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Machine learning model to predict 
hypotension after starting 
continuous renal replacement 
therapy
Min Woo Kang, Seonmi Kim, Yong Chul Kim, Dong Ki Kim, Kook‑Hwan Oh, Kwon Wook Joo, 
Yon Su Kim & Seung Seok Han*

Hypotension after starting continuous renal replacement therapy (CRRT) is associated with worse 
outcomes compared with normotension, but it is difficult to predict because several factors have 
interactive and complex effects on the risk. The present study applied machine learning algorithms to 
develop models to predict hypotension after initiating CRRT. Among 2349 adult patients who started 
CRRT due to acute kidney injury, 70% and 30% were randomly assigned into the training and testing 
sets, respectively. Hypotension was defined as a reduction in mean arterial pressure (MAP) ≥ 20 mmHg 
from the initial value within 6 h. The area under the receiver operating characteristic curves (AUROCs) 
in machine learning models, such as support vector machine (SVM), deep neural network (DNN), 
light gradient boosting machine (LGBM), and extreme gradient boosting machine (XGB) were 
compared with those in disease-severity scores such as the Sequential Organ Failure Assessment 
and Acute Physiology and Chronic Health Evaluation II. The XGB model showed the highest AUROC 
(0.828 [0.796–0.861]), and the DNN and LGBM models followed with AUROCs of 0.822 (0.789–0.856) 
and 0.813 (0.780–0.847), respectively; all machine learning AUROC values were higher than those 
obtained from disease-severity scores (AUROCs < 0.6). Although other definitions of hypotension 
were used such as a reduction of MAP ≥ 30 mmHg or a reduction occurring within 1 h, the AUROCs of 
machine learning models were higher than those of disease-severity scores. Machine learning models 
successfully predict hypotension after starting CRRT and can serve as the basis of systems to predict 
hypotension before starting CRRT.

Continuous renal replacement therapy (CRRT) is an important therapeutic option for severe acute kidney injury 
with unstable vital signs in critically ill patients. Their outcomes are much worse because they frequently have 
several comorbidities and imbalanced fluid and electrolytes1–4. Although CRRT is started at the right time, com-
plications such as hemodynamic and metabolic crises can aggravate patient outcomes5–8. Accordingly, it should 
be determined which patient subset will benefit from CRRT without complication.

To accomplish this, early prediction of the CRRT-related complication risk is needed in clinical practice, 
but it has been inadequately resourced. The precise prediction of complications during CRRT may be difficult 
because several other conditions have interactive and complex effects on the risk1,2. Heterogeneous features of 
patients may also complicate precise prediction. Artificial intelligence may have a role in this difficult assign-
ment, particularly when the numbers of clinical features and their potential interactions rise9. Regarding this 
issue, we previously used machine learning models to predict the mortality risk in patients starting CRRT and 
found that the model performance was better than conventional disease-severity scores such as the Sequential 
Organ Failure Assessment (SOFA), the Acute Physiologic Assessment and Chronic Health Evaluation (APACHE) 
II, and the abbreviated mortality scoring system for acute kidney injury with CRRT (MOSAIC)10. The study 
results may widen the area of machine learning applicability, particularly in the field of critical care using CRRT. 
Nevertheless, there are still a number of issues to be addressed in determining whether machine learning can 
predict other CRRT-related outcomes better than conventional scoring systems.

Hypotension frequently occurs after starting CRRT in up to 40% of cases11,12. This complication may be attrib-
utable to disease severity and sometimes to the labored setting of CRRT, and thus, it may not be easily predicted, 
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as described above13. Neither models have been developed nor have conventional scoring models been tested to 
predict hypotension after CRRT. Herein, we addressed whether machine learning models successfully predicted 
hypotension in a cohort of CRRT in comparison to conventional scoring models.

