temperature, precipitation and NDVI. 

We do not consider radiation in this default model setup because the interannual variations 

of radiation is small and can have strong correlation with temperature or precipitation at 

monthly scale. θt is the state vector at time t, which also consists of three components: 

coefficients representing local mean and trend, coefficients representing seasonal dynamic 

and regression coefficients for the previous months’ NDVI, as well as environmental factors 

(previous months precipitation, current month temperature). υt is the state evolution noise at 

time t assuming it has a zero mean with a Gaussian distribution. G is a known state evolution 

matrix that is block diagonally connected with three small matrices, corresponding to the 

local mean and trend component, the seasonal component, and the regression component. 

wt is the state evolution noise at time t, following a zero mean multivariate Gaussian 

distribution. Starting with non-informative priors of θ0 and noises of υt and wt, we estimate 

the posterior distribution of θt using the forward filtering method. This method uses Kalman 

Filtering to get the posterior of yt, and takes a step further to back propagate the difference 

between prior and posterior estimates of yt to get the posterior estimates of θt. In this study, 

we focus on the posterior estimates of the regression coefficients for the previous months’ 

NDVI, named DLM sensitivities. These sensitivities, together with their corresponding 

NDVI anomalies (contributions to the predicted current month NDVI from each of the 

previous months’ NDVI, e.g., δNDVIt−2,t−3 × θt) were used to identify overshoot droughts. 

Since the DLM uses a Kalman Filter at each time step, in order to get a reliable prediction of 

the coefficient, especially in the early study period, we use a “spin-up” period by recycling 
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the first five years (1981–1986) of satellite NDVI and climate observations two times prior 

to the start of the dataset. It should be noted that although the model is a class of “linear 

models”, its sensitivities change through time, and thus can capture temporal non-linearity. 

A detailed description of this method can be found in the Supplementary Text 1. In addition 

to this “default model” setup which considers both temperature and precipitation in the 

regression component, we also test a “reduced model” which does not consider temperature, 

and an “extended model” that considers precipitation, temperature, and radiation. A detailed 

description on these experimental setups together with other sensitivity analysis can be 

found in Supplementary Text 2.

Drought and overshoot identification

We use a combination of SPEI and NDVI together with outputs from the DLM to identify 

drought events. Both indices are directly calculated from observations and represent the 

climatological drought severity and the drought impact on vegetation, respectively. After 

the NDVI time series for each pixel is decomposed by the DLM, we identify all negative 

anomalies from the de-seasonalized and detrended NDVI (original NDVI time series minus 

trend and seasonal components obtained from DLM decomposition). For each consecutive 

negative NDVI anomaly time window, a minimum value is first retrieved. A drought starts 

when the NDVI anomaly turns negative and ends when the NDVI anomaly recovers above 

70% of the minimum value. Three criteria need to be met in order to be considered as a 

drought event: (1) drought should be at least two months long and the minimum NDVI 

anomaly should be smaller (more negative) than 10% of the mean NDVI in order to exclude 

events due to random noise in NDVI; (2) the average SPEI during the corresponding 

period is below −0.5. It should be noted that we used a relaxed threshold for SPEI 

(“−0.5” compared to commonly used “−1”), since overshoot droughts may happen with 

only moderate precipitation decline; (3) the temperature component during the drought 

period should be greater than the precipitation component (less negative) or the temperature 

sensitivity (coefficient for δTempt) should be negative. This is to exclude the NDVI decline 

due to low temperature rather than low soil water.

Overshoot in this study is defined as vegetation’s temporary exceedance of the ecosystem 

carrying capacity, which leads to increased soil water consumption and causes a lagged 

adverse effect on latter vegetation activity due to water stress. It should be noted that 

because of the seasonal dynamics of vegetation and climatic factors, the carrying capacity, 

i.e., the maximum plant canopy that can be supported, is also time-varying. Soil water 

dynamics contain the overshoot information but cannot be directly observed, so the approach 

we use to identify structural overshoot is to examine the lagged adverse linkage between 

de-seasonalized anomalies of NDVI.

