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Abstract
In this paper, a methodology for design of fuzzy Kalman filter, using interval type-2 fuzzy models, in discrete time domain, 
via spectral decomposition of experimental data, is proposed. The adopted methodology consists of recursive parametric 
estimation of local state space linear submodels of interval type-2 fuzzy Kalman filter for tracking and forecasting of the 
dynamics inherited to experimental data, using an interval type-2 fuzzy version of Observer/Kalman Filter Identification 
(OKID) algorithm. The partitioning of the experimental data is performed by interval type-2 fuzzy Gustafson–Kessel cluster-
ing algorithm. The interval Kalman gains in the consequent proposition of interval type-2 fuzzy Kalman filter are updated 
according to unobservable components computed by recursive spectral decomposition of experimental data. Computational 
results illustrate the efficiency of proposed methodology for filtering and tracking the time delayed state variables of Chen’s 
chaotic attractor in a noisy environment, and experimental results illustrate its applicability for adaptive and real time fore-
casting the dynamic spread behavior of novel Coronavirus 2019 (COVID-19) outbreak in Brazil.

Keywords  Systems identification · Interval type-2 fuzzy systems · Recursive parametric estimation · Kalman filtering

1  Introduction

In sciences and engineering is very common the solution of 
problems with stochastic nature such as prediction, separa-
tion and detection of signals in the presence of random noise 
(Mack and Habets 2020; Gomez-Garcia et al. 2020; Liu et al. 
2019; Zhu et al. 2019; Chen et al. 2005; Hsieh 2000). Kalman 
filter (KF) is the most well known and used mathematical tool 
for stochastic estimation from noisy and uncertain measure-
ments. It was proposed by Rudolph E. Kalman in 1960, who 
published his famous paper “A New Approach to Linear Fil-
tering and Prediction Problem” (Kalman 1960), describing a 
recursive solution to discrete time linear filtering problem, and 

becoming a standard approach for optimal estimation. Since 
the time of its introduction, the Kalman filter has been the sub-
ject of extensive research and applications in the fields of orbit 
calculation, target tracking, integrated navigation, dynamic 
positioning, sensor data fusion, microeconomics, control, 
modeling, digital image processing, pattern recognition, image 
segmentation and image edge detection, and others. This broad 
interest in KF is due to its optimality, convenient form for 
online real-time processing, easy formulation and implemen-
tation (Serra 2018; Schimmack et al. 2018; Huang et al. 2018). 
The increasing in the complexity of practical dynamic systems 
has motivated researches in the sense of extending Kalman’s 
filtering theory to face with nonlinearities and uncertainties, by 
using fuzzy systems theory, mainly the type-2 fuzzy systems, 
for applications in the area of modeling and control (Gil et al. 
2019; Bouhentala et al. 2019; Hwang et al. 2019; Evangelista 
and Serra 2020; Serra 2018). These recent successful applica-
tions of type-2 fuzzy system are due to its structure based on 
rules, its capability of approximate functions, where the ante-
cedent propositions describe fuzzy operation regions (uncer-
tainties) and the consequent propositions express a nonlinear 
mapping of the physical behavior inherited to corresponding 
fuzzy operation regions (Zhang et al. 2020; Mendel 2019; 
Liang and Mendel 2000).
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The proposed methodology in this paper is based on 
designing of Kalman filters using interval type-2 fuzzy mod-
els in the discrete time domain. A new formulation of type-2 
fuzzy version of Observer/Kalman Filter Identification 
(OKID) algorithm, is proposed, for updating, recursively, 
the consequent proposition of type-2 fuzzy Kalman filter 
using spectral components extracted from the experimen-
tal data. Interval fuzzy sets characterizing the antecedent of 
type-2 fuzzy Kalman filter inference system are estimated 
by, also proposed, a formulation of interval type-2 fuzzy 
version of Gustafson-Kessel clustering algorithm. Compu-
tational results of filtering and tracking of a reference trajec-
tory through state variables of a nonlinear dynamic system 
with chaotic behavior and time delays in a noisy environ-
ment shows the efficiency of proposed methodology as com-
pared to other approach widely cited in the literature. The 
applicability of proposed methodology is illustrated through 
experimental results from real time interval tracking and 
forecasting of the COVID-19’s dynamic spreading behavior 
in Brazil.

2 � Related works

In the last years, studies involving the integration of fuzzy 
systems and Kalman filters have been proposed in the lit-
erature Pires and Serra (2019), Eyoh et al. (2018). In Wang 
et al. (2020), fuzzy sets are combined with an optimization 
method based on extended Kalman filter with probabilis-
tic-numerical linguistic information applied for tracking 
a maneuvering target. According to limited and uncertain 
information from different sensors, the methodology is able 
to merge this information and be applied to the problem 
of trace optimization in an unknown maneuvering target in 
Sichuan province in China. In Asl et al. (2020), an opti-
mization methodology of adaptive Unscented Kalman Fil-
ter (UKF) is presented by an evolutionary fuzzy algorithm 
named Fuzzy Adaptive Grasshopper Optimization Algo-
rithm, and it is efficiently applied to different benchmark 
functions, such as robotic manipulator and servo-hydraulic 
system, whose performance is better compared to previous 
versions of UKF. Despite the extensive literature in these 
contexts, there are still many fields to be explored regarding 
the association of Kalman filters and fuzzy systems.

