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Abstract
Objectives To evaluate if radiomics with machine learning can differentiate between F-18-fluorodeoxyglucose (FDG)-avid
breast cancer metastatic lymphadenopathy and FDG-avid COVID-19 mRNA vaccine–related axillary lymphadenopathy.
Materials and methods We retrospectively analyzed FDG-positive, pathology-proven, metastatic axillary lymph nodes in 53
breast cancer patients who had PET/CT for follow-up or staging, and FDG-positive axillary lymph nodes in 46 patients whowere
vaccinated with the COVID-19 mRNA vaccine. Radiomics features (110 features classified into 7 groups) were extracted from
all segmented lymph nodes. Analysis was performed on PET, CT, and combined PET/CT inputs. Lymph nodes were randomly
assigned to a training (n = 132) and validation cohort (n = 33) by 5-fold cross-validation. K-nearest neighbors (KNN) and random
forest (RF) machine learning models were used. Performance was evaluated using an area under the receiver-operator charac-
teristic curve (AUC-ROC) score.
Results Axillary lymph nodes from breast cancer patients (n = 85) and COVID-19-vaccinated individuals (n = 80) were
analyzed. Analysis of first-order features showed statistically significant differences (p < 0.05) in all combined PET/CT features,
most PET features, and half of the CT features. The KNN model showed the best performance score for combined PET/CT and
PET input with 0.98 (± 0.03) and 0.88 (± 0.07) validation AUC, and 96% (± 4%) and 85% (± 9%) validation accuracy,
respectively. The RF model showed the best result for CT input with 0.96 (± 0.04) validation AUC and 90% (± 6%) validation
accuracy.
Conclusion Radiomics features can differentiate between FDG-avid breast cancer metastatic and FDG-avid COVID-19 vaccine–
related axillary lymphadenopathy. Such a model may have a role in differentiating benign nodes from malignant ones.
Key Points
• Patients who were vaccinated with the COVID-19 mRNA vaccine have shown FDG-avid reactive axillary lymph nodes in PET-
CT scans.

• We evaluated if radiomics and machine learning can distinguish between FDG-avid metastatic axillary lymphadenopathy in
breast cancer patients and FDG-avid reactive axillary lymph nodes.

• Combined PET and CT radiomics data showed good test AUC (0.98) for distinguishing between metastatic axillary lymph-
adenopathy and post-COVID-19 vaccine–associated axillary lymphadenopathy. Therefore, the use of radiomics may have a
role in differentiating between benign from malignant FDG-avid nodes.
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Abbreviations
COVID-19 Coronavirus disease 2019
CV Cross-validation
GLCM Gray Level Co-occurrence Matrix
GLDM Gray Level Dependence Matrix
GLRLM Gray Level Run-Length Matrix
GLSZM Gray Level Size Zone
KNN K-nearest neighbors
NGTDM Neighboring Gray Tone Difference Matrix
RF Random forest
SD Standard deviation

Introduction

Unilateral lymphadenopathy is a known finding following
COVID-19 mRNA vaccine [1, 2]. It may be found incidental-
ly on imaging examinations performed for different reasons
such as routine screening or oncologic surveillance in mam-
mography [3], breast magnetic resonance imaging (MRI) [4],
or positron-emission tomography/computed tomography
(PET/CT) [5].

The presence of ipsilateral fluorodeoxyglucose (FDG)-avid
axillary lymph nodes after COVID-19 mRNA vaccination
might challenge study interpretation, specifically in malignan-
cies with a tendency to involve the axilla, of which breast
cancer is the most common in women [6]. Discrimination
between COVID-19 mRNA vaccine–associated FDG-avid
lymph nodes and malignant lymph nodes using qualitative
and quantitative variables may be impossible; therefore, to
avoid potential conflicting findings it was recommended to
schedule and plan scans wisely [7]. As FDG PET/CT cannot
always be postponed, and must sometimes be conducted in
proximity to the administration of the COVID-19 mRNA vac-
cine (e.g., in case of acute symptoms or urgent treatment plan-
ning), there is an unmet need to develop objective variables to
identify COVID-19 mRNA vaccine–associated FDG-avid
lymph nodes.

