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Abstract
Objectives: Nosocomial outbreaks involve only a small number of cases and
limited baseline data. The present study proposes a method to detect the
nosocomial outbreaks caused by rare pathogens, exploiting score prediction
interval of a Poisson distribution.
Methods: The proposed method was applied to three empirical datasets of
nosocomial outbreaks in Japan: outbreaks of (1) multidrug-resistant Acineto-
bacter baumannii (n Z 46) from 2009 to 2010, (2) multidrug-resistant Pseudo-
monas aerginosa (n Z 18) from 2009 to 2010, and (3) Serratia marcescens
(n Z 226) from 1999 to 2000.
Results: The proposed method successfully detected all three outbreaks during
the first 2 months. Both the model-based and empirically derived threshold
values indicated that the nosocomial outbreak of rare infectious disease may be
declared upon diagnosis of index case(s), although the sensitivity and specificity
were highly variable.
Conclusion: The findings support the practical notion that, upon diagnosis of
index patient(s), one should immediately start the outbreak investigation of
nosocomial outbreak caused by a rare pathogen. The proposed score prediction
interval can permit easy computation of outbreak threshold in hospital settings
among healthcare experts.
1. Introduction

Nosocomial infection refers to the infection event

within medical and healthcare facilities at which

medical services for some diseases or health conditions
ted under the terms of the C
0) which permits unrestrict
roperly cited.

ase Control and Prevention
are provided. The nosocomial infection is seen not only

among patients but also among patients’ relatives and

healthcare workers. Because medical and healthcare

facilities involve treatment of a wide spectrum of

diseases and thus patients tend to be vulnerable to
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infectious diseases, less virulent and commonly seen

pathogen can often cause nosocomial infection, and

moreover, prior antibiotic treatment tends to induce

infections caused by antibiotic-resistant bacteria. The

nosocomial infection can occur regardless of the size of

healthcare facility, and technically it will never be

eliminated. However, the nosocomial infection can

sometimes influence the prognosis of patients, and so

healthcare experts are expected to control an outbreak

event by detecting it at the early stage. To investigate

and understand the epidemiology of any nosocomial

outbreaks, epidemiological surveillance would play

a key role [1]. In Japan, the Ministry of Health, Labour,

and Welfare has conducted a routine surveillance

program of nosocomial infection [2], and each medical

facility with an independent clinical laboratory section

maintains the system of infectious agent surveillance

report through the isolation of causative pathogens from

patients’ samples. Given such a system, it is fruitful to

fully utilize the information, in particular, by detecting

any outbreak during the early stage.

To analyze the community-based surveillance data,

various statistical and epidemiological studies on the

early detection of community outbreaks have been

conducted. Farrington and Andrews [3] comprehen-

sively reviewed representative detection methods for the

investigation of the temporal or spatiotemporal inci-

dence data of infectious diseases. In addition to classical

statistical modeling approaches, hypothesis testing

method for detecting clusters of cases using an objective

novel statistic has also been developed [4]. The so-

called “scan statistic” has been used for detecting

spatiotemporal spread, and substantial revisions and

improvements have been made to detect the clusters

using a variety of data types [5,6]. Moreover, rather than

relying on case data with confirmed diagnosis, event-

based surveillance or the so-called syndromic surveil-

lance has also been explored for the sake of early

detection [7].

Nevertheless, the majority of existing study requires

us to have historical baseline data for the long time

period in order to define an “abnormality” in the data. In

other words, to extrapolate a statistical model with trend

and seasonality or to employ a time-series technique to

analyze the infectious disease data, having sufficient

long time-series data in the past would be essential to

form the baseline. This condition does not always hold

for nosocomial outbreaks caused by rare pathogens.

Moreover, except for the detection method of clustering,

existing published methods tend to be focused on

community-based surveillance data and thus are not

always directly applicable to detecting small outbreaks.

That is, the issue of early detection of nosocomial

outbreaks caused by rare pathogens without substantial

baseline incidence has yet to be discussed in a scientifi-

cally rigorous manner. The present study aims to

propose a simple method for detecting small nosocomial
outbreaks caused by rare pathogens, applying it to actual

outbreak datasets and assessing the validity of detection.