Applications involving the association of Kalman filters 
and type-2 fuzzy systems have also been developed in sev-
eral areas in order for characterizing and reducing the effects 
of the uncertainties into dynamic systems (Evangelista and 
Serra 2019; Khanesar et al. 2012). In Lin et al. (2015), an 
interval type-2 neural fuzzy system is proposed, in which the 
consequent proposition weights are tuned via rule-ordered 
Kalman filter algorithm for enhancing learning effective-
ness, using a self-evolving property that can automatically 

generate fuzzy rules and discard derogatory features when 
applied to the problem of systems identification. In Taghavi-
far (2020), an active suspension system for electric cars, 
based on type-2 fuzzy proportional-integral-derivative 
(PID) controller and extended Kalman filter is proposed for 
improving the vehicle design to accomplish an enhanced 
ride comfort and handle performance.

Differently from aforementioned approaches and others 
ones found from literature, the scope of this paper outlines 
the integration of Kalman filter and interval type-2 fuzzy 
systems for tracking and forecasting of uncertain experimen-
tal data. The design of interval type-2 fuzzy Kalman filter, 
according to proposed methodology, is based on spectral 
unobservable components and uncertainty regions extracted 
from experimental data of dynamic systems.

2.1 � Motivation and contributions

Among the main aspects characterizing the complexity of 
problems in science and engineering are the nonlinearities 
(Bendat 1998; Schoukens and Ljung 2019), uncertainties 
(Martynyuk et al. 2019), noisy and non-stationary environ-
ment (Hendricks et al. 2008; Moss and McClintock 1989), 
temporal variability (Tomás-Rodríguez and Banks 2010), 
among others. Computational modeling approaches which 
consider these complexities in their formulations do have 
better performance for facing to conditions of stability and 
convergence (Bonyadi and Michalewicz 2016; Boutayeb 
et al. 1997), polarized parametric estimation (Chan et al. 
2020; Haessig and Friedland 1998), non-modeled dynamics 
(Khayyam et al. 2020), high approximation and prediction 
errors (Tang et al. 2020). In data analysis, an increasingly 
concern from researchers is related to the presence of several 
types of uncertainties such as inaccuracy and incompleteness 
of data and information, parametric and structural uncer-
tainties, propagation and accumulation of uncertainties, and 
unknown initial conditions, that must be taken into account 
by modeling approaches in order to ensure accurate models 
for real-world problems (Wang and Zhao 2013). Although 
recent studies have addressed the processing of uncertain-
ties in the formulation of data analysis methodologies in 
different application domains such as engineering (Ma and 
Ma 2020), health (Heintzman and Kleinberg 2016), epide-
miology (Gilbert et al. 2014), economics (Khairalla et al. 
2018), among others, the research in this issue is still open. 
This has motivated the development of tools using fuzzy 
systems theory for data analysis (Hurtik et al. 2020; Lan 
et al. 2020; Pires and Serra 2020), mainly from the associa-
tion of Kalman filters and type-2 fuzzy systems, which is 
the particular motivation of this paper in the sense of over-
coming limitations of classic Kalman filtering to face high 
order nonlinearities, processing different types of uncertain-
ties using interval fuzzy operation regions in non-stationary 
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experimental dataset, and guaranteeing a set of possible 
solutions within a confidence region.

The originality of proposed methodology is outlined by 
the following main contributions: 

(a)	 A computational approach based on the successful inte-
gration of Kalman filters and type-2 fuzzy systems for 
adaptive tracking and real time forecasting of uncertain 
experimental dataset.

(b)	 Formulation of interval type-2 fuzzy clustering algo-
rithm based on adaptive similarity distance mechanism 
able to define specific operation regions associated to 
the behavior and uncertainty inherent to experimental 
dataset.

(c)	 Formulation of computational model with intelli-
gent machine learning based on interval type-2 fuzzy 
Kalman filter, for adaptive tracking and real time fore-
casting the behavior and uncertainty inherent to exper-
imental dataset, from the specific operation regions 
defined in item “b”.

3 � Interval type‑2 fuzzy computational 
model

In this section, the proposed methodology for designing the 
interval type-2 fuzzy Kalman filter computational model 
from experimental data, is presented. Formulations for 
pre-processing the experimental data by spectral analysis, 
parametric estimation of interval type-2 fuzzy Kalman fil-
ter antecedent proposition, parametric estimation of interval 
type-2 fuzzy Kalman filter consequent proposition and its 
recursive updating mechanism, are addressed.

3.1 � Pre‑processing by singular spectral analysis

The singular spectral analysis technique is a mathematical 
tool for analyzing and decomposing complex time series into 
simpler components within the original data. Such unob-
servable components have relevant characteristics about the 
corresponding time series behavior (Elsner 2002).

