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Protective Effect of Melatonin Against Mitomycin C-Induced
Genotoxic Damage in Peripheral Blood of Rats
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Mitomycin C (MMC) generates free radicals when metabolized. We investigated the effect of melatonin against MMC-induced
genotoxicity in polychromatic erythrocytes and MMC-induced lipid peroxidation in brain and liver homogenates. Rats (N =
36) were classified into 4 groups: control, melatonin, MMC, and MMC + melatonin. Melatonin and MMC doses of 10 mg/kg
and 2 mg/kg, respectively, were injected intraperitoneally. Peripheral blood samples were collected at 0, 24, 48, 72, and 96
hours posttreatment and homogenates were obtained at 96 hours posttreatment. The number of micronucleated polychromatic
erythrocytes (MN-PCE) per 1000 PCE was used as a genotoxic marker. Malondialdehyde (MDA) plus 4-hydroxyalkenal (4-HDA)
levels were used as an index of lipid peroxidation. The MMC group showed a significant increase in MN-PCE at 24, 48, 72, and
96 hours that was significantly reduced with melatonin begin coadministrated. No significant differences were found in lipid
peroxidation. Our results indicate that MMC-induced genotoxicity can be reduced by melatonin.

Copyright © 2009 S. Ortega-Gutiérrez et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

Quinones are among the most frequently used chemotherapy
drugs in the treatment of cancer [1]. Their antitumor
action has been attributed to DNA crosslinking, leading to
inhibition of DNA synthesis and monoadduct formation
and induction of apoptosis and cell death [2–5]. This DNA
damage, as well as drug-associated adverse events such
as cardiovascular and skin toxicity, may be related to the
formation of reactive oxygen species (ROS) [6, 7].

Mitomycin C (MMC) is a quinone-containing antibiotic
originally isolated from Streptomyces caespitosus in 1958
[8]. MMC has been used to treat a wide variety of solid
tumors. Although current use of MMC is limited, this
agent continues to be a key element in several clinical trials
due to its intrinsic efficacy against many solid tumors and
preferential activity in hypoxic tumoral cells [9]. MMC has
a synergistic effect with radiotherapy via its radiosensitizing
effects, targeting hypoxic cells in radiation resistant tumors

[10, 11]. To achieve its alkylating activity, MMC requires
a bioreductive transformation to form active species that
crosslink DNA [12–14]. Depending on the biotransforma-
tion pathway, metabolism of MMC may generate ROS [15].
When ROS interact with cells and exceed endogenous antiox-
idant systems, there is indiscriminate damage to biological
macromolecules such as nucleic acids, proteins, and lipids
[16].

Melatonin, N-acetyl-5-methoxytryptamine, is the chief
product of the pineal gland in all vertebrates. Retinal light
exposure reduces the amount of serotonin metabolized to
melatonin via neural pathways connecting the retina to the
pineal gland. Thus, pineal production of melatonin increases
at night, and the amount of melatonin secreted into the
plasma is related to the length of exposure to darkness [17].
Melatonin is involved in the modulation of a variety of
endocrine, neural, and immune functions [17, 18]. Recently,
it has been reported to have significant antioxidant activity
[19–22]. Its protection against oxidative damage is enhanced
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by its amphiphilic nature, allowing the melatonin molecule
to readily access all cell compartments, including the nucleus
[23]. Intensive research over the last two decades has shown
the beneficial protective effects of melatonin in a multitude
of pathological processes. Among them, its anticarcinogenic
property has attracted considerable attention [23, 24]. There
is compelling evidence that melatonin may reduce the
growth of established tumors [25].

Since cellular harm produced by MMC is thought to
be at least partially due to a free radical mechanism, and
MMC generates micronuclei-induced genotoxic damage in
animal models [26, 27], the aim of this work was to assess
the genotoxic effect of MMC. These effects were measured as
the number of micronucleated polychromatic erythrocytes
(MN-PCE) from the peripheral blood and the ability of
MMC to induce lipid peroxidation in cerebral and hepatic
homogenates. We also assessed the potential protective
action of melatonin against both micronuclei formation and
lipid peroxidation processes due to MMC.

2. Material and Methods

2.1. Chemicals. Analytical grade agents were obtained
from reputable commercial sources. MMC and melatonin
were purchased from Sigma-Aldrich (Madrid, Spain). The
Bioxytech LPO-586 kit for lipid peroxidation was obtained
from Cayman Chemical (Ann Arbor, MI, USA).