Radiomics and machine learning are emerging fields in
medical image analysis designed for decision support of
precision medicine. Radiomics is a relatively new tech-
nique for extracting quantitative variables that cannot be
visually assessed in medical images [8, 9]. This technique
uses intensity distribution (texture analysis) of pixel or
voxel gray levels and pixel/voxel inter-connections within
a region or volume of interest (e.g., tumor, lymph node) to
extract these variables. In patients with cancer, first-order
histogram variables (e.g., tumor shape, heterogeneity, uni-
formity) and second-order texture variables (e.g., Gray
Level Co-occurrence Matrix [GLCM], Gray Level
Dependence Matrix [GLDM]) can be used to characterize
tumors [10–12] and have been correlated with tumor ag-
gressiveness [13] and prognosis [14]. Machine learning

models study pre-input samples with known labels (known
as training data) and identify patterns from which they
learn a general rule that maps inputs to outputs [15]. To
date, there are no published data on the use of PET/CT
radiomics as a tool to differentiate FDG-avid metastatic
axillary lymph nodes from FDG-avid reactive lymph
nodes.

In this retrospective analysis, we used radiomics and ma-
chine learning tools to distinguish between FDG-avid metas-
tatic axillary lymphadenopathy in breast cancer patients and
FDG-avid reactive axillary lymph nodes in individuals who
were vaccinated with the BNT162b2 (Comirnaty®) COVID-
19 mRNA vaccine (Pfizer-BioNTech).

Materials and methods

Patients

FDG axillary lymph node uptake was analyzed in 2 patient
populations:

1. Patients with breast cancer: Records of adult patients (>
18 years) with a diagnosis of breast cancer who underwent
FDG PET/CT scans for follow-up or staging between 1
January 2019 and 30 November 2020 were retrieved. Then,
a case-by-case search was performed using the picture archive
and communication system (PACS; Carestream Vue PACS
version 12.1.5.1) and the patients’ medical records to obtain
the ones showing avid FDG axillary lymph node uptake ipsi-
lateral to the primary breast tumor and a positive lymph node
histology showing breast malignancy. Information on lymph
node histology was obtained from pathological records of
post-surgery axillary lymph node dissections or from core
needle biopsies of suspected axillary lymph nodes. Only re-
cords of patients with invasive breast carcinoma (i.e., infiltrat-
ing ductal carcinoma or infiltrating lobular carcinoma) were
included. Records of breast cancer patients with no FDG ax-
illary lymph node uptake, patients under 18 years, lesions not
eligible for segmentation (due to a metal clip in the lymph
node, post-surgery changes, uptake overlap among nodes,
etc.), second primary tumors, unavailable medical records,
and cases with an unknown lymph node pathology were
excluded.

2. Patients post-mRNA COVID-19 mRNA vaccine:
Consecutive FDG PET/CT scans were performed for any
indication in adult patients (> 18 years) who received 1–2
injections of the BNT162b2 vaccine between 27 December
2020 and 31 January 2021 (December 2020 was the initia-
tion date of a national COVID-19 vaccination rollout in the
general population), and who showed positive FDG axil-
lary lymph node uptake in the draining axillary lymph node
on the vaccination side. Part of this cohort was recently
described elsewhere [16]. Records of patients with breast
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cancer, lymphoma, or a known malignancy involving axil-
lary lymph nodes were excluded from the analysis. Records
with low-quality PET/CT images (movement artifacts),
missing medical information, or lesions that were ineligible
for segmentation (e.g., due to very small lymph nodes, up-
take overlap among nodes, metal artifacts) were also
excluded.

Only contrast-enhanced CT scans were included in the
analysis of both groups.

The institutional ethics committee approved the study (ap-
proval number 8069-21-SMC). The requirement for patient
informed consent was waived.

FDG PET/CT acquisition

Most PET/CT examinations (88%) were performed ac-
cording to our institute’s clinical scanning protocols.
Diagnostic CT examinations were performed on a 64-
detector-row helical CT scanner (Philips Vereos, Philips
Medical Systems). The field of view and pixel size of the
PET images reconstructed for fusion were 57.6 cm and 4
mm, respectively, with a matrix size of 144 × 144. The
technical parameters used for CT imaging were as fol-
lows: pitch 0.83, gantry rotation speed 0.5 s/rot, 120
kVp, modulated tube current 40–300 mA, and specific
breath-holding instructions. The patients received an in-
travenous injection of 5.18 MBq/kg after fasting for 6 h.
About 60 min after tracer administration, CT images were
obtained from the vertex to the mid-thigh or for the whole
body. An emission PET scan followed in 3D acquisition
mode for the same longitudinal coverage, 1.5 min per bed
position. CT images were fused with the PET data to
generate a map for attenuation correction, eventually gen-
erating reconstructed images for review on a computer
workstation.