3.1.1 � Training step

Let the initial experimental data set referring to p outputs of 
the dynamic system under analysis, with Nb samples, given 
by:

where �k ∈ ℝ
p , with k = 1,… ,Nb , is the output vector of 

the dynamic system at instant of time k. From this initial 

(1)� = [�1 �2 … �Nb
], � ∈ ℝ

p×Nb

data set, a trajectory matrix � is defined, for each of the 
dimensions of � , considering a set of � delayed vectors with 
dimension � , which is an integer number defined by user 
with 2 ≤ � ≤ Nb − 1 and � = Nb − � + 1 , given by:

and the covariance matrix � is obtained as follows:

By applying the Singular Value Decomposition (SVD) pro-
cedure to covariance matrix � , it is obtained as resulting 
variables a set of eigenvalues �1 ≥ �2 ≥ ⋯ ≥ �� ≥ 0 and 
their respective eigenvectors, �1

,�2
,… ,�� , which represent 

the level of correlation between the experimental dataset 
and each spectral component to be extracted (Elsner 2002; 
Serra 2018).

C o n s i d e r i n g  d = max{𝜍, such that 𝜎𝜍 > 0} ,  a n d 
�� = �T��∕

√
��  with � = 1,… , d , the singular value 

decomposition of the trajectory matrix � , can be rewritten 
as

where the matrix ��|�=1,…,d is elementary (it has rank equal 
to 1), and is given by:

The regrouping of ��|�=1,…,d into � linearly independent 
matrices terms �j|j=1,…,� , such that � ≤ d , results in

where � is the number of unobservable components extracted 
from experimental data. The unobservable spectral compo-
nents �j|j=1,…,� extracted from experimental data, resulted 
from the matrices �j|j=1,…,� , are given by:

where �∗ = min (�, �) , �∗ = max (�, �) and Nb = � + � − 1.

(2)� =

⎡
⎢⎢⎢⎣

y1 y2 y3 ⋯ y�
y2 y3 y4 ⋯ y�+1
⋮ ⋮ ⋮ ⋱ ⋮

y� y�+1 y�+2 ⋯ yNb

⎤
⎥⎥⎥⎦
, � ∈ ℝ

�×�

(3)� = ��T , � ∈ ℝ
�×�

(4)� = �1 +�2 +⋯ +�d

(5)�� =
√
������T , �� ∈ ℝ

�×�

(6)� = �1 + �2 +⋯ + ��

(7)𝛼
j

k
=

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1

k

k+1�
𝜈=1

I
j

𝜈,k−𝜈+1
1 ≤ k ≤ 𝛿∗

1

𝛿∗

𝛿∗�
𝜈=1

I
j

𝜈,k−𝜈+1
𝛿∗ ≤ k ≤ 𝜌∗

1

Nb−k+1

Nb−𝜌
∗+1�

𝜈=k−𝜌∗+1

I
j

𝜈,k−𝜈+1
𝜌∗ < k ≤ Nb
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3.1.2 � Recursive step

After the initialization of spectral analysis algorithm in the 
training step, the next steps will be repeated for each time 
instant k = Nb + 1,Nb + 2,… , as formulated in sequel. The 
value of � is increased by:

The covariance matrix is updated, recursively, as follows:

where �
k
= �

k
�T

k
∈ ℝ

�×� with � k =
[
y�, y�+1,… , yk

]T
∈ ℝ

�×1 . 
Applying SVD procedure to covariance matrix �k , the set 
of eigenvalues and their respective eigenvectors are updated 
such that the dynamic system output yk can be rewritten by:

where h�
k
= �

�

k
�T

k
�
�

k
 , with � = 1,… , d , such that ��

k
 corre-

sponds to the last element of the eigenvector ��

k
 . Finally, 

the regrouping of the terms h�
k
|�=1,…,d in � disjoint terms 

I
j

k
|j=1,…,� , results in

such that Ij
k
= �

j

k
, with j = 1,… , � and k = N

b
+ 1,N

b
+ 2,… , rep-

resents the samples of extracted unobservable components at 
instant k. The Recursive Singular Spectral Analysis, accord-
ing to proposed methodology, is implemented as described 
in Algorithm 1.

(8)� = k − � + 1

(9)�k = �k−1 + �k, �k ∈ ℝ
�×�

(10)yk = h1
k
+ h2

k
+⋯ + hd

k

(11)yk = I1
k
+ I2

k
+⋯ + I

�

k

3.1.3 � Recursive estimation of measurement noise 
covariance

The spectral components, extracted by singular spectral 
analysis in Sect. 3.1, that presents smaller eigenvalues, are 
considered as residuals and they are used as data set for 
recursive estimation of measurement noise covariance R, 
inherited to experimental data. The initial covariance of 
measurement noise v, is given by:

where Nb is the length of experimental data set to be used in 
training step for initial parameterization of interval type-2 
fuzzy Kalman filter and v is the spectral component �j con-
sidered as residual. The recursive updating of covariance R, 
at instants of time k = Nb + 1,Nb + 2,… , is given by:

Once the covariance R of the residual v is computed, an adaptive 
factor Xk , with k = Nb + 1,Nb + 2,… , is proposed, to be used 
as weighting factor for implementing the recursive updating 
mechanism of interval type-2 fuzzy Kalman filter, as follows:

(12)R =
1

Nb

Nb∑
j=1

vjv
T
j

(13)Rk =
k − 1

k
Rk−1 +

1

k
vkv

T
k

(14)