2.2. Animal Care and Randomization. Thirty-six Sprague-
Dawley rats weighing 95–100 g were purchased from Harlan
Iberica (Barcelona, Spain) and received standard food and
water ad libitum. Animal handling and procedures were in
strict accordance with the recommendations of the European
Economic Community Committee (2007/526/CE) for the
care and use of laboratory animals. The experimental proto-
col was approved by Zaragoza’s University Ethical Committee
for Animal Research (reference PI24/09).

After acclimation for two weeks with a 12-hour light/dark
cycle (lights on at 0700 and off at 1900), the rats were divided
to four groups of nine animals in each: control, melatonin,
MMC, and MMC + melatonin. MMC was dissolved in saline
and injected intraperitoneally in a single dose of 2 mg/kg.
Melatonin was dissolved in ethanol and thereafter diluted in
saline (final concentration of ethanol: 1%) and administered
intraperitoneally in a dose of 10 mg/kg. Melatonin treatment
started 24 hours prior to MMC administration and was given
every 8 hours. Control and MMC groups received the dose
intraperitoneally and with an equal volume of ethanol/saline
solution.

2.3. Tissue Preparation. A 5 μL peripheral blood sample was
collected from the tail vein of each rat at 0, 24, 48, 72, and 96
hours after MMC treatment and mounted on two glass slides.
Afterwards, the extensions were fixed with methanol for 10
minutes. Following final blood extractions, at 96 hours, the
animals were decapitated and the brain and liver were quickly
removed, washed in cold saline solution (4◦C), and frozen
below −30◦C until MDA + 4-HDA assay was performed.

2.4. Peripheral Blood Micronucleus Test. Peripheral blood
slides were stained with an acridine orange (AO) fluorescent
staining procedure according to Hayashi et al. [28]. A
volume of 0.24 mmol AO in phosphate buffer (PBS) was
used as the working solution. The methanol-fixed slides
were stained for 3 minutes at room temperature. Each
slide was rinsed twice for three minutes. The excess of
buffer was removed with paper. The slides were mounted
with the same buffer, covered with a 24 × 60 mm cover
slip, and sealed with paraffin. Using coded slides, the
analysis of MN-PCE in each slide was done within 1–2
days by two independent researchers, each analyzing one
thousand cells. Utilizing a fluorescent microscope (Zeiss
III-RS), the number of MN-PCE per 1000 polychromatic
erythrocytes (PCE) was counted and, the ratio of PCE to
normochromatic erythrocytes (PCE/NCE) was calculated
(from 300 erythrocytes). Subsequently, the code was broken
and the counts from each evaluator were averaged. With
the AO fluorescent staining procedure, PCE containing RNA
can be identified by red fluorescence and micronuclei by
yellow-green fluorescence. The number of the MN-PCE was
expressed per 1000 PCE.

2.5. Measurement of MDA and 4-HDA. MDA + 4-HDA
levels were used as an index of oxidative breakdown of
lipids in brain and liver tissues [29]. Briefly, samples
were homogenized (1 : 5) (weight/volume) in 20 mmol
tris(hydroxymethyl) aminomethane buffer (pH 7.4). MDA
+ 4-HDA were determined using the Bioxytech kit. In
the assay, MDA plus 4-HDA reacts with N-methyl-2-
phenylindole, yielding a stable chromophore with a peak
of maximum absorbance at 586 nm. Results were expressed
as nmol of MDA + 4-HDA per mg of protein. Protein
concentrations in the tissue homogenates were assessed by
the Bradford method using bovine serum albumin as a
standard [30].

2.6. Statistical Analysis. Results were expressed as means ±
standard errors. Student’s unpaired data t-test and ANOVA
were used for comparison of the means. A P value < .05 was
considered statistically significant.

3. Results

The results of the micronucleus assay obtained in peripheral
blood are illustrated in Figure 1. The number of MN-PCE
at 24, 48, 72, and 96 hours increased significantly in the
groups exposed to MMC compared to other groups. No
differences were observed in the PCE/NCE ratio (Table 1).
The maximal response was observed 48 hours after MMC
administration. When compared to MMC alone, melatonin
significantly reduced the number of MMC-induced MN-
PCE in peripheral blood at 24 hours (6.6 ± 0.92 versus
4 ± 0.67; P = .038), 48 hours (14.3 ± 4.77 versus 5.9 ± 0.54;
P = .020), 72 hours (7.1 ± 1.35 versus 3 ± 0.41; P = .04),
and 96 hours (3.5 ± 0.65 versus 1 ± 0.24; P = .03) while
no differences were appreciated between controls (1.8± 0.63
versus 1.5± 0.43; P = .6).