2. Materials and Methods

2.1. Observed data and motivation
To clearly demonstrate the study motivation, the

observed epidemic curves of three nosocomial outbreaks

are presented in Figure 1. The outbreak data were

retrieved from openly published case notification

reports. Figure 1A shows the monthly incidence of

multidrug resistant Acinetobacter baumannii (MDR-

AB) in a tertiary hospital with approximately 1150 beds

(n Z 46) from 2009 to 2010. While Acinetobacter

baumannii is broadly distributed in the environment, its

nosocomial infection is known to easily spread from

person to person, and thus it is hard to control without

substantial effort [8]. Within healthcare facilities, the

infection is frequently seen among patients who are

intubated for respiratory support, and MDR-AB is

known as a key factor to exacerbate respiratory function

and elevate the risk of death [8,9]. Figure 1B shows an

epidemic curve of a nosocomial outbreak caused by

multidrug resistant Pseuedomonas aeruginosa (MDRP)

at a secondary hospital with approximately 580 beds

(n Z 18) from 2009 to 2010. MDRP is frequently iso-

lated from patients staying for the long time and also

those requiring surgical management or antibiotic

treatment [10]. The extent of transmission is sometimes

a single ward scale (e.g., through contaminated hand-

washing basin), worsening clinical course of infected

patients in that particular ward [11]. Figure 1C and D

show the monthly counts of Serratia marcescens isola-

tions (n Z 226), counting the total samples and isolates

only from blood samples at a secondary hospital with

380 beds from 1999 to 2000. Although the isolation of

Serratia marcescens has not been rare in this hospital for

the long time, especially when we count the total

samples (Figure 1C), an abrupt increase in severe cases

was observed from May to June 2000 with eight fatal

outcomes. Separately counting the samples by anatom-

ical site, isolation from blood samples showed an

apparent increase in the corresponding period

(Figure 1D), and indeed, many severe cases had expe-

rienced septic shock before an outbreak investigation

was conducted. Serratia marcescens is commonly iso-

lated from the respiratory and urinary tracts of hospi-

talized adults and is responsible for catheter-associated

bacteremia, urinary tract infections and wound infec-

tions. All three diseases have greatly influenced the

prognosis of patients, indicating the importance of early

detection of the outbreaks and corresponding actions for

swift control. If the outbreak can be detected sufficiently

early, infected cases within a single ward may be

managed together, with particular care for the preven-

tion of further transmission events (e.g., admit and

manage cases in the same room) and moreover, nurses



Figure 1. Monthly incidence of nosocomial outbreaks. (A) Multidrug resistant Acinetobacter baumannii (MDR-AB) in a tertiary

hospital with approximately 1150 beds (nZ 46) from 2009 to 2010. (B) Multidrug resistant Pseuedomonas aeruginosa (MDRP) at

a secondary hospital with approximately 580 beds (n Z 18) from 2009 to 2010. (C) Total samples and (D) blood samples of

Serratia marcescens (n Z 226) at a secondary hospital with 380 beds from 1999 to 2000. The horizontal axis represents the month

of diagnosis. Before the observation in the earlier year (i.e., 2009 for A and B, and 1999 for C and D), there was no report of cases

since January.
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and other staffs responsible for infected cases may also

be limited to particular persons. In addition, doctors can

order additional laboratory testing of other suspicious

cases at the early stage, and respiratory function of

infected cases can be closely monitored.

In the present study, an outbreak is defined as the

occurrence of defined infectious disease cases clearly in

excess of the normal expectancy within a certain period of

time. This study attempts to detect the outbreak based on

monthly counts of cases using a statisticalmodel. In reality,

the detection does not have to rely solely on the temporal

data. Usually, additional insights are gained from contact

information and other risk-associated information (e.g.,

whether the infection is opportunistic or not), and also from

examining the spatiotemporal distribution of cases within

a hospital. Moreover, microbiological and clinical findings

(e.g., isolation of similar genotypes frommultiple patients)

can help demonstrate the transmission events. Among

these, the present study specifically focuses on the temporal

distribution for two reasons. First, the temporal data are

routinely collected evenwhen there is no outbreak. In other

words, the temporal counts of bacterial isolations or case
notifications would be readily available at any time, and

such a dataset should be effectively used for public health

purposes. Second, for a rare pathogen, even an occurrence

of a single casemay be regarded as an outbreak in practical

sense. Then, an outbreak defined by an occurrence of index

patient(s) does not practically require rigorous statistical

detection. However, issuing an alarm based on a single

diagnosis (or diagnosis of the first few cases) should ideally

rest on rigorous scientific grounds, and the present study

offers the theoretical basis examining the relevant condi-

tion at which one can declare the outbreak caused by rare

pathogens.