⎧⎪⎨⎪⎩

Xk = 1 for Rk < 1

Xk = R−1
k

for 1 ≤ Rk ≤ 1000

Xk = 1 × 10−3 for Rk > 1000
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The algorithm for recursive estimation of noise covariance R 
and weighting factor X  , according to proposed methodology, 
is implemented as described in Algorithm 2.

proposition of type-2 fuzzy Kalman filter rules, according 
to normalized interval activation degrees �̃i

W̃i
(�k) , of each 

i-th rule, as follows:

3.2 � Parametric estimation of interval type‑2 fuzzy 
Kalman filter

The adopted structure of interval type-2 fuzzy Kalman filter 
presents the i|[i=1,2,…,c]-th fuzzy rule, given by:

with n-th order, m inputs, p outputs, where �k is the lin-
guistic variable of the antecedent; W̃i is the interval type-2 
fuzzy set; �̂�

i

k
∈ ℝ

n is the estimated interval states vector of 
the nonlinear dynamic system; �̂�

i

k
∈ ℝ

p is the estimated 
interval output vector and �k ∈ ℝ

m is the input signal. The 
matrices �̃i

k
∈ ℝ

n×n , �̃i
k
∈ ℝ

n×m , �̃i
k
∈ ℝ

p×n , �̃i
k
∈ ℝ

p×m 
and �̃i

k
∈ ℝ

n×p are, respectively, state matrix, input matrix, 
output matrix, direct transmission matrix and Kalman 
gain matrix, which are uncertain parameters that describe 
the dynamics of the nonlinear system within a region of 
uncertainty. The residual error �̃i

k
 for i-th rule is defined 

as ��i
k
= �k −

�̂�
i

k
 , where �k ∈ ℝ

p is the real output of the 
dynamic system and �̂�

i

k
 is the interval estimated output by 

i-th linear submodel, and the Xk is the weighting factor, as 
formulated in Sect. 3.1.3, which corresponding to the level 
of filtering to be applied by interval type-2 fuzzy Kalman 
filter on the experimental data.

The interval type-2 fuzzy Kalman filter approximates the 
dynamic behavior inherited to experimental data through the 
weighted sum of Kalman filters defined in the consequent 

(15)

R(i) ∶ IF �k IS
�Wi

THEN

{
�̂�
i

k+1
= ��i

k
�̂�
i

k
+ ��i

k
�k +Xk

��i
k
��
i

k

�̂�
i

k
= ��i

k
�̂�
i

k
+ ��i

k
�k

with �̃i

W̃i
(�k) =

[
�i

W̃i
(�k),�

i

W̃i
(�k)

]
 , where �i

W̃i
(�k) and 

�
i

W̃i
(�k) corresponds to lower and upper activation degrees 

in i-th cluster, respectively, and c is the number of rules of 
interval type-2 fuzzy Kalman filter, such that:

3.2.1 � Parametric estimation of antecedent

The partitioning of experimental data implies to computing 
of operating regions and, necessarily, the number of rules of 
the interval type-2 fuzzy Kalman filter. An interval type-2 
fuzzy version of Gustafson-Kessel clustering algorithm 
(Babuska 1998), was proposed, which is formulated in the 
sequel.

Given the experimental data set � , previously collected, 
choose the number of clusters 1 < c < Nb ; the random initial 
interval partition matrix �̃(0) ∈ ℝ

c×Nb , the termination toler-
ance E > 0 and the interval weighting exponent m̃ =

[
m,m

]
 , 

where m and m correspond to, respectively, weighting 

(16)

�̂�k+1 =

c∑
i=1

�𝜇i

�Wi
(�k)

��i
k
�̂�k +

c∑
i=1

�𝜇i

�Wi
(�k)

��i
k
�k

+

c∑
i=1

�𝜇i

�Wi
(�k)Xk

��i
k
��
i

k

�̂�k =

c∑
i=1

�𝜇i

�Wi
(�k)

��i
k
�̂�k +

c∑
i=1

�𝜇i

�Wi
(�k)

��i
k
�k

(17)
c∑

i=1

�̃i

W̃i
(�k) = 1, �̃i

W̃i
(�k) ≥ 0
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exponent of upper and lower membership functions of the 
interval type-2 fuzzy set W̃i.

Repeat for l = 1, 2,…

	Step 1.	 Compute the centers of the clusters �̃i(l):

where �k is the data at sample k and �̃i

W̃i
(�k) is the 

interval membership degree of �k in the i-th cluster.
	Step 2.	 Compute the covariance matrices �̃i of the clusters:

	Step 3.	 Compute the distances D̃i

k�̃i
:

	Step 4.	 Update the partition matrix �̃(l):
		    If �Di

k��i
> 0 for 1 ≤ i ≤ c , 1 ≤ k ≤ Nb

(18)�̃i
(l)

=

Nb∑
k=1

(
�̃i

W̃i
(�k)

i(l−1)
)m̃

�k

Nb∑
k=1

(
�̃i

W̃i
(�k)

(l−1)
)m̃

, 1 ≤ i ≤ c

(19)

�̃i =

Nb∑
k=1

(
�̃i

W̃i
(�k)

(l−1)
)m̃(

�k − �̃i
(l)
)(

�k − �̃i
(l)
)T

N∑
k=1

(
�̃i

W̃i
(�k)

(l−1)
)m̃

,

1 ≤ i ≤ c, 1 ≤ k ≤ Nb

(20)

D̃i

k�̃i
=

√
(
�k − �̃i

(l)
)T[

det

(
�̃i

)1∕n(
�̃i

)−1
](
�k − �̃i

(l)
)

(21)�̃i(l)

W̃i
(�k) =

[
�i

W̃i
(�k),�

i

W̃i
(�k)

]

where

otherwise

The interval type-2 fuzzy Gustafson-Kessel cluster-
ing algorithm, according to proposed methodology, is 
implemented as described in Algorithm 3.