Journal of Biomedicine and Biotechnology 3

Table 1: The ratio of polychromatic erythrocytes/normochromatic erythrocytes (PCE/NCE) in rat peripheral blood after 0, 24, 48, 72, and
96 hours in the four treatment groups

Treatment
PCE/NCE ratio (mean ± standard error)

0 hour 24 hours 48 hours 72 hours 96 hours

Control 2.34 ± 0.05 2.13 ± 0.06 2.34 ± 0.02 2.28 ± 0.08 2.22 ± 0.03

aMT 2.35 ± 0.07 2.35 ± 0.07 2.19 ± 0.07 2.23 ± 0.03 2.30 ± 0.03

MMC 2.22 ± 0.06 2.13 ± 0.03 2.11 ± 0.10 2.20 ± 0.06 2.10 ± 0.09

MMC + aMT 1.95 ± 0.04 2.09 ± 0.07 2.05 ± 0.02 2.10 ± 0.07 2.16 ± 0.05

MMC: mitomycin C; aMT: melatonin
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Figure 1: Micronucleated polychromatic erythrocytes (MN-PCE)
per 1000 polychromatic erythrocytes (PCE) in peripheral blood at
0, 24, 48, 72, and 96 hours in four rat groups (n = 9): control,
mitomycin (MMC), melatonin, and MMC + melatonin. Data are
expressed as means± standard error. P < 0.05 versus control (∗) or
versus MMC (#).

No statistically significant differences of MDA + 4-HDA
were found in brain or liver when the averages of each group
were compared (Figure 2). These results indicate the absence
of lipid peroxidation due to MMC in these organs under our
experimental conditions.

4. Discussion

Our results show that in vivo exposure to MMC induces
genotoxicity as indicated by increases in the number of MN-
PCE at 24, 48, 72, and 96 hours posttreatment. This is
in accordance with previous studies demonstrating MMC-
induced micronuclei [26, 31, 32]. Several in vitro and in vivo
studies have shown that different MMC metabolic pathways
result in ROS generation [33–35], and that some MMC
metabolites may form cross-links to adjacent guanines in
DNA [36–39]. Quinones, including MMC, streptonigrin,
and adriamycin, produce ROS as result of one- or two-
electron reduction metabolism [40–42]: firstly, they or their
one-electron reduction product, semiquinones (SQ•−), may
react with glutathione and protein-SH groups through a
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Figure 2: Malondialdehyde (MDA) plus 4-hydroxyalkenals (4-
HDA) concentrations in brain (a) and liver (b) homogenates from
rats in the presence or absence of treatment with mitomycin C
(MMC) or melatonin. Values are mean ± standard error.

nonenzymatic and/or glutathione transferase reaction; sec-
ondly, SQ•− may generate superoxide anion radicals depend-
ing on the equilibrium potential and the pH [43, 44]; thirdly,
SQ•− and superoxide anion radicals can reduce transition-
metal ions, such as iron and copper, and promote the
hydroxyl radical generation via the Fenton reaction [33, 45].
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On the other hand, our results show that, after 96
hours of MMC treatment, this quinone does not induce
lipid peroxidation in homogenates of brain and liver, as
indicated by its inability to modify significantly MDA +
4-HDA concentrations. However, free radicals involve the
micronuclei formation [46] and we have demonstrated that
the antioxidant indoleamine melatonin had a protective
effect against MMC genotoxicity in rat red blood cell
precursors in vivo, suggesting that MMC-induced PCE-
MN elevation may be mediated by free radical generation.
Possible explanations for the lack of lipid peroxidation
induced by MMC could be that the ROS generated as a
consequence of MMC metabolism is insufficiently powerful
to generate or propagate lipid peroxidation or that, after 96
hours, MDA + 4-HDA concentrations were reduced by renal
clearance.

Recent interest has focused on the use of molecules that
may partly reduce the side effects of MMC. Several free
radical scavenger agents, such as amifostine and nitroxide,
prevent the cytotoxic damage mediated by MMC in different
organs [47–49]. In fact, the United States Food and Drug
Administration (FDA) recently approved amifostine for
use as a cytoprotectant in combination with cyclophos-
phamide and cisplatin for the treatment of advanced ovarian
cancer and nonsmall cell lung cancer [50]. Lipoic acid,
another antioxidant, has also demonstrated an in vivo
dose-dependent protective effect against cyclophosphamide-
induced clastogenicity in the peripheral blood and bone
marrow of rats [51]. Herein, we have extended the evidence
of melatonin as a cell protector, since cotreatment of MMC
and melatonin significantly reduced the number of MN-
PCE. This is in accordance with the results of previous studies
showing a significant reduction in micronuclei induction
by different genotoxic molecules in peripheral blood and
bone marrow samples [52, 53]. Moreover, melatonin is
also capable of preventing DNA damage induced by not
only mutagens but also different alkylating agents such
as 7,12-dimethybenz(α)anthracene, cyclophosphamide, and
benzo(α)pyrene [54].