In practice, after drought events are identified for each pixel, we calculate the average NDVI 

anomaly and DLM sensitivity during each drought period for each of the four previous­

month NDVI components, i.e., previous 2–3 months, previous 4–6 months, previous 7–12 

months, and previous 13–24 months (Extended Data Fig. 1). For each drought event, if 

any of the four previous-month NDVI components have a positive anomaly associated with 

a significantly negative (CI=0.9) sensitivity coefficient, that is, the total contribution (the 
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product of NDVI anomaly and sensitivity) to the prediction of current NDVI is negative, 

this NDVI component is regarded as an overshoot component. For a drought event, if 

the summation of all overshoot component contributions is greater than the non-overshoot 

contributions by absolute value, and the minimum of the overshoot component is less than 

−0.01, this drought event is considered as an overshoot drought event. Since we use several 

arbitrary thresholds in the drought and overshoot drought identification, we also test the 

uncertainties caused by the model structure and thresholds chosen. The results show that 

different models and thresholds can affect the absolute number of droughts and overshoot 

droughts, however, the spatial patterns are quite similar and the fraction of overshoot 

drought numbers to total drought numbers is conservative, ranging from 9.93% to 18.49%, 

with a median value of 11.22%. Detailed information is provided in Supplementary Text 

2, Supplementary Table 1 and Supplementary Fig. 5–11. In addition to GIMMS NDVI, we 

also use NDVI from the Moderate Resolution Image Spectrometer (MODIS) MOD13C2 and 

identify overshoot during 2000–2018. The resulting spatial patterns are similar with those 

obtained using GIMMS NDVI (Supplementary Fig. 12).

To understand the differences in development speed of drought impact between overshoot 

and non-overshoot drought, we first define a drought development period which begins with 

the monotonical decrease of the de-seasonalized detrended NDVI anomalies and ends when 

it reaches its minimum within a drought event. Within each drought development period, we 

first calculate the speed of changes as the differences in de-seasonalized detrended NDVI 

anomalies between months. We compare three metrics to characterize the development 

speed of drought impact: the speed of changes at its maximum (75 percentile), median 

(50 percentile) and at the zero-crossing month (i.e., when the NDVI anomalies shift from 

positive to negative).

Timing of overshoot

We identify the starting month for each drought event to examine drought timing. For 

each pixel, the average starting months for overshoot and non-overshoot drought events are 

calculated separately. We fit a probability density function (PDF) of the overshoot drought 

starting date for each pixel and determined the months when the probability reaches its 

maximum. Since December and January are also nearby months but the PDF cannot be 

correctly fitted under this condition, we shift the starting date by 3- 6- 9- months and fitted 

three other PDFs. The final starting date is determined by the month that corresponds to 

the maximum probability across all four PDFs. If the maximum probabilities for the four 

PDFs are the same, it indicates that the starting dates of overshoot drought do not have 

any tendency and this pixel is not used. This only happens for a very small proportion of 

the total area (~0.55%). To make these timings comparable across space, we normalize the 

starting months of each drought event by the peak growing season. These differences are 

then rescaled to −6 to +6 months.

Drought impact assessment

Drought impact on vegetation is often related to meteorological water deficit, however, this 

relationship may be altered when overshoot happens. We use three nested models to assess 

the overshoot impact on this relationship:
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NDV Iz = a ⋅ SPEI3 + b (3)

NDV Iz = a ⋅ SPEI3 + b ⋅ oversℎoot + c (4)

NDV Iz = a + c ⋅ oversℎoot ⋅ SPEI3 + b ⋅ oversℎoot + d (5)

The first model (null model) only considers water deficit as indicated by 3-month SPEI. 