(22)

�i(l)

W̃i
(�k) = min

⎡
⎢⎢⎢⎢⎢⎣

1
c�

j=1

�
Di

k�i∕D
i

k�i

�2∕(m−1)
,

1
c�

j=1

�
D

i

k�
i∕D

i

k�
i

�2∕(m−1)

⎤
⎥⎥⎥⎥⎥⎦

(23)

�
i(l)

W̃i
(�k) = max

⎡
⎢⎢⎢⎢⎢⎣

1
c�

j=1

�
Di

k�i∕D
i

k�i

�2∕(m−1)
,

1
c�

j=1

�
D

i

k�
i∕D

i

k�
i

�2∕(m−1)

⎤⎥⎥⎥⎥⎥⎦

�𝜇i
(l)

�Wi
(�

k
) = [0, 0] with 𝜇i

(l)

�Wi
(�

k
) ∈ [0, 1] e 𝜇

i
(l)

�Wi
(�

k
) ∈ [0, 1]

�����
‖‖‖��

(l) − ��(l−1)‖‖‖ < E
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3.2.2 � Parametric estimation of consequent

The interval type-2 fuzzy OKID (Observer/Kalman Fil-
ter Identification) algorithm, is proposed, as formulated 
in the sequel. Let the experimental dataset � , such that 
�k =

[
�k�

∗
k

]T , where �∗
k
 corresponds to spectral components 

extracted from the experimental dataset that presents higher 
eigenvalue and are more significant to represent the dynam-
ics of experimental dataset. Choose an appropriate number 
of Markov parameters q, through the following steps:

	Step 1.	 Compute the matrix of regressors � , given by:

	Step 2.	 Compute the interval observer Markov parameters 
̃
�

i:

where

is the diagonal weighting matrix of the i-th fuzzy rule 
obtained from the interval type-2 Gustafson-Kessel 
fuzzy clustering algorithm and

is the interval observer Markov parameters of i-th rule 
such that

and �̂� is the interval output of type-2 fuzzy Kalman 
filter.

(24)� =

⎡
⎢⎢⎢⎢⎢⎣

�q �q+1 ⋯ �Nb−1

�q−1 �q ⋯ �Nb−2

�q−2 �q−1 ⋯ �Nb−3

⋮ ⋮ ⋱ ⋮

�0 �1 ⋯ �Nb−q−1

⎤
⎥⎥⎥⎥⎥⎦

(25)�̂�
T
=

c∑
i=1

��
i
�T ��

iT

(26)�̃
i
=

⎡⎢⎢⎢⎢⎢⎣

�̃i

W̃i
(�q) 0 … 0

0 �̃i

W̃i
(�q+1) … 0

0 0 … 0

⋮ ⋮ ⋱ ⋮

0 0 … �̃i

W̃i
(�Nb−1

)

⎤⎥⎥⎥⎥⎥⎦

(27)

̃
�

i

=
[
�̃i

k
�̃i

k

̃
�
i

k
�̃i

k
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(28)̃
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]

(29)̃
�
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=
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+ �̃i
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�̃i
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,−�̃i

k

]

Manipulating the Eq. (25):

where � =
[
�1 �2 … �Nb

]
∈ ℝ

p×Nb corresponds to out-
put vector of dynamic system. Assuming �̃

i
= ��̃

i
�T and 

ℵ̃
i
= ��̃

i
�T , Eq. (30) is rewriting as:

The Eq. (31) is solved by QR factorization method (Chen 
1999), which is numerically robust since it avoids matrix 
inverse operations. Applying QR factorization to the term 
�̃

i
 on the right side of the Eq. (31), it has:

where �̃i is an orthogonal matrix, such that 
(
�̃i

)−1

=
(
�̃i

)T

 
and �̃i is an upper triangular matrix. Because the matrix �̃i 
is upper triangular, Eq. (32) can be solved by backward 
replacement, obtaining the observer’s Markov parameter 
vector ̃

�
i.