To increase the diversity of image samples in our cohort in
order to ensure the prediction credibility of the machine learn-
ing models [17], 12% of the scans were performed using other
scanners (n = number of scans): Discovery IQ (GE
Healthcare) (n = 1), Ingenuity TF PET/CT (Philips Medical
Systems) (n = 2), Gemini TF 16 (Philips Medical Systems) (n
= 4), Guardian Body (C) (Philips Medical Systems) (n = 4),
Biograph Vision 450 (Siemens Healthineers) (n = 1).

Image analysis

Image analysis was carried out using the PACS (Carestream
Vue PACS version 12.1.5.1). All PET/CT scans were read by
a board-certified radiologist currently undergoing a nuclear
medicine residency with 3 years of experience in reading
PET/CTs (M.E.).

Each FDG-positive axillary lymph node ipsilateral to
the primary breast tumor or to the vaccine injection side

was segmented on the PET images and on the contrast-
enhanced CT images using the PACS semi-automatic
segmentation tool or a manual lesion tool, respectively
(Fig. 1).

Positive axillary lymph node uptake was defined as having
a ratio > 2 between the maximum standardized uptake value in
the ipsilateral axillary nodes (for the tumor or vaccine side)
and the contralateral reference sites. This method was previ-
ously used by Thomassen et al [18].

Feature extraction

Before features were extracted, all images were normalized
by standardization (centering to μ = 0, standard deviation
[SD] = 1) to reduce the noise between scanners and to en-
sure data analysis on the same scale [17]. In total, 110
known radiomics features based on Image Biomarkers
Standardization Initiative histogram analysis [19] were ex-
tracted from the PET and CT scans separately for each
lymph node segment. Radiomics features were classified
as first-order (18 features), Gray Level Co-occurrence
Matrix (GLCM) (24 features), Gray Level Dependence
Matrix (GLDM) (14 features), Gray Level Run-Length
Matrix (GLRLM) (16 features), Gray Level Size Zone
(GLSZM) (16 features) , Neighboring Gray Tone
Difference Matrix (NGTDM) (5 features), and shape (14
features).

Data analysis and machine learning

To examine the metabolic process of the lesions and the effect
of uptake values, the initial analysis focused on first-order
features. This feature type produces a histogram analysis at
pixel value level, for example, energy (associated with uptake
score), entropy (the state of randomness in the segment, asso-
ciated with the level of heterogeneity), and uniformity (indi-
cating homogeneity).

Next, data analysis was performed using two supervised
machine learning classification models: K-nearest neigh-
bors (KNN) [20] and random forest (RF) [21]. For a deeper
analysis, the radiomics features of 3 inputs were compared:
CT, PET, and combined (add) PET/CT features as one in-
put. For each input, seven radiomics feature groups were
analyzed separately on the machine learning models.
Additional standardization was performed before analyzing
each input.

The model’s performance was estimated using a 5-fold
cross-validation which was done by splitting and randomizing
the input data into training and testing (validation) sets com-
prising 132 and 33 lymph nodes, respectively. The 5-fold
cross-validation was repeated ten times, with a calculation of
mean and SD.

European Radiology (2022) 32:5921–5929 5923



Due to the small data size and to avoid overfitting, data
augmentation was added to the training data set using left to
right flipping and brightness (of 0.4) and contrast adjustments
(of 2). Radiomics features were extracted from all augmented
data.

Statistical analysis

The t test and chi-squared test were used for compar-
ing continuous and categorical variables, respectively.

Two-tailed p < 0.05 was considered statistically sig-
nificant. Data accuracy (the percentage of correct re-
sults), receiver operating characteristic (ROC) curve,
the area under the curve (AUC), and confusion matrix
were used to display machine learning mean result
performance on the validation data set. Analysis and
feature extraction were performed by the Python soft-
ware (version 3.6), using the Pyradiomics [22],
Scikit-learn 0.23.2 [23], and TensorFlow 2.3.0 [24]
libraries.