The second model assumes that when overshoot happens, it will change the intercept of the 

regression. The third model assumes that when overshoot happens, both the intercept and 

the sensitivity of SPEI will change. Since there is a limited number of overshoot drought 

events for each pixel, we evaluate these three models on 2.5° × 2.5° windows, so that 

each window has at least 10 overshoot droughts and 10 non-overshoot droughts during the 

study period. To make NDVI declines comparable within each window, the NDVI declines 

are standardized by the standard deviation of de-seasonalized detrended anomalies (NDVIz, 

z-score). The best model is selected based on an ANOVA comparison, second and third 

models are only selected when they are significantly better than the first model (p<0.1).

Based on the comparison of these three models, we categorize overshoot impact into 

five groups (Fig. 5). (1) overshoot has no effect on the NDVI-SPEI relationship. This is 

considered when the first model is chosen; (2) overshoot decreases the intercept of the NDVI 

response to SPEI, but the NDVI response to SPEI remain the same. This is considered 

when the second model is chosen and coefficient b is negative; (3) overshoot decreases the 

intercept of the NDVI response to SPEI, but the sensitivity of NDVI to SPEI is reduced. This 

is considered when the third model is chosen and both coefficient b and c are negative. (4) 

overshoot increases the intercept of the NDVI response to SPEI, and the sensitivity of NDVI 

to SPEI is increased. This is considered when the third model is chosen and both coefficient 

b and c are positive. (5) overshoot alleviates the drought impact. This is considered when all 

other cases happen. To assess the overshoot impact on drought, we predict the effect related 

to overshoot based on the best model selected and average SPEI values for all overshoot 

drought events within this 2.5° ×2.5° window.

Randomized experiment

We set up a randomized experiment to test if the DLM can effectively capture the linkages 

between the previous positive NDVI anomalies and current NDVI decline, that is, the 

overshoot. It has the following four steps:

1. Twelve months are grouped into 6 groups, with each group have two consecutive 

months (e.g., January and February, March and April).

2. NDVI, temperature, and 3-month precipitation and SPEI for each group are 

shuffled together across years, so that the NDVI for each month still corresponds 

to the temperature and precipitation for that month, and their relative positions 

within a year remain unchanged, e.g., July and August from 2012 may be 

swapped to July and August, 1998, following May and June from 2007.
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3. Using this randomized dataset, we again run the DLM model and identified the 

drought and overshoot drought events for 1981–2015.

4. This process is repeated 5 times with different random seed for the step (2). 

After the drought and overshoot drought events are identified, we swap them 

back to their original position so that they are comparable between randomized 

experiments. If three out of five experiments identify any two months as a 

drought event, this event is considered as a valid drought event. If three out of 

five experiments identify a drought event as an overshoot drought event, this 

event is considered as a valid overshoot drought event.

We swap the months by 2-month group sizes because during the drought identification 

step, a negative anomaly should be at least two-month long so that it can be considered 

as a potential drought event. This step should have limited effect on drought identification 

since droughts are identified based on NDVI with concurrent climate anomalies which are 

swapped together. In the randomized experiment, however, this random swap is likely to 

break up most of the lagged effects.

We also test if the lagged effect can be partially retained if we choose larger group sizes. 

To do so, instead of swapping the NDVI by two-month groups in step (1), we use larger 

group sizes of 6-month, and 24-month during the swap. For example, March to August in 

2012 will be moved together to March to August in 1999 (6-month group) or September 

2010 to August 2012 will be moved together to September 1982 to August 1984 (24-month 

group). By using larger groups, partial lagged effects may be retained, for example, the 

lagged effects at sub-seasonal scale may be kept using the 6-month group size, and the effect 

at intra-annual scale may be kept if we use 24-month group size.

We find that when using a group size of two months, the spatial pattern of drought numbers 

does not change much, while most of the overshoot droughts are no longer identified. With 

the increase of the group sizes, more overshoot drought events are identified, and the spatial 

patterns become similar to the one we obtained without randomization. This suggests the 

DLM can effectively capture the lagged effect and help identify overshoot drought events. 

More detailed information is provided in Supplementary Text 3 and Supplementary Fig. 

14–16.