2.2. Outbreak and prediction interval
Here the outbreak detection is described by equa-

tions. To detect an outbreak based on the time series

data, the issue of epidemiological detection is conven-

tionally expressed as the hypothesis testing of “aberra-

tion” (i.e., if the observed data exceeds a defined

threshold) under a certain type I error [3]. That is, using

qU to define the upper bound for detecting an outbreak,

the observed data Y should satisfy
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PrðY > qU jno aberrationÞZa; ð1Þ
where a is the probability that normal observation is

incorrectly detected as an outbreak and may be inter-

preted as the risk of false positive alarms (e.g., one may

use a Z 0.025). The upper bound qU thus acts as the

reference value for detection, and this key value should

be calculated from the prediction interval, i.e., the ex-

pected range within which the population data in future

lies. The interpretation of the prediction interval

resembles that of the confidence interval (CI): the 95%

CI of a sample indicates the “range in which the pop-

ulation data lie at 95% probability,” while the 95%

prediction interval represents the range in which the

future population data, which cannot be observed at

present, lie at 95% probability based on observed data in

the past [12]. Let xZ{xi} be the sample monthly counts

of cases based on observation in month i (i Z 1,2,.,n)

for the length of n months, and let us consider the pre-

dicted number of cases y in (n þ 1)th month. Then, the

interval (L(x), U(x)) which satisfies

PrðLðxÞ � y� UðxÞÞZ1� 2a; ð2Þ
is referred to as the 100(1e2a)% prediction interval

(L(x), U(x)).

Among the published prediction intervals, the

simplest one may be based on an assumption that the

population data follow a normal distribution, and this

method was actually employed by the Centers for

Disease Control and Prevention and applied to various

practical settings [13]. Assuming that there is no trend in

the occurrence of cases, let the sample average and

sample standard error be x and s, respectively. The

100(1e2a)% prediction interval for (n þ 1)th month

given past observation for n months is 
x� z1�as

ffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n

r
;xþ z1�as

ffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n

r !
; ð3Þ

where z1ea is the 100(1 e a) percentile of the standard

normal distribution (e.g., 1.96 for the 95% prediction

interval). Although detailed derivation process of (3) is

omitted here, this point is discussed in a variety of

literature on the interval estimation [13,14].

There are two technical problems in applying the

abovementioned prediction interval for three nosoco-

mial outbreaks in Figure 1. First, it is strictly not

appropriate to apply normal distribution to the datasets

with very small counts. Nevertheless, although the

prediction interval of continuous distributions tends to

be studied relatively well [15,16], that of discrete

distribution has not been often discussed, except for

normal approximations by means of the Wald method.

Second, the occurrence has been very uncommon due to

causation by rare pathogens, and thus, the baseline

information is extremely limited. Sometimes, the survey

starts only after confirming the diagnosis of index

patients.
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2.3. Statistical model
Since the occurrence is very rare with very small

number of observed cases, the present study ignores the

time trend (i.e., assumes stationary process) and employs

a Poisson distribution. The transmission dynamics of

infectious diseases are theoretically described by the

Poisson process, and the resulting number of cases with

time in an endemic equilibrium is known to follow

a Poisson distribution [17]. In the stationary state, there is

no increase or decrease in the number of cases (i.e., the

nonstationarity indicates the outbreak). Let X and Y be the

random variables representing the cumulative number of

cases for n months and the number of cases in (n þ 1)th

month. It is assumed that X follows a Poisson distribution

with an average Xn (where Xn is the observed sample

cumulative number), and also that the predicted value in

(n þ 1)th month similarly follows a Poisson distribution

with an average q. These satisfy the following equation:

qZ
Xn

n
: ð4Þ

To derive the prediction interval, we consider

a random variable W that represents the difference

between Y in (n þ 1)th month and predicted value X/n

for (n þ 1)th month (i.e., W Z Y e X/n). The average of

W is obtained from the averages of Y and X/n, i.e.,

mWZmY �
mX

n
Zq� nq

n
Z0: ð5Þ

The variance of W is calculated as the sum of the

variances of Y and X/n:

s2
WZs2

Y þ
s2
X

n2
Zqþ nq

n2
Zq

�
1þ 1

n

�
: ð6Þ

Standardizing W, we get

zZ
Y �X=nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q

�
1þ 1

n

�s : ð7Þ

Provided that q and Xn/n are sufficiently large, the

probability z asymptotically follows a normal distribu-

tion, and we obtain

z1�aZ
Y �Xn

nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

n

�
1þ 1

n

�s : ð8Þ

As we compute the Wald CI, the 100(1 e 2a)%
prediction interval based on equation (8) is bY�z1�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

n

�
1þ1

n

�s
;bYþz1�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

n

�
1þ1

n

�s !
; ð9Þ

where bY is equal to Xn/n in the range Xn > 0. If Xn is

zero (i.e., no occurrence in the past), an arbitrary small
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value, e.g., Xn Z 0.5, is conventionally adapted for the