Fig. 1 A representative image of
a 79-year-old male who had an
FDG PET/CT for melanoma
follow-up 3 days after receiving
the second Pfizer-BioNTech
COVID-19 mRNA vaccine in his
left arm. Avid left axillary lymph
node was segmented in a a
contrast-enhanced CT and b a
PET scan

Table 1 Demographic characteristics of the study population

Variable All patients,
n = 99

Post-COVID-19 mRNA
vaccine*, n = 46

Breast cancer,
n = 53

p value

Age (years) 61 ± 13 (30–86) 67 ± 9 (46 – 85) 57 ± 13 (30–86) < 0.001‡

Females 77 (77%) 24 (52%) 53 (100%) < 0.001†

Lymph node volume (cm3) 95 ± 101 (7.5–575) 74 ± 88 (7.5 – 483) 115 ± 108 (13–575) < 0.05‡

Categorical values are shown as number and percentage and continuous variables are shown as mean ± standard deviation (range)

*The post-vaccine group included patients with solid tumors: melanoma, gastro-intestinal, head and neck, hepatobiliary, genitourinary, lung, and
sarcoma
‡ p value by the t test
† p value by the chi-squared test
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Results

Patient demographics

The study flow chart is presented in Fig. 2 and patient dem-
ographics are shown in Table 1. The study population
consisted of 99 patients (77.8% females) aged 61 ± 13 years
(range, 30–86 years) with FDG PET/CT–positive axillary
lymph nodes. On average, the breast cancer patient group
was significantly younger than the post-COVID-19 mRNA
vaccine group (p < 0.001). A total of 165 axillary lymph
nodes were included in the analysis, 85 of them were
pathology-proven breast cancer lymph nodes (median 1.6
nodes/patient, range 1–4) and 80 were post-COVID-19
mRNA vaccine axillary lymph nodes (median 1.7 nodes/
patient, range 1–4). Average lymph node volume was sig-
nificantly greater in the breast cancer group compared to the
vaccine group (p < 0.05).

Radiomics analysis

Comparison of first-order radiomics features of the two
groups showed statistically significant differences in all tested
combined PET/CT features, in most of the tested PET features
(n = 15), and in half of the CT features. All features are listed
in Table 2. The distribution of the first-order PET features of
the two groups is shown in Fig. 3.

Machine learning framework

Machine learning analysis of the 3 input data sets—CT, PET,
and combined PET/CT—using the RF and KNN models,
showed that the combined PET/CT input had the highest

AUC values followed by the CT and PET inputs (Table 3;
Fig. 4).

The first-order, GLRLM, and GLDM feature groups had
AUC values above 0.9. In the KNN model, these features
showed test AUCs of 0.98, 0.96, and 0.95 and test accura-
cies of 96%, 91%, and 91%, respectively, for the combined
PET/CT input. In the RF model, these features showed test

Fig. 2 Patient flow chart

Table 2 p value results of first-order feature analysis of CT, PET, and
combined PET/CT in the study population

First-order features PET/CT CT PET

10 percentile 0.002 0.31 0.002

90 percentile < 0.001 0.06 < 0.001

Energy 0.003 0.01 0.02

Entropy 0.005 0.64 < 0.001

Inter quartile range 0.004 < 0.001 0.003

Kurtosis < 0.001 0.02 0.06

Maximum < 0.001 0.12 < 0.001

Mean absolute deviation < 0.001 < 0.001 < 0.001

Mean < 0.001 0.31 < 0.001

Median < 0.001 0.66 < 0.001

Minimum 0.008 0.13 0.005

Range < 0.001 0.35 < 0.001

Robust mean absolute deviation Nan < 0.001 Nan

Root mean squared < 0.001 0.3 < 0.001

Skewness < 0.001 < 0.001 0.77

Total energy 0.003 0.01 0.022

Uniformity 0.02 0.6 0.001

Variance 0.002 < 0.001 0.003

SD standard deviation, Nan not a number

European Radiology (2022) 32:5921–5929 5925



AUCs of 0.95, 0.93, and 0.94 and test accuracies of 88%,
84%, and 86%, respectively, for the combined PET/CT
input.

Both CT and PET inputs showed the best results for first-
order features. The RF model showed the best results for CT

inputs, with a test AUC of 0.96 and test accuracy of 90%. The
KNN model showed the best result for PET inputs with a test
AUC of 0.88 and test accuracy of 85%.

ROC curves for all feature groups of the combined PET/CT
inputs are shown in Fig. 5.