Synthetic data experiment

We also generate a synthetic dataset to test if overshoot drought events can be effectively 

identified using our methodology. To do this, we first build a simple vegetation model that 

considers both the direct effect of environment and the lagged effect of previous months 

NDVI through soil water dynamics (Supplementary Text 4). We focus on the 2012 overshoot 

drought in central US8. Using this simple model, we set up four different scenarios to 

simulate vegetation dynamics, and applied the overshoot identification algorithm used in this 

study:

1. Control run, spring warming and low summer precipitation

2. No spring warming, low summer precipitation
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3. Spring warming, normal summer precipitation

4. Spring warming, abundant summer precipitation but with other disturbances

These four scenarios differ in their environmental drivers and, consequently, NDVI 

anomalies simulated by the simple model. Based on the synthetic data, only Scenario 1 

is considered as an overshoot drought event, while for the other three, they either do not 

exhibit a lagged adverse effect or the NDVI decline is not caused by drought. It should 

be noted that in the real world, Scenario 3 may develop into overshoot drought for certain 

ecosystems. Our objective here is not to verify the performance of the simple model, but to 

test the effectiveness of the overshoot identification algorithm based on these synthetic data. 

Our overshoot identification algorithm correctly identifies the overshoot drought in Scenario 

1, and correctly identifies the other scenarios as non-overshoot droughts (Supplementary 

Fig. 17–19). This experiment demonstrates the effectiveness of our algorithm in identifying 

the overshoot drought. More detailed information is provided in Supplementary Text 4 and 

Supplementary Fig. 17–19.

Machine learning models to predict the numbers and impacts of overshoot drought events

We use two random forest algorithms with 13 independent variables each to predict the 

fraction of drought events related to overshoot and the fraction of lagged effect to the 

total impacts of overshoot droughts, respectively. The 13 shared variables include climate 

variables, e.g., mean annual temperature (MAT), interannual variation of MAT, mean 

precipitation, interannual variation of precipitation, asynchronicity between the months of 

maximum temperature and precipitation; ecosystem characteristics, including biodiversity, 

i.e., number of native species within a grid (Data available from http://ecotope.org/

anthromes/biodiversity/plants/data/), mean NDVI, interannual variability of NDVI, length 

of the growing season (from MODIS derived phenology, data available from https://

vip.arizona.edu/); hydroclimate indicators, e.g., aridity index (precipitation over potential 

evapotranspiration), terrestrial water decay time from GRACE (GRACE τ)43; and soil 

characteristic, e.g., the fraction of clay calculated as the average of clay fraction for the 

top layer and the lower layer (data from Regridded Harmonized World Soil Database v1.2, 

https://daac.ornl.gov/SOILS/guides/HWSD.html). The climate variables are all calculated 

using the CRU dataset during 1982–2015. As the contribution of one precipitation event 

to the total water storage decays exponentially over time, GRACEτ describes the time 

length (in days) when the contribution decreases to 1/e (≈ 37%) of its initial value. Drought 

recovery time44 and elevation are also tested in the model, but both showed very little 

contribution (<0.001) and are not used in the analysis. In addition to these two random forest 

models, we also build two other models which directly predict the overshoot numbers and 

lagged impacts, with the total drought number and total NDVI decline during overshoot 

droughts as additional independent variables, respectively.

The random forest is a machine learning algorithm consisting of multiple regression tress 

using bootstrapped samples. In this study, each random forest consists of 500 regression 

trees with a leaf node size no smaller than 5. A regression tree recursively splits samples 

into two categories (i.e., branches) using a binary rule at each step (for one independent 

variable), minimizing the variance within each branch. Based on the number of times each 
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variable is used for the split, the variable importance metric can be calculated using the fitted 

random forest and the entire dataset. A larger number of splits indicates the variable is more 

important for the prediction of the response variable. The variable importance factors are 

normalized to unity (summation equals to one) for the two random forests.