computation [18]. The approximate prediction interval

(9) based on asymptotic normality is referred to as the

Nelson prediction interval [19]. It should be noted that

the coverage probability of the Wald CI for a normal

approximation to the binomial distribution is known to

be extremely small when the binomial probability is too

close to 0 or 1 [20]. In the case of approximate

prediction interval (9) for the Poisson distribution, the

coverage probability should also be small for small

number of observations, and thus, the applicability of

prediction interval (9) may be limited [21]. However,

the exact prediction interval is too complex for non-

experts, and moreover, the exact prediction interval of

discrete distribution is known not necessarily to yield

better coverage probability as compared to approximate

ones [20].

Hence, a score prediction interval, which is relevant to

Wilson score CI that yields much better coverage proba-

bility than the Wald method in equation (9), is derived.

The score prediction interval of a binomial distribution

has been already proposed in a statistical study and pub-

lished elsewhere [22]. To derive the score prediction

interval of a Poisson distribution, let us consider a joint

sampling of X and Y, as if the predicted value of the

variance of W in equation (7) is qxy Z (XþY )/(nþ1).

Namely, we use the following quantity that asymptoti-

cally follows a normal distribution:

z1�aZ
Y �Xn

nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn þ Y

nþ 1

�
1þ 1

n

�s : ð10Þ

As mentioned above, no occurrence in the past with

Xn Z 0 is replaced by Xn Z 0.5. The score prediction

interval is derived from taking the square of both sides

of equation (10) and solving it for Y as a quadratic

equation of Y [20,23]. Thus, the 100(1 e 2a)% predic-

tion interval is calculated as: 
Xn

n
þ z21�a

2n
� z1�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21�a

4n2
þXn

n2
þXn

n

r
;

Xn

n
þ z21�a

2n
þ z1�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21�a

4n2
þXn

n2
þXn

n

r !
: ð11Þ

2.4. Application to nosocomial outbreak data
Using the prediction interval (11), the early detection

was attempted for the observed three nosocomial

outbreaks. For all three outbreaks, the hospital surveil-

lance had been routinely conducted before the outbreak,

and the baseline data were available from January of the

corresponding earlier year of observation. As mentioned

above, as long as the number of reports in the past

remains zero, theoretical cumulative number Xn Z 0.5
was used for the computation of the prediction interval.

The 1st month at which the observed number exceeded

the upper 95% prediction interval was regarded as the

month of successful detection.

Subsequently, the detection performance was assessed

by employing the receiver operating characteristic curve,

which was used for identifying an empirically defined

optimal cutoff point to define an outbreak, especially by

referring to the Youden index (i.e., sensitivity plus spec-

ificity minus 1) [24]. The period of outbreak was defined

to be from the 1st month to the last monthwith reporting of

at least one case: August 2009 to August 2010 for MDR-

AB, May 2009 to March 2010 for MDRP and MayeJune

2000 for Serratia (although a few earlier cases occurred in

summer 1999, they were not clinically serious and were

separated from the 2000 outbreak). Using the optimal

threshold of monthly case counts, the sensitivity and

specificity of outbreak detection were estimated. The

95% CIs of the sensitivity and specificity were computed

using normal approximation to the binomial distribution,

and similarly, the calculation of the 95% CI of the area

under the curve (AUC) was made using the Wald method

by means of logit transformation of the AUC.
3. Results

Figure 2 compares observed and predicted values along

with the upper 95% prediction intervals for all three

outbreaks. The observed number of cases initially excee-

ded (and thus, the outbreak was detected) in the 1st month

(August 2009) forMDR-AB and the 2nd month forMDRP

(June, 2009) and sepsis caused by Serratia marcescens

(June, 2000). The calculated upper 95% prediction inter-

vals for these months were 0.97, 1.62, and 1.64 cases for

MDR-AB, MDRP, and Serratia, respectively. That is, if

we round up the thresholds to the next integer, the

proposed method suggests that one should use the cutoff

number of 1, 2, and 2 cases to define the outbreak caused

by the rare pathogens. If we round down the threshold

values that are 1 or greater, all the cutoff values would

suggest one case to define the nosocomial outbreak.