Results
Baseline characteristics.  The mean age of all patients was 64 ± 15 years old, and 61.4% were male. Their 
systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP) values were 
114 ± 28, 59 ± 16, and 77 ± 17 mmHg, respectively. The target dose of CRRT was 40.7 ± 13.1 ml/kg/hr. Informa-
tion on other features are shown in Table S1. None of the features differed between the training and testing sets.

Association between hypotension and mortality.  The prevalence of hypotension which was defined 
as a reduction in MAP ≥ 20 mmHg and ≥ 30 mmHg within 6 h were 29% (n = 673) and 14% (n = 335), respec-
tively. When the timeframe was within 1 h, the prevalence of a reduction in MAP ≥ 20 mmHg and ≥ 30 mmHg 
were 10% (n = 238) and 4% (n = 97), respectively. Figure S1 shows the nonlinear relationship between the odds 
ratio for ICU mortality and the reduction in MAP after CRRT. The patients with a larger decrease in MAP within 
6 h or 1 h showed higher risk of intensive care unit (ICU) mortality than their counterparts.

Performance of machine learning models.  When the machine learning models for a reduction in 
MAP ≥ 20 mmHg within 6 h were evaluated by area under the receiver operating characteristic curves (AUROCs), 
the extreme gradient boosting machine (XGB) model had the highest value of 0.828 (0.796–0.861), and the deep 
neural network (DNN) model had the second highest with an AUROC of 0.822 (0.789–0.856) (Table 1). All 
of the AUROC values in machine learning models were higher than those obtained from SOFA, APACHE II, 
and MOSAIC scores (Ps < 0.001). When the outcome was defined as a reduction in MAP ≥ 30 mmHg within 
6 h, the best model was the XGB with an AUROC of 0.861 (0.822–0.900). The light gradient boosting machine 
(LGBM) models achieved the next highest AUROC value of 0.845 (0.802–0.888). Even in this outcome, the 
machine learning models demonstrated superior performance to the SOFA, APACHE II, and MOSAIC scores 
(Ps < 0.001). The plots of AUROCs support these results (Fig. 1). When other outcomes were used such as setting 
the timeframe to within 1 h or nadir MAP of 65 or 55 mmHg, the XGB model had the higher AUROC values 
than the SOFA, APACHE II, and MOSAIC scores (Ps < 0.001) (hypotension within 1 h in Table S2; nadir MAP 
in Table S3).

Other performance indices such as accuracy, F1 score, recall, precision, F2 score, specificity, and Matthews 
correlation coefficient (MCC) for predicting decrease in MAP within 6 h are shown in Table 2. For the outcome 
of a reduction in MAP ≥ 20 mmHg, the LGBM model achieved the highest accuracy. The support vector machine 
(SVM) models showed the highest accuracy for predicting a reduction in MAP ≥ 30 mmHg. The XGB models 
showed the highest F1 score and MCC in predicting a reduction in MAP ≥ 20 mmHg and ≥ 30 mmHg among 
machine learning models. All of these indices in machine learning models were higher than those in conventional 
scoring models. When the outcome was defined using other criteria, the machine learning models had the higher 
AUROC values than the SOFA, APACHE II, and MOSAIC scores: the XGB model when the timeframe was 1 h 
(Table S4); and nadir MAP was used (Table S5). XGB models showed significantly higher values of AUROCs than 
logistic regression models for the outcome of a reduction in MAP ≥ 30 mmHg within 1 h, nadir MAP < 65 mmHg, 
and < 55 mmHg. In addition, XGB models showed higher values of F1 score and MCC than logistic regression 
models for all outcomes except reduction in MAP ≥ 30 mmHg within  6 h.