The response function of fraction of overshoot drought numbers or impacts to each 

individual factor is shown as a partial dependent plot (PDP). The PDP calculates the 

predicted mean response of the target variable (e.g., number or impact of overshoot drought) 

to one independent variable (e.g., biodiversity), allowing other variables to change in their 

domain. In practice, it can be calculated as:

fxs xs = 1
n ∑

i = 1

n
f xs, xc

i

where fxs is partial dependent function with respect to variable xs, xc are the other variables 

used in the random forest. The superscript “(i)” indicates one incident in the dataset.

Data Availability

The NDVI 3g v1 dataset is available at https://ecocast.arc.nasa.gov/data/pub/gimms/, 

the CRU climate dataset is available at https://crudata.uea.ac.uk/cru/data/hrg/, the GPCC 

precipitation data is available at https://www.dwd.de/EN/ourservices/gpcc/gpcc.html, 

phenology metrics derived from MODIS are available at https://vip.arizona.edu/

viplab_data_explorer.php, the SPEI dataset is available at https://spei.csic.es/database.htmlt, 

the ERA5 soil moisture data is available at https://cds.climate.copernicus.eu/cdsapp#!/

dataset/reanalysis-era5-land-monthly-means, the SoMo.ml soil moisture data is from 

https://www.bgc-jena.mpg.de/geodb/projects/Home.php. The source data for the figures are 

publicly available (https://doi.org/10.6084/m9.figshare.15086535)

Code Availability

The codes for the dynamic linear model and overshoot identification are available at https://

github.com/zhangyaonju/Overshoot/.
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Extended Data

Extended Data Fig. 1. Framework of DLM.
The DLM is composed of five terms, i.e., temperature component, precipitation component, 

direct and lagged vegetation components from previous months, trend component, and 

seasonal components. Numbers in the dashed box indicate the previous months used 

to calculate anomalies for NDVI, precipitation and temperature. The three seasonal 

components are harmonic functions with different frequencies.
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Extended Data Fig. 2. An example of DLM decomposition of the NDVI time series, and the 
identification of an overshoot drought event.
a Satellite retrieved time series of NDVI (black) and DLM predicted NDVI (red) in 

a grassland at Kansas, USA (latitude = 38.05°N, longitude = 96.44°W). b-k, Zoom-in 

comparison of DLM components during 2011–2012. b NDVI anomalies (NDVI minus long­

term mean). c Trend component in DLM. d Three seasonal components. e de-seasonalized 

detrended NDVI observation (black, NDVI observation – trend and seasonal components) 

and predicted by the DLM (red, summation of precipitation, temperature components and 

previous month NDVI components). Pink shade indicates drought period. f Precipitation 

component (solid red line, left axis) and coefficient for precipitation (dashed blue line, right 

axis). g Temperature component (solid red line, left axis) and coefficient for temperature 
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(dashed blue line, right axis). h-l Lagged effects (left-axis) and the corresponding 

coefficients (right-axis) from previous months (h), 2–3 months (sub-seasonal) (i), 4–6 

months (seasonal) (j), 7–12 months (intra-annual) (k), 13–24 months (inter-annual) (l). 
Orange shades indicate the overshoot periods, with hatched ones indicate the overshoot 

components identified by our algorithm. Shaded areas around the blue dashed lines represent 

the 90% confidence interval. Take this 2012 summer drought event as an example, among 

the four lagged effects, previous month 2–3 shows a strong negative sensitivity and a 

negative contribution during the drought period, therefore it is considered as an overshoot 

component, its contribution also dominates all the lagged effects during the drought, this 

drought event is therefore considered as an overshoot drought event.
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Extended Data Fig. 3. Contribution of each component to the overshoot number and impact.
a-d Numbers of overshoot component at different time scales. e-h Impact of overshoot 

component at different time scales. Sub-seasonal indicates lagged effect from previous 

2–3 months, seasonal indicates previous 4–6 months, intra-annual for previous 7–12 and 

inter-annual for previous 13–24 months.