	Step 3.	 Compute the observer gain and system Markov 
parameters:

where ̃�
i

j
 are the interval observer Markov parameters 

obtained from Step 2 for i-th cluster. Thus, the system 
Markov parameters �̃i

j
 are obtained as follows:

(30)��̃
i
�T = ��̃

i
�T ̃�

iT

(31)��
ĩ
�
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i
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= ℵ̃
i

(33)̃
�
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̃
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k
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k

(
�̃i

k
+ �̃i

k
�̃i

k

)(j−1)(
�̃i
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k
�̃i

k

)
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−�̃i
k

(
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k
+ �̃i

k
�̃i

k

)(j−1)

�̃i
k

]

(36)=

[
̃
�

i(1)

j
, −

̃
�

i(2)

j

]
, j = 1, 2, 3,…

(37)�̃i
0
=
̃
�

i

0
= �̃i

k

(38)�̃i
j
=
̃
�

i(1)

j
−

j∑
�=1

̃
�

i(2)

j
�̃i

j−�
, for j = 1,… , q
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and the observer gain Markov parameters �̃io

j
 are 

obtained by:

	Step 4.	 Step 4  -  Construct the Hankel matr ix 
�̃i(j − 1) ∈ ℝ

�p×�m:

where � and � are sufficiently large arbitrary integers 
defined by user.

	Step 5.	 For j = 1 , decompose �̃i(0) using Singular Value 
Decomposition:

where �̃
i
∈ ℝ

�p×�p and �̃
i
∈ ℝ

�m×�m are orthogonal 
matrices and �̃

i
∈ ℝ

�p×�m is the diagonal matrix of 
singular values defined as:

such that n is the number of significant singular values 
and determines the minimum order of the type-2 fuzzy 
Kalman filter. Thus, the size of matrices in Eq. (44) is 
reduced to the minimum order, as follows:

where �̃
i

n
∈ ℝ

�p×n , �̃
i

n
∈ ℝ

�m×n , �̃
i

n
∈ ℝ

n×n are the 
resulting matrices after the reduction to minimum 
order.

	Step 6.	 Compute the observability and controllability 
matrices:

(39)�̃i
j
= −

q∑
�=1

̃
�

i(2)

j
�̃i

j−�
, for j = q + 1,… ,∞

(40)�̃io
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̃
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= �̃i

k
�̃i

k

(41)�̃io
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̃
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i(2)

j
−

j−1∑
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̃
�

i(2)

j
�̃io

j−�
, for j = 2,… , q

(42)�̃io

j
= −

q∑
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̃
�

i(2)

j
�̃io

j−�
, for j = q + 1,… ,∞

(43)�̃i(j − 1) =
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�̃i
j

�̃i
j+1

… �̃i
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(45)�̃
i
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i

n
0

0 0

]

(46)�̃i
n
(0) = �̃

i

n
�̃
i

n
�̃

iT

n

where

is the observability matrix and

is the controllability matrix.
	Step 7.	 Compute the matrices that make up the consequent 

proposition of interval type-2 fuzzy Kalman filter:

	Step 8.	 Compute the interval Kalman gain matrix:

where �̃io

j
 is the observer gain Markov parameters, P̃

i

�
 

is the observability matrix and �̃i
k
 is the interval 

Kalman gain matrix. Manipulating the Eq. (55):

Assuming �̃
i
= −P̃

iT

�
�̃
i
P̃

i

�
 and �̃

i
= P̃

iT

�
�̃
i
�̃io

j
 , Eq. (56) 

is rewriting as follows:

The Eq. (57) is solved by QR factorization method 
being applied to �̃

i
 and obtaining the interval Kalman 

gain matrix �̃i
k
 in the same way as done in Step 2 for 

determining interval observer Markov parameters.
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Recursive updating of interval type-2 fuzzy Kalman fil-
ter inference system After the initial estimation of interval 
type-2 fuzzy Kalman filter, the Kalman filters, into conse-
quent proposition of interval type-2 fuzzy Kalman filter 
inference system, are updated recursively at instants of 
time k = Nb + 1, k = Nb + 2,… , to each new sample from 
experimental data set. Considering the regressors vector �k , 
at instant k, given by

the interval observer Markov parameters ̃�
i

k
 are obtained by 

recursive updating of Eq. (31), as follows:

(58)�k =

⎡
⎢⎢⎢⎢⎢⎣

�k+1
�k

�k−1

⋮

�k−q

⎤
⎥⎥⎥⎥⎥⎦

(59)�̃
i

k
=�̃

i

k−1
+ �̃i

W̃i
(�k)�k�

T
k

Once �̃
i

k
 and �ℵ

i

k
 have been updated, and applying the QR 

factorization in �̃
i

k
 , the observer Markov parameters for i-

th cluster at sample k, ̃�
i

k
 , are updated. The consequent 

proposition of the type-2 fuzzy Kalman filter is updated 
recursively by repeating the Steps 3–7. Similarly, the interval 
type-2 fuzzy Kalman gain matrix �̃i

k
 is obtained by recursive 

updating of Eq. (57), as follows:

Once �̃
i

k
 and �̃

i

k
 have been updated, and applying the QR 

factorization method in �̃
i

k
 , the interval type-2 fuzzy Kalman 

gain matrix is updated.
The interval type-2 fuzzy Observer/Kalman Filter Iden-

tification algorithm, according to proposed methodology, is 
implemented as described in Algorithm 4.
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W̃i
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(62)�̃
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=�̃
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(�k)�k�

T
k
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3.3 � Computational load analysis of interval type‑2 
fuzzy Kalman filter algorithm

The parameters � , � and q must be adequately defined for 
implementation of interval type-2 fuzzy Kalman filter algo-
rithm, that requires some intuition by expert on the experi-
mental dataset. The parameters � and � are related to dimen-
sion and rank of Hankel matrix in Eq. (43) so that a good 
conditioning can be guaranteed for parametric estimation of 
consequent proposition in interval type-2 fuzzy Kalman fil-
ter, according to Eqs. (51)–(54), whose most typical values 
are into the interval 