Rank of features in machine learning model.  To estimate the contribution degree of each feature in 
predicting the risk of hypotension, the feature ranking analysis was performed. The features contributing to the 

Table 1.   Area under the receiver operating characteristic curves of models predicting hypotension within 6 h. 
*Compared with the APACHE II model. † Compared with the SOFA model. ‡ Compared with the MOSAIC 
model. § Compared with the LR model. MAP mean arterial pressure, MAP Δ20 reduction in MAP ≥ 20 mmHg 
from the initial value, MAP Δ30 reduction in MAP ≥ 30 mmHg from the initial value, SOFA Sequential Organ 
Failure Assessment, APACHE Acute Physiology and Chronic Health Evaluation, MOSAC Mortality Scoring 
system for AKI with CRRT, LR Logistic regression, SVM support vector machine, DNN deep neural network, 
LGBM light gradient boosting machine, XGB extreme gradient boosting.

Models

Outcomes

MAP Δ20 P* P† P‡ P§ MAP Δ30 P* P† P‡ P§

SOFA 0.500 (0.453–0.547) 0.496 (0.435–0.557)

APACHE II 0.546 (0.499–0.593) 0.592 (0.535–0.649)

MOSAIC 0.568 (0.522–0.615) 0.578 (0.518–0.638)

LR 0.809 (0.774–0.844) 0.824 (0.775–0.873)

SVM 0.807 (0.772–0.842) < 0.001 < 0.001 < 0.001 0.686 0.830 (0.784–0.876) < 0.001 < 0.001 < 0.001 0.536

DNN 0.822 (0.789–0.856) < 0.001 < 0.001 < 0.001 0.601 0.835 (0.789–0.881) < 0.001 < 0.001 < 0.001 0.755

LGBM 0.813 (0.780–0.847) < 0.001 < 0.001 < 0.001 0.768 0.845 (0.802–0.888) < 0.001 < 0.001 < 0.001 0.216

XGB 0.828 (0.796–0.861) < 0.001 < 0.001 < 0.001 0.440 0.861 (0.822–0.900) < 0.001 < 0.001 < 0.001 0.253
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LGBM and XGB models were laboratory findings and vital signs (Figs. 2 and 3). Among laboratory findings, 
pH was the most important predictor, and serum protein and albumin were the next. Among vital signs, the 
MAP was the best contributor. In the SVM model, BPs were the most important in predicting MAP drop within 
6 h, and some medications were important in predicting MAP drop within 1 h (Fig. S2). In the DNN model, 
BPs were the most important in the model performance, and other vital signs, pH, and some medications were 
determined to be important (Fig. S3).

The change in the model performance of XGB and DNN was evaluated by adding each of the top 10 features 
in order of ranking results of each model (Tables 3 and S6). In the XGB model, the AUROC values increased 
depending on the features used, whereas the accuracy, F1 score, and, MCC had an increasing trend from 5 to 
10 features (Table 3). In the DNN model, increasing performance was shown for the top 30 features used in 
the model (Table S6). These results indicate that at least 20 or 30 features were needed to precisely predict the 
hypotension risk in the above machine learning models.

Calibration of models.  When Brier’s scores were calculated for calibration, the XGB model had the lowest 
value for most outcomes, and other models had relatively low values (Table S7). All machine learning models 
had lower values of Brier’s scores than other conventional scores such as SOFA, APACHE II, and MOSAIC. 
The XGB models showed the lowest Brier’s score among machine learning models predicting outcomes, except 
predicting the outcome of MAP ≥ 20  mmHg within 6  h. The XGB model had a lower Brier’s score than the 
logistic regression model for the outcomes of reduction in MAP ≥ 20 mmHg and ≥ 30 mmHg within 1 h, and 
MAP < 65 mmHg and MAP < 55 mmHg within 6 h.