Extended Data Fig. 4. The dominant overshoot component along the growing season length.
a Average number of overshoot component along the growing season length. b Average 

fraction of overshoot component numbers to drought numbers along the growing season 

length.
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Extended Data Fig. 5. Differences in temperature for the overshoot droughts.
a Temperature differences between overshoot and non-overshoot droughts with the 

climatological means. b Average temperature anomalies relative to the climatological means 

for the overshoot droughts. Insets show the histograms of the anomalies.
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Extended Data Fig. 6. Comparisons of the development speed of drought impact between 
overshoot and non-overshoot drought events.
a The development speed is calculated as the 1st quantile value of the NDVI changes during 

the start of the decline to the minimum of the de-seasonalized detrended NDVI anomalies 

for each drought event. b Same as a, but using the change of NDVI at the zero-crossing date 

based on the de-seasonalized detrended NDVI anomalies. Insets show the histogram of the 

development speed.
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Extended Data Fig. 7. Differences in the soil moisture declining speed between overshoot and 
non-overshoot drought events.
a Speed differences from ERA5 reanalysis soil moisture during 1981–2015. b Speed 

differences from a machine learning based soil moisture dataset (SoMo.ml) during 2000–

2018. For ERA5, we used overshoot droughts derived from GIMMS NDVI (Fig. 1); for 

SoMo.ml, we used overshoot droughts derived from MODIS NDVI (Supplementary Fig. 

S12). Both soil moisture datasets were de-seasonalized and detrended first so that we 

only focus on the soil moisture anomalies. Soil moisture were integrated for top 1m for 

ERA5 and 0.5m for SoMo.ml. The pixel-level comparisons were only conducted when 

at least two overshoot and two non-overshoot drought events happened during the study 

period. The insets show the histogram of the differences, with negative values indicating 
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average soil moisture declining speed is greater (more negative) for overshoot drought than 

non-overshoot drought. Units are in m3 m−3 mon−1.

Extended Data Fig. 8. Comparisons between the drought development time and drought lengths.
a average drought development time for overshoot drought event (in months). b Differences 

in drought development time between overshoot and non-overshoot droughts (in months). 

Drought development time is defined as the monotonical decrease period from local 

maximum to local minimum in the de-seasonalized detrended NDVI anomalies. Inset in 

b show the histogram of the differences.

Zhang et al. Page 21

Nat Ecol Evol. Author manuscript; available in PMC 2022 March 30.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



Extended Data Fig. 9. Comparisons of drought severity and impact between overshoot and 
non-overshoot droughts.
a Differences in minimum de-seasonalized detrended NDVI between overshoot and non­

overshoot drought events. c Differences in minimum 3-month SPEI anomalies between 

overshoot and non-overshoot drought events. b and d, similar as a and c, but for differences 

of integrated sum of NDVI and SPEI during drought. Overshoot droughts, compared to 

the non-overshoot ones, usually have weaker drought stress (bottom panel), but relatively 

stronger impact on vegetation (upper panel). Insets show the histogram of differences in 

anomalies.
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Extended Data Fig. 10. Comparison of the coefficients of the nested models that predict drought 
impact as a function of drought severity and overshoot occurrence.
a spatial pattern of the best model being selected (see Methods). b-d coefficients for the 

model that overshoot only affects intercept. e-h coefficients for the model that overshoot 

affects both intercept and regression slope between NDVIz and SPEI. Insets show the 

histogram of the coefficients. Dotted areas indicate that the coefficient is significant at 

p<0.05.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Spatial patterns of the number and impact of overshoot drought events.
a,b number of droughts and number of overshoot droughts during 1981 to 2015. c latitudinal 

distribution of the fraction of drought related to overshoot. The black line indicates the 

total overshoot fraction, colored lines indicate the fraction of overshoot happening at 

sub-seasonal to interannual scales (see Methods). d summation of NDVI declines for the 

overshoot drought events. e NDVI declines caused by the lagged adverse effect (direct 

overshoot impact). f fraction of total overshoot contribution to the NDVI decline (black) 

and fraction for each overshoot component (colored lines). The drought events are identified 

by a combination of climatological drought severity and their impact on vegetation (see 