Fig. 3 Distribution of PET radiomics features. a Energy. b Entropy. c Uniformity

Table 3 Summarized results (train and test accuracy and test AUC) of themachine learning random forest and k-nearest neighbormodels for combined
PET/CT, CT, and PET inputs

Random forest K-nearest neighbors

Train accuracy
mean ± SD

Test accuracy
mean ± SD

Test AUC
mean ± SD

Train accuracy
mean ± SD

Test accuracy
mean ± SD

Test AUC
mean ± SD

PET/CT First-order 1.0 ± 0.0 0.88 ± 0.07 0.93 ± 0.05 0.96 ± 0.0 0.96 ± 0.04 0.98 ± 0.03

GLCM 0.93 ± 0.0 0.75 ± 0.09 0.85 ± 0.07 0.89 ± 0.01 0.82 ± 0.09 0.87 ± 0.08

GLRLM 1.0 ± 0.0 0.84 ± 0.09 0.95 ± 0.05 0.96 ± 0.0 0.91 ± 0.07 0.95 ± 0.06

GLDM 1.0 ± 0.0 0.86 ± 0.06 0.92 ± 0.06 0.95 ± 0.0 0.91 ± 0.05 0.96 ± 0.05

NGTDM 0.93 ± 0.0 0.64 ± 0.09 0.73 ± 0.09 0.84 ± 0.01 0.67 ± 0.08 0.71 ± 0.1

GLSZM 1.0 ± 0.0 0.77 ± 0.09 0.85 ± 0.07 0.92 ± 0.0 0.81 ± 0.09 0.86 ± 0.06

shape 1.0 ± 0.0 0.76 ± 0.07 0.82 ± 0.09 0.94 ± 0.0 0.78 ± 0.08 0.83 ± 0.09

CT First-order 1.0 ± 0.0 0.9 ± 0.06 0.96 ± 0.04 0.99 ± 0.0 0.93 ± 0.06 0.96 ± 0.05

GLCM 0.79 ± 0.0 0.63 ± 0.09 0.7 ± 0.12 0.74 ± 0.0 0.66 ± 0.08 0.68 ± 0.08

GLRLM 1.0 ± 0.0 0.79 ± 0.1 0.87 ± 0.09 0.96 ± 0.0 0.81 ± 0.11 0.84 ± 0.1

GLDM 1.0 ± 0.0 0.76 ± 0.08 0.84 ± 0.08 0.96 ± 0.0 0.79 ± 0.09 0.82 ± 0.09

NGTDM 0.79 ± 0.0 0.55 ± 0.09 0.63 ± 0.1 0.73 ± 0.01 0.57 ± 0.09 0.61 ± 0.09

GLSZM 0.94 ± 0.0 0.62 ± 0.1 0.68 ± 0.08 0.89 ± 0.01 0.64 ± 0.09 0.67 ± 0.1

shape 1.0 ± 0.0 0.78 ± 0.09 0.85 ± 0.1 0.97 ± 0.0 0.86 ± 0.08 0.87 ± 0.1

PET First-order 1.0 ± 0.0 0.65 ± 0.09 0.72 ± 0.1 0.94 ± 0.0 0.85 ± 0.09 0.88 ± 0.07

GLCM 0.81 ± 0.0 0.71 ± 0.08 0.76 ± 0.09 0.7 ± 0.01 0.64 ± 0.1 0.69 ± 0.09

GLRLM 0.81 ± 0.0 0.67 ± 0.08 0.73 ± 0.1 0.74 ± 0.02 0.63 ± 0.09 0.71 ± 0.08

GLDM 0.8 ± 0.0 0.7 ± 0.07 0.76 ± 0.07 0.73 ± 0.02 0.67 ± 0.08 0.74 ± 0.08

NGTDM 0.8 ± 0.0 0.58 ± 0.07 0.63 ± 0.07 0.75 ± 0.01 0.62 ± 0.1 0.66 ± 0.09

GLSZM 0.79 ± 0.0 0.69 ± 0.07 0.75 ± 0.08 0.71 ± 0.02 0.65 ± 0.1 0.71 ± 0.09

shape 0.68 ± 0.01 0.55 ± 0.09 0.59 ± 0.1 0.71 ± 0.02 0.56 ± 0.09 0.59 ± 0.09

GLCM Gray Level Co-occurrence Matrix, GLDM Gray Level Dependence Matrix, GLRLM Gray Level Run-Length Matrix, GLSZM Gray Level Size
Zone Matrix, NGTDM Neighboring Gray Tone Difference Matrix, SD standard deviation
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Discussion

Our analysis demonstrates that FDG PET/CT radiomics
features can distinguish between breast cancer and reactive
COVID-19 mRNA vaccine lymphadenopathy. Since the
initiation of the worldwide COVID-19 vaccination rollout,
several studies have reported the incidence and intensity of
FDG-avid axillary lymph nodes ipsilateral to the injection
site and described the association between FDG avidity and
variables such as age and immune status [16]. The inci-
dence of ipsilateral FDG-avid lymph nodes is related to
the number of vaccine doses administered, and has been
reported to be 43–54% after the second vaccine dose
[25–27] with persistent FDG uptake that can be seen be-
yond 6 weeks after the administration of the second vaccine
dose [28].