Models using conventional disease‑severity scores as predictors.  Table S8 shows the AUROCs of 
the logistic regression and XGB models using SOFA, APACHE II, and MOSAIC scores as predictors, and their 

Figure 1.   Receiver operating characteristic curves of models in predicting a reduction in mean arterial 
pressure ≥ 20 mmHg (A, C) and ≥ 30 mmHg (B, D) within 6 h (A, B) and 1 h (C, D).
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Performance indices

Outcomes

MAP Δ20 MAP Δ30

Accuracy

SOFA 0.304 0.203

APACHE II 0.359 0.565

MOSAIC 0.373 0.545

LR 0.769 0.877

SVM 0.745 0.882

DNN 0.749 0.872

LGBM 0.782 0.847

XGB 0.763 0.844

F1 score

SOFA 0.450 0.257

APACHE II 0.461 0.271

MOSAIC 0.453 0.275

LR 0.630 0.588

SVM 0.637 0.570

DNN 0.645 0.587

LGBM 0.637 0.565

XGB 0.660 0.587

Recall (sensitivity)

SOFA 0.966 0.933

APACHE II 0.928 0.548

MOSAIC 0.880 0.587

LR 0.668 0.596

SVM 0.760 0.529

DNN 0.774 0.615

LGBM 0.649 0.673

XGB 0.779 0.750

Precision

SOFA 0.293 0.149

APACHE II 0.306 0.180

MOSAIC 0.305 0.180

LR 0.597 0.579

SVM 0.549 0.618

DNN 0.553 0.561

LGBM 0.625 0.486

XGB 0.572 0.482

F2 score

SOFA 0.662 0.454

APACHE II 0.660 0.389

MOSAIC 0.639 0.404

LR 0.653 0.593

SVM 0.705 0.545

DNN 0.717 0.604

LGBM 0.703 0.599

XGB 0.726 0.675

Specificity

SOFA 0.026 0.077

APACHE II 0.121 0.567

MOSAIC 0.161 0.537

LR 0.811 0.925

SVM 0.738 0.943

DNN 0.738 0.917

LGBM 0.837 0.877

XGB 0.757 0.860

Matthews correlation coefficient

Continued
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performances seemed to be poor. The XGB models with disease-severity scores in addition to all 92 features also 
showed lower performance than those with 92 features alone.

Performance indices

Outcomes

MAP Δ20 MAP Δ30

SOFA –0.021 0.012

APACHE II 0.072 0.082

MOSAIC 0.052 0.088

LR 0.465 0.515

SVM 0.462 0.504

DNN 0.475 0.513

LGBM 0.481 0.484

XGB 0.498 0.514

Table 2.   Performance indices including accuracy, F1 score, and Matthews correlation coefficient of models 
in predicting hypotension within 6 h. MAP mean arterial pressure, MAP Δ20 reduction in MAP ≥ 20 mmHg 
from the initial value, MAP Δ30 reduction in MAP ≥ 30 mmHg from the initial value, SOFA Sequential Organ 
Failure Assessment, APACHE Acute Physiology and Chronic Health Evaluation, MOSAC Mortality Scoring 
system for AKI with CRRT, SVM support vector machine, DNN deep neural network, LGBM light gradient 
boosting machine, XGB extreme gradient boosting.

Figure 2.   Feature ranking analysis of the light gradient boosting machine model in predicting a reduction 
in mean arterial pressure (MAP) ≥ 20 mmHg (A, C) and ≥ 30 mmHg (B, D) within 6 h (A, B) and 1 h (C, D). 
MAP mean arterial pressure, SBP systolic blood pressure, DBP diastolic blood pressure, aPTT activated partial 
thromboplastin time, PT-INR prothrombin time-international normalized ratio, BUN blood urea nitrogen, 
WBC white blood cell.
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Nested tenfold cross‑validation.  The AUROC values of machine learning models with the nested ten-
fold cross-validation were lower than the previous results (Table S9).

Discussion
Unexpected hypotensive events after starting CRRT are a critical issue because they contribute to worse out-
comes, as noted in the above association with high ICU mortality5,6. Machine learning models such as XGB, 
LGBM, and DNN successfully predicted the risk of hypotension and performed better than conventional scoring 
models such as SOFA, APACHE II, and MOSAIC. The XGB model had the best performance among all models. 