Methods).
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Fig. 2 |. Response functions for the fraction of drought events related to overshoot and fraction of 
drought impact attributed to overshoot.
a-m, Response functions obtained from the random forest models. The left axis shows the 

fraction of drought events related to overshoot and the right axis shows the fraction of 

lagged adverse impact to total NDVI decline for overshoot droughts (see Methods). The 

numbers in the top-left and top-right corners indicate the order of importance for predicting 

the fraction of occurrence and lagged impacts of overshoot drought, respectively. n-o 
normalized variable importance for predicting occurrence fraction (n) and impact fraction 

(o). MAT: mean annual temperature; IAV: inter-annual variability; LGS: length of growing 

season; GRACEτ: terrestrial water decay time from GRACE. Biodiversity is assessed by 

the number of native species within each grid cell (see Methods). Types of major land 

cover types in e are evergreen needleleaf forest (ENF), evergreen broadleaf forest (EBF), 

deciduous needleleaf forest (DNF), deciduous broadleaf forest (DBF), mixed forest (MF), 

closed shrubland (CSH), open shrubland (OSH), woody savannas (WSA), savannas (SAV), 

grassland (GRA), wetland (WET) and cropland (CRO).
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Fig. 3 |. Temporal distribution and temperature differences for overshoot droughts.
a Months when overshoot droughts are most likely to start. b-e temporal distribution of 

overshoot (red) and non-overshoot (blue) droughts for four aridity regions using peak 

growing season as a reference (b arid, c semi-arid, d dry sub-humid, e humid). Negative 

values indicate the droughts happen before the growing season peaks (in months). f-i 
temperature differences for overshoot droughts for four aridity regions. Red bars indicate 

the mean climatological temperature difference for overshoot (TOD) and non-overshoot 

(TNOD) drought events. Climatological temperature for each month is calculated during 

1981–2015 for each pixel. Orange bars indicate the mean temperature anomaly for overshoot 

droughts after removing the climatological mean (ΔTOD). Error bars indicate the 95% 

confidence interval from bootstrap analysis (n=2000). An asterisk above the bar indicates 

the temperature difference is significantly different from zero (P<0.0001, paired two-sided 

t-test).
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Fig. 4 |. A comparison of the development speed of drought impacts on vegetation between 
overshoot and non-overshoot drought events.
a Differences between mean development speed of drought impacts for all overshoot and 

non-overshoot drought events. The inset in a shows the histogram of these differences, 

with the dashed vertical line showing the mean value. The development speed for each 

drought event is calculated as the median value of the NDVI change rate during the 

drought development period. b-g changes in standardized NDVI anomalies during drought 

development periods for six regions across the globe. The de-seasonalized detrended NDVI 

anomalies are standardized using their standard deviations so that changes can be compared 

across pixels in each region. Month 0 corresponds to the start of the drought event (first 

negative NDVI anomaly). Subsets in each region show the comparison between NDVI 

decline speed during the drought development stage for overshoot (red) and non-overshoot 

(blue) drought events (see Methods). The mean and s.d. are calculated from all drought 

events within the region.
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Fig. 5. NDVI changes due to overshoot.
a The spatial pattern of different types of overshoot effects on modulating drought impact 

based on results from three nested models. White area indicates insufficient samples for 

model fitting (see Methods). b Average NDVI changes due to overshoot. These changes 

are predicted by the nested models together with the mean SPEI values for all overshoot 

droughts. The widths of the bars indicate the areal fractions for each type. Error bars 

indicate the s.d. of spatial variations. The subplots in b show five types of responses of 

how overshoot modifies the NDVI and SPEI relationship. These five types of responses 

differ in their regression intercepts and slopes for overshoot and non-overshoot droughts. 

The x-axis indicates the drought severity (minimum SPEI values during drought) and the 

y-axis indicates the drought impact (minimum standardized NDVI). The direction of arrows 

indicates a decrease for both (stronger drought severity and impact).
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