Melatonin protection against DNA damage and oncoge-
nesis is thought to be due in part to its antioxidant properties.
Melatonin, an indoleamine, directly scavenges hydroxyl
radicals, singlet oxygen, and peroxynitrites [19, 55–57],
increases the concentration of endogenous glutathione, and
stimulates the antioxidative enzymes superoxide dismutase
and glutathione peroxidase [58]. Moreover, melatonin has
been shown to prevent iron-induced lipid peroxidation [59].
Thus melatonin may also prevent carcinogenesis [60].

Additionally, once oncogenesis has occurred; melatonin
seems to control cancer growth by means other than its
antioxidant activity. Melatonin might inhibit the uptake and
metabolism of fatty acid signaling molecules that promote
the production of tumoral growth factors [61], reduce
telomerase activity by shortening telomer length [62], and
modulate expression of tumor suppressor genes such as TP53
[63]. More recent studies report that melatonin significantly
suppresses endothelin-1 converting enzyme activity [64].
Endothelin-1 is a potent vasoconstrictor peptide that is
involved in angiogenesis and cancer growth. This peptide

is usually elevated in the plasma of patient with various
solid tumors and acts to protect cancer cells from apoptosis
and promote endothelial and smooth muscle proliferation
[65]. Finally, the antiestrogenic activity of melatonin also
seems to play a role in its ability to decrease proliferation
in some hormone-responsive tumors. Physiological and
pharmacological concentrations of melatonin exhibited a
growth inhibitory effect on MCF-7 human breast cancer cell
lines [66, 67]. In fact, this effect was particularly manifested
in cancer cell lines possessing the estrogen receptor α (ERα);
this effect seems to be mediated by both membrane (MT1)
and nuclear (RZRα) melatonin receptors [68].

5. Conclusion

In conclusion, the data reported herein provide evidence that
melatonin reduces genotoxicity due to MMC, presumably
due to its antioxidant effects. Based on our observations and
previous results showing that oxidative stress participates in
carcinogenesis and the role of melatonin as an anticarcino-
genic agent with broad bioavailability and lack of side effects
[23], it seems reasonable to propose that cotreatment with
melatonin may be beneficial when used in combination with
MMC for the treatment of some cancers.
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melatonin prevents cell damage: effect on gene expression for
antioxidant enzymes,” FASEB Journal, vol. 10, no. 8, pp. 882–
890, 1996.

[59] S. Ortega-Gutiérrez, L. Fuentes-Broto, J. J. Garcı́a, et al.,
“Melatonin reduces protein and lipid oxidative damage
induced by homocysteine in rat brain homogenates,” Journal
of Cellular Biochemistry, vol. 102, no. 3, pp. 729–735, 2007.

[60] P. C. Burcham, “Genotoxic lipid peroxidation products:
their DNA damaging properties and role in formation of
endogenous DNA adducts,” Mutagenesis, vol. 13, no. 3, pp.
287–305, 1998.

[61] D. E. Blask, R. T. Dauchy, L. A. Sauer, and J. A.
Krause, “Melatonin uptake and growth prevention in rat
hepatoma 7288CTC in response to dietary melatonin:
melatonin receptor-mediated inhibition of tumor linoleic
acid metabolism to the growth signaling molecule 13-
hydroxyoctadecadienoic acid and the potential role of phy-
tomelatonin,” Carcinogenesis, vol. 25, no. 6, pp. 951–960, 2004.

[62] M. M. León-Blanco, J. M. Guerrero, R. J. Reiter, J. R. Calvo, and
D. Pozo, “Melatonin inhibits telomerase activity in the MCF-
7 tumor cell line both in vivo and in vitro,” Journal of Pineal
Research, vol. 35, no. 3, pp. 204–211, 2003.

[63] E. Mazzon, E. Esposito, C. Crisafulli, et al., “Melatonin
modulates signal transduction pathways and apoptosis in
experimental colitis,” Journal of Pineal Research, vol. 41, no.
4, pp. 363–373, 2006.
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