Figure 3.   Feature ranking analysis of the extreme gradient boosting machine model in predicting a reduction 
in mean arterial pressure (MAP) ≥ 20 mmHg (A, C) and ≥ 30 mmHg (B, D) within 6 h (A, B) and 1 h (C, D). 
MAP mean arterial pressure, SBP systolic blood pressure, DBP diastolic blood pressure, PT-INR prothrombin 
time-international normalized ratio, PaCO2 arterial partial pressure of carbon dioxide, Hb hemoglobin, BFR 
blood flow rate, WBC white blood cell.

Table 3.   Performance indices of extreme gradient boosting machine models in predicting hypotension 
(Defined as a reduction in mean arterial pressure ≥ 20 mmHg from the initial value within 6 h) according to 
the number of features. AUROC area under the receiver operating characteristic curve, CI confidence interval, 
MCC Matthews correlation coefficient.

No. of features AUROC (95% CI) Accuracy F1 score MCC Brier’s score

5 0.795 (0.759–0.831) 0.691 0.612 0.420 0.159

10 0.813 (0.779–0.848) 0.783 0.642 0.487 0.153

20 0.815 (0.781–0.849) 0.766 0.634 0.467 0.152

30 0.818 (0.785–0.852) 0.756 0.636 0.463 0.154

40 0.820 (0.786–0.853) 0. 787 0.650 0.497 0.155

50 0.823 (0.790–0.856) 0.736 0.642 0.469 0.170

60 0.822 (0.789–0.855) 0.800 0.641 0.505 0.151

70 0.827 (0.794–0.861) 0.792 0.648 0.499 0.148
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AUROC was significantly higher in the XGB model than in the logistic regression model only for outcomes of 
MAP < 65 mmHg, and MAP < 55 mmHg within 6 h, and MAP Δ30 within 1 h. However, the XGB model had 
higher F1 score and MCC for all outcomes except MAP Δ30 within 6 h than the logistic regression model. These 
results indicate that precise prediction of CRRT-related hypotension is achievable by machine learning algo-
rithms, especially XGB, although complex and interactive relationships of several features exist.

Based on the ranking analysis, at least 10 features were required to develop machine learning models, and the 
corresponding 10 features are as shown in the Figs. 3 and S3, including MAP, SBP, DBP, heart rate, pH, serum 
protein, and prothrombin time-international normalized ratio (PT INR). The value of pH is important to pre-
dict hypotension because it is well known that metabolic acidosis frequently causes hypotension14. Because the 
patients with prolonged coagulation time due to sepsis or acute liver failure have a high risk of hypotension, PT 
INR was important predictor feature15,16.

Critically ill patients undergoing CRRT are in a complex clinical situation, which frequently embarrass clini-
cians in determining the outcomes. Machine learning may overcome the difficulty of considering complex and 
numerous clinical situations. Several studies have applied machine learning algorithms to critically ill patients 
and have shown superior performance compared to existing models or scoring systems in predicting outcomes17. 
Our previous study also demonstrated that machine learning had better performance than conventional scoring 
systems, such as SOFA and APACHE II, in predicting mortality of CRRT patients10. The present study expands 
the utility of machine learning in predicting hypotension as other outcomes of CRRT and provides a clue on 
advanced management before the occurrence of hypotension.

Excessive ultrafiltration is thought to significantly affect hypotension during CRRT​13. Other conditions such 
as reduced cardiac preload resulting from defective vasoconstriction and redistribution of fluids resulting from 
sepsis or inflammation also contribute to hypotension during CRRT​18,19. Rapid clearance of plasma solutes by 
convention method results in osmolar reduction and shifts water from intravascular to interstitial compart-
ments, consequently causing decreased effective arterial blood volume and hypotension13. Concurrent cardiac 
dysfunction can be aggravated by ultrafiltration or blood flow of CRRT, resulting in hypotension20. However, 
precise prediction of CRRT-related hypotension could not be obtained by this theoretical approach alone in real 
clinical practice. The present feature ranking analysis demonstrated that vital signs at the time of CRRT are the 
most important contributor to hypotension, which should be assessed before starting CRRT.