Empirical optimal threshold was also estimated to be

one case for all three outbreaks. However, the AUC

varied by outbreak and were estimated to be 100%,

78.1% (95% CI, 53.7e91.7), and 87.5% (95% CI,

26.4e99.3) for MDR-AB, MDRP, and Serratia,

respectively. Since there was no month with zero report

during the outbreak of MDR-AB, both the sensitivity

and specificity were estimated at 100%. As for MDRP,

the specificity was 100%, but the sensitivity was

calculated at 56.3% (95% CI, 37.5e81.3%) due to

several zero reports during the course of the outbreak.

With respect to Serratia marcescens, the sensitivity was

100%, but the specificity was 60.0% (95% CI,

30.0e90.0%) due to a few isolation reports from blood

samples before the outbreak.



Figure 2. Early detection of three nosocomial outbreaks. (A) Multidrug resistant Acinetobacter baumannii (MDR-AB).

(B) Multidrug resistant Pseuedomonas aeruginosa (MDRP). (C). Isolation of Serratia marcescens from blood samples. Filled

circles represent the observed monthly counts of cases. Straight line represents the expected value based on historical baseline, and

dashed line represents the upper 95% prediction interval to define an outbreak. In each panel, an arrow represents the 1st month at

which the outbreak is successfully detected.
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4. Discussion

The present study proposed the score prediction

interval for detecting nosocomial outbreaks caused by

rare pathogens, applying the method to three actual

outbreak events in Japan, caused by MDR-AB, MDRP

and Serratia marcescens. The proposed approach is

regarded as an extension of a classical method invented

by Stroup et al [13], which employed a normal distri-

bution with a static baseline, in that the nonhomogeneity

(i.e., the outbreak) in the proposed approach can be

identified even for rare diseases with very small number

of counts for the baseline as it exploits a Poisson

distribution. In all three outbreaks, the threshold to

define the outbreak was computed to be one or two

cases, which agreed well with empirically calculated

threshold based on the receiver operating characteristic

curve and Youden index. These findings support the

notion that one should immediately start the outbreak

investigation of any nosocomial outbreak caused by rare

pathogens upon diagnosis of index patient(s).

To the best of the author’s knowledge, the present

study is the first to epidemiologically support the notion

that the nosocomial outbreak caused by rare pathogens

should be regarded as an outbreak even when there is

only one case. Based on the single report of index case,

the hospital may issue an alert. Although declaring an

outbreak and starting the investigation and interventions

with one case can easily be justified in practice, the

present study has offered a firm theoretical support for

that action and demonstrated its scientific validity.

However, the performances of outbreak detection (e.g.,

sensitivity, specificity, and AUC) were not shown to be

always excellent, because of the nature of using

threshold at one case, with highly variable sensitivity

and specificity values. However, the imperfect perfor-

mance of detection when using the defined threshold
should not be regarded as a flaw of the proposed model,

but rather the nature of reliance on the temporal distri-

bution of cases. In reality, the declaration of outbreak

can also account for additional information such as

spatiotemporal growth of cases, the times of admission

and illness onset among cases, and identification of risk

factors through outbreak investigations.

An advantage of using score prediction interval is

that the coverage probability is much higher than other

approximate prediction intervals proposed in the past

[19,21,25,26]. Moreover, the present study has shown

that the analytical solution remains to be tractable, and

the proposed score prediction interval permits easy

computation in hospital settings among healthcare

workers using spreadsheet program. Given a ward-based

surveillance data for n months with cumulative counts

Xn, and given that we wish to test if there is an outbreak

within the ward, one can satisfy this task by comparing

the observed counts in (n þ 1)th month against

qUZ
Xn

n
þ ð1:96Þ2

2n
þ 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1:96Þ2
4n2

þXn

n2
þXn

n

s
; ð12Þ

and, if the observed data exceeds the threshold, the

hospital ward may regard it as an abnormal excess. Due

to its simplicity, equation (12) has a potential to greatly

help any local clinical setting (including clinical labo-

ratory section) to issue an alarm of excess without

devising any complex computer system. In fact, it is

known that the isolation of MDR-AB in the laboratory

section was not sufficiently informed to infection control

team during the MDR-AB outbreak in Figure 1A during

its early stage, and using equation (12) among clinical or

laboratory experts should have at least helped recognize

the abnormality.

Although there have been a number of studies aiming

to detect infectious disease outbreaks employing a variety

of sophisticated mathematical and statistical techniques,
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not so many detection systems have been put into prac-

tice, especially at the levels of local medical and health-

care facilities. In particular, early detection approach to

small scale outbreaks such as nosocomial ones has been

extremely limited. In this sense, I believe that equation

(12) based on the proposed method and scientific support

to issue an alarm upon diagnosis of index patient(s) would

greatly help in managing nosocomial outbreaks at the

hospital- and ward-levels in the future.
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