Nb

10
< 𝛾 , 𝛽 <

Nb

2
 , where Nb is the length 

of experimental dataset (Juang 1994; Hangos et al. 2004). 
The numerical value of q is related to the number of observ-
er’s Markov parameters, i.e., the most representative factors 
of impulse response from experimental dataset, according 
to Eq. (27), so that CAkB ≈ 0 for k ≥ q implies to the trun-
cated matrix ̃

�
i , in order to lead to a unique solution for the 

parametric estimation of consequent proposition in interval 
type-2 fuzzy Kalman filter, whose most typical values are 
into the interval 1 ≤ q ≤ 10 (Callier and Desoer 1991; Ant-
saklis and Astolfi 2020).

The computational load of the interval type-2 fuzzy 
Kalman filter algorithm, in the each iteration, is related 
to the number of fuzzy rules and the number of estimated 
parameters, according as following:

where CL is the computational load, c is the number of 
fuzzy rules and Np is the number of parameters estimated 
by interval type-2 fuzzy Kalman filter, which are the matri-
ces �,�,�,�,� . The multiplicative factor 2 is applied as 
a consequence of the interval type-2 structure of the fuzzy 
Kalman filter algorithm, i. e., it is required the nonlinear 
combination of two groups of fuzzy Kalman filters to define 
the upper and lower limits for tracking and forecasting of 
experimental dataset.

Since the number of fuzzy rules c is pre-established and 
the interval type-2 fuzzy Kalman filter algorithm guaran-
tees the minimum realization for the identified model, i. 
e, establishes the smallest possible order for the matrices 
�,�,�,�,� , the computational load defined in Eq. (63) 
for the implementation of the proposed methodology is 
minimal.

4 � Results

In this section, computational results from filtering and 
tracking the reference trajectory through state variables of 
a nonlinear dynamic system with chaotic behavior and time 

(63)CL = 2 × c × Np

delays, are shown to illustrate the efficiency of proposed 
methodology as compared to other approaches widely cited 
in the literature. Experimental results from real time interval 
tracking and forecasting the COVID-19’s dynamic spread-
ing behavior in Brazil, so to demonstrate the applicability of 
proposed methodology, are also presented.

4.1 � Computational results

In this section, computational results for filtering and track-
ing the reference trajectory through state variables of Chen’s 
chaotic attractor in a noisy environment, is presented.

4.1.1 � Interval type‑2 fuzzy Kalman filtering and tracking 
of Chen’s chaotic attractor

The Chen’s chaotic attractor (1999), is given by:

where the parameters � = 35 , � = 28 and ℏ = 3 provide a 
chaotic behavior. A data set from Chen’s chaotic attrac-
tor, considering the initial condition �0 = [−10 0 37]T  , 
with total length of 4000 samples by a sampling period of 
T = 2, 5ms , was generated. A reference trajectory �(t) was 
constructed by artificially repeating some portion �(1696) , 
�(1697) , … , �(1982) of the original data with a smoothly 
interpolated portion {�̌(1983), �̌(1984), �̌(1985)} obtained 
as follows (Wu et al. 2015):

(64)
ẋ1 = 𝜂(x2 − x1)

ẋ2 = (𝜗 − 𝜂)x1 + bx2 − x1x3
ẋ3 = x1x2 − ℏx3
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Fig. 1   Experimental data set of Chen’s chaotic attractor with unex-
pected time-delays during 1, 5 s ≤ t ≤ 3, 5 s
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with � = 1, 2,… ,N − 1 ( N = 4 for this experiment), such 
that the reference trajectory �(t) =

[
r1(t) r2(t) r3(t)

]T must 
be tracked by state variables of Chen’s chaotic attractor. The 
variable �k , in Eq. 15 of proposed methodology, is consid-
ered as white noise signal with variance of each input given 
by (Wu et al. 2015):

(65)�̌(1982 + 𝜔) = �(1982) +
𝜔

4
[�(1696) − �(1982)]

(66)
�(uM(t)) = 0.5% ×

[
max rM(kT) − min rM(kT)

]
, M = 1,… , 3

resulting in

where �(t) =
[
u1(t) u2(t) u3(t)

]T is the input vector applied 
to Chen’s chaotic attractor dynamic system. In the applica-
tion context of interval type-2 fuzzy Kalman filter for track-
ing the reference trajectory �(t) , the occurrence of unex-
pected time-delays in inputs and states is considered, such 
that the Chen’s chaotic attractor dynamic system is described 
by:

where w(t) and v(t) are, respectively, zero-mean white noises 
of process and measurement such that the covariances are 
defined as cov (w) = 0, 02 and cov (v) = 0, 002 . The state 
time-delays are �1 = 5 ms , �2 = 3, 75 ms , �3 = 2, 5 ms and 
the input time-delays are �4 = �5 = �6 = 2, 5 ms for time 
interval 1, 5 s ≤ t ≤ 3, 5 s . The resulting data set for this 
context is shown in Fig. 1. The goal is to design the interval 
type-2 fuzzy Kalman filter for filtering and tracking the ref-
erence trajectory �(t) considering failing data.