Although the results are informative, there are certain limitations to be discussed. Because of a single center 
design, external validation was not available. The sample size of the cohort was modest. The advantage of machine 
learning is its high performance, particularly with extremely large sample size. However, there is no specific 
cutoff on the sample size in machine learning algorithms, and the present sample size of 2349 with ≥ 90 features 
was greater than the sample size (n = 488) of the previous 258 studies which used machine learning algorithms 
to analyze ICU data21. Because the study analyzed a retrospective cohort, prospective validation is needed. The 
study identified the most important features with respect to predicting hypotension, but certain degrees of risk, 
such as the relative risk, could not be obtained. This is a common limitation of machine learning algorithms. 
Concerns could be raised regarding other issues such as overfitting and the effects of un-identified factors such 
as response to time-varying vasoactive support and ultrafiltration. The present non-nested cross-validation 
method could result in a possibility of overfitting.

The SOFA, APACHE II, and MOSAIC scores have been developed to predict mortality but not hypotension 
after CRRT, which might have low performance.

Conclusions
The application of machine learning algorithms improves the predictability of hypotension after starting CRRT, 
and machine learning performs better than conventional scoring models used in critically ill patients. If the 
machine learning-based prediction models are successfully applied to clinical practice, the overall patient out-
comes will improve by proactive management of hypotension. Future studies will explore whether machine 
learning can predict other outcomes of CRRT and will validate results in an independent cohort.

Method
Data source and study subjects.  A total of 2,756 adult patients (≥ 18 years old) who started CRRT due to 
acute kidney injury were retrospectively reviewed at Seoul National University Hospital from June 2010 to Feb-
ruary 2020. Patients who had underlying end-stage renal disease (n = 344), stopped CRRT within 1 h after initia-
tion (n = 49), and had no information on comorbidities or laboratory data (n = 14) were excluded. Accordingly, 
2349 patients were analyzed in the present study. The patients were randomly divided into a training set (70%) 
to develop the models and a testing set (30%) to test and calibrate their performance. The study was approved 
by the institutional review board of the Seoul National University Hospital (no. H-2003-024-1106). All methods 
have been carried out in accordance with the guidelines, relevant regulations and ethical principles for medical 
research guided by the Declaration of Helsinki. The requirement of informed consent was waived by the board.

Study variables and outcomes.  Using an electronic medical record system, a total of 92 features were 
used to develop machine learning models. We used the features before and at the time of starting CRRT dur-
ing the model development. The features within 24 h prior to starting CRRT were medications, infusion rate 
of fluids, and laboratory findings. Other features were measured at the time of starting CRRT. Clinical features 
included age, sex, weight, application of the mechanical ventilator, and comorbidities, such as diabetes mel-
litus, hypertension, ischemic heart disease, chronic heart failure, stroke, peripheral vascular disease, demen-
tia, chronic kidney disease including diabetic nephropathy, chronic obstructive pulmonary disease, connective 
tissue disease, peptic ulcer disease, cancer, and arrhythmia including atrial fibrillation, atrioventricular block, 
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ventricular tachycardia, tachycardia-bradycardia syndrome, and total left bundle branch block. Vital signs such 
as SBP, DBP, MAP, heart rate, respiratory rate, and body temperature were measured at the time of initiat-
ing CRRT. The blood pressure values were continuously collected every 1 h or less after starting CRRT. The 
laboratory data included white blood cell counts, hemoglobin, hematocrit, platelet, total bilirubin, blood urea 
nitrogen, creatinine, total protein, albumin, pH, sodium, potassium, calcium, phosphate, uric acid, prothrombin 
time-international normalized ratio, activated partial thromboplastin time, partial pressures of arterial carbon 
dioxide and oxygen, partial pressure to fractional inspired oxygen, alveolar to arterial oxygen gradient, and the 
presence of bacteremia. As a setting value, target dose, blood flow rate, amount of dialysate and replacement 
fluids (pre- and post-dilution), target amount of input and output, the number of bicarbonate ampules mixed in 
dialysate and replacement fluids, and catheter type were collected. The information on the infused medications 
or fluids and their infusion rates were obtained, as shown in Table S1. The number of bicarbonate ampules mixed 
in these fluids were calculated. The Glasgow coma scales were calculated. The SOFA, APACHE II, and MOSAIC 
scores were measured based on the methods presented in the original studies22–24. Hypotension was defined as 
a reduction in MAP ≥ 20 mmHg from the initial value within 6 h. Additionally, other definitions were used such 
as a reduction in MAP ≥ 30 mmHg from the initial value, setting the timeframe to within 1 h, or nadir MAP < 55 
or 65 mmHg. The ICU mortality, which was defined as all-cause death during the ICU admission, was estimated.