It has been shown that a higher probability for positive FDG
uptake in ipsilateral lymph nodes is correlated with longer
elapsed time since the last vaccine dose and with the number
of vaccine doses administered to the patient. According to Eifer
et al, this correlation suggests that the metabolic activity reflects
the activation of the immune system. In contrast, FDG uptake
in the injection site reflects an inflammatory reaction [16].

In patients with several lesions suspected as malignant, a
biopsy is usually performed on a single lesion, often on the
one that is most accessible rather than on the most suspicious
lesion, under the assumption that all additional lesions have
similar characteristics and features to the sampled lesion.
Radiomics may complement biopsies, as it can non-
invasively characterize tumor heterogeneity in the whole tumor
and potentially direct the biopsy needle to the most suspicious
area. In addition, as radiomics analysis can be conducted on

Fig. 4 Area under the curve (AUC) distribution (10 times of 5-fold) of PET, CT, and combined PET/CT radiomics features. a K-nearest neighbors
(KNN) model. b Random forest (RF) model

Fig. 5 Receiver operating curve (ROC) of the combined PET/CT radiomics features using machine learning models. a K-nearest neighbors (KNN)
model. b Random forest (RF) model
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several metastases in the same patient, it is possible to compare
variables among metastases. Not surprisingly, the use of
radiomics with CT and MRI has become increasingly popular,
and more recently it has been applied to PET [29].

Althoughmost radiomics studies have characterized prima-
ry tumors, several studies have used it to characterize lymph
nodes. Zheng et al [30] have shown that radiomics of FDG
PET/CT studies in patients with breast cancer, with variables
extracted from both the CT and PET portions, can distinguish
between lymph nodes invaded by lymphoma and metastatic
lymph nodes, with AUC, sensitivity, specificity, and accuracy
of 0.95, 91.7%, 94.3%, and 92.7%, respectively.

To the best of our knowledge, this is the first study that uses
radiomics to differentiate breast cancer metastatic lymph nodes
from post-COVID-19 mRNA vaccine–associated lymph
nodes. We have shown that first-order variables, specifically
those reflecting tumor homogeneity, such as entropy and uni-
formity, are among the most statistically significant variables
for distinguishing metastatic from post-COVID-19 vaccine–
associated lymph nodes. Unfortunately, to date, no studies have
examined lymph nodes histologically after COVID-19 mRNA
vaccination in such a way that would have allowed conclusions
to be drawn; however, Placke et al reported a lymph node
dissection due to suspected malignancy in a patient who re-
ceived a COVID-19 vaccine. Only marked follicular hyperpla-
sia was found [31]. In this type of reaction, the lymph node
follicles enlarge at the expense of other nodal structures and
therefore, the lymph node becomes relatively more homoge-
nous. This observation is in line with Fan et al’s findings that
reactive lymph nodes are more homogeneous on an apparent
diffusion coefficient distribution map compared to tumor me-
tastatic lymph nodes [32]. In the present study, we demonstrat-
ed that the combination of PET and CT data improves test
accuracy, as shown in the confusion matrix (Fig. 6), corrobo-
rating Zheng et al’s findings, which demonstrated the added
value of combining PET and CT radiomics [30].

This study has several limitations. First, the retrospective
nature of the study has inherent biases. Second, the number of
patients analyzed is relatively small and therefore, definite
conclusions cannot be drawn. The small sample size also
prevented us from performing deep learning analyses.
However, despite the relatively small sample, the differences
between the groups were statistically significant. Third, there
was an age difference between the two groups that might have
influenced the results, although in our opinion if there was an
effect it is negligible. Last, several scans were performed on
different PET/CT machines; however, we used a standardiza-
tion method to overcome this obstacle.

In conclusion, this pilot study has shown that FDG PET/CT
radiomics features can differentiate between FDG-avid metasta-
tic axillary lymph nodes in patients with breast cancer and FDG-
avid lymph nodes that are reactive to the COVID-19 mRNA
vaccine. Further larger studies are needed to validate these re-
sults and to evaluate if this method can also be applied to dif-
ferentiate benign lymphadenopathy from a malignant one in
other conditions where the clinical assessment is not so helpful.
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