Statistical analysis and development of machine learning models.  Development of machine 
learning models and statistical analyses were performed using R software (version 4.0.2; The Comprehensive R 
Archive Network: http://​cran.r-​proje​ct.​org). Categorical and continuous features are expressed as proportions 
and the means ± standard deviation, respectively. The chi-square test was used to compare categorical features 
(Fisher’s exact test, if not applicable), and the Student’s t test was used to compare continuous features between 
the training and testing sets. The restricted cubic spline was used to display the odds ratio of ICU mortality 
according to the change in MAP values during CRRT.

Four machine learning algorithms were used including the SVM, DNN, LGBM, and XGB. We developed 
machine learning models using a tenfold cross-validation in the training dataset, and the models were evaluated 
using the test dataset to identify the performance of models. The SVM models used four kernels including linear, 
polynomial, sigmoid, and radial basis functions. For each kernel, tenfold cross-validation to determine the best 
set of hyperparameters (cost, gamma, degree, and coefficients) was performed using grid search. The kernels 
corresponding to the highest AUROC were derived from the final model. In the DNN model (i.e., artificial neural 
network with multiple layers between the input and output layers), optimal hyperparameters consisting of the 
size (number of hidden nodes) and decay (parameter for weight decay) with tenfold cross-validation and grid 
search were determined. When developing the SVM and DNN models, the continuous features were normalized, 
and categorical features were processed as a one-hot encoding. In the LGBM model, hyperparameters (max_bin, 
learning rate, and nrounds) were adjusted, and the model with the highest AUROC was selected for compari-
son. In the XGB model, hyperparameters (eta, gamma, max depth, and nrounds) were adjusted, and the model 
with the highest AUROC was selected for comparison. For comparing with machine learning models, we have 
developed logistic regression models predicting outcomes. Machine learning models using SOFA, APACHE II, 
and MOSAIC scores as predictors were developed and evaluated. To evaluate the suitability of machine learn-
ing algorithms to our data and compare among machine learning models, nested tenfold cross-validation was 
additionally conducted with total study data for predicting reduction in MAP ≥ 20 mmHg and MAP ≥ 30 mmHg 
from the initial value within 6 h, inner loop with tenfold for hyper-parameter tuning and an outer loop with 
tenfold for validation of models.

For performance indices, AUROC, F1 score, recall, precision, F2 score, specificity, and MCC were measured in 
the testing set. The AUROCs were compared between models using the DeLong test. The confidence intervals of 
AUROCs were estimated using the DeLong method25,26. MCC is an informative and truthful score in evaluating 
binary classification compared to accuracy and F1 score27. The MCC values of + 1, 0, and – 1 represent perfect 
prediction, average random prediction, and inverse prediction, respectively. The threshold was determined when 
the F1 score was the highest. For calibration, Brier’s scores were calculated, with those closer to 0 indicating 
good calibration. We ranked the importance of features in the SVM with weight vectors, the DNN with weight 
values, and the LGBM and XGB models with SHapley Additive exPlanations (SHAP)28–30. The performance of 
machine learning models with variable numbers of features in order of ranking were also evaluated. P values 
less than 0.05 were considered significant.
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