The first 200 samples were used in training step for initial 
parameterization of interval type-2 fuzzy Kalman filter. The 
unobservable components associated to state variables x1 , x2 
and x3 of Chen’s chaotic attractor were extracted by singu-
lar spectral analysis approach, according Sect. 3.1, for pre-
processing of data set. The noisy state variables x1 , x2 and 
x3 were decomposed into 2 spectral components which are 
shown in Figs. 2, 3 and 4. The �2 component, extracted from 
each state variable, assuming correlated to nominal dynamic 
of state variables x1 , x2 and x3 , was used for parameterizing 
the interval type-2 fuzzy Kalman filter.

The weighting matrix Xk for implementing the recursive 
updating mechanism of interval type-2 fuzzy Kalman filter is 
defined as identity matrix as applied for filtering and track-
ing the reference trajectory �(t) . The partitions of computa-
tional data from noisy variable � =

[
x1 x2 x3

]T were defined 
by interval type-2 fuzzy Gustafson-Kessel clustering algo-
rithm, so the antecedent proposition, the rules number, and 

(67)�(�(t)) = [0.129 0.135 0.055]T

(68)

⎡
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ẋ1(t)
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⎤
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⎡
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−𝜂 𝜂 0
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0 0 − ℏ

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x1(t − 𝜏1)

x2(t − 𝜏2)

x3(t − 𝜏3)

⎤
⎥⎥⎦

+

⎡
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0

x1(t − 𝜏1)x3(t − 𝜏3)
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⎤
⎥⎥⎦
+

+

⎡⎢⎢⎣

u1(t − 𝜏4)

u2(t − 𝜏5)

u3(t − 𝜏6)

⎤⎥⎥⎦
+ w(t)

(69)
⎡⎢⎢⎣
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⎤⎥⎥⎦
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⎤⎥⎥⎦
+ v(t)
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Fig. 2   The spectral components �j|j=1,…,2 , which were extracted for 
state variable x1 from Chen’s chaotic attractor: a �1 ; b �2
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Fig. 3   The spectral components �j|j=1,…,2 , which were extracted for 
state variable x2 from Chen’s chaotic attractor: a �1 ; b �2
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consequent proposition, of the interval type-2 fuzzy Kalman 
filter, could be estimated successfully. For implementing the 
interval type-2 fuzzy clustering algorithm, the following 
parameters were adopted: number of clusters c = 2 , interval 
weighting exponent m̃ = [1, 5 2] and termination tolerance 
E = 10−5 . The parametric estimation of consequent proposi-
tion of interval type-2 fuzzy Kalman filter inference system, 
in Eq. 15, took into account the partitions on noisy variable 
� =

[
x1 x2 x3

]T as weighting criterion, and the parameters 
values: q = 1 , � = 10 e � = 10 . The confidence regions, as 
shown in Figs. 5, 6 and 7, created by interval type-2 fuzzy 
Kalman filter taking into account uncertainties, estimated 
by interval type-2 membership functions inherited to noisy 
data from Chen’s chaotic attractor, illustrates its efficiency 
for tracking the reference trajectory �(t).

The estimation of the temporal behavior of main diagonal 
elements from interval type-2 fuzzy Kalman gain matrix �̃i 
during recursive updating of interval type-2 fuzzy Kalman 
filter for filtering and tracking the reference trajectory �(t) , 
is shown in Figs. 8, 9.

The upper and lower instantaneous activation degrees 
related to interval type-2 fuzzy Kalman filter inference sys-
tem, during its training and recursive steps, for filtering and 
tracking the reference trajectory �(t) through state variables 
of Chen’s chaotic attractor, are shown in Fig. 10.

The efficiency of interval type-2 fuzzy Kalman filter 
algorithm as compared to approach (Wu et al. 2015) and 
others clustering algorithms (Fuzzy C-Means and Possibil-
istic C-Means), for filtering and tracking the reference trajec-
tory �(t) through state variables of Chen’s chaotic attractor, 

Fig. 4   The spectral components 
�j|j=1,…,2 , which were extracted 
for state variable x3 from Chen’s 
chaotic attractor: a �1 ; b �2
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Fig. 5   The confidence region obtained for filtering and tracking the 
reference trajectory r1(t) by state variable x1 of Chen’s chaotic attrac-
tor



255Evolving Systems (2022) 13:243–264	

1 3

based on Mean Absolute Error (MAE) validation criterion, 
is shown in Table 1.

4.2 � Experimental results

In this section, experimental results for forecasting analysis 
of dynamic spread behavior taking into account the experi-
mental data of daily deaths reports caused by Covid-19 in 
Brazil, are presented.

4.2.1 � Interval type‑2 fuzzy Kalman filtering and forecasting 
analysis of the dynamic spread of COVID‑19 in Brazil

The experimental data corresponding to daily deaths reports 
within the period ranging from 29 of February 2020 to 18 
of May 2020, in Brazil, is shown in Fig. 11. Once that the 
problem of interest, in this paper, is based on the time series 
related to daily deaths reports in Brazil, the variable �k , in 

Eq. 15 of proposed methodology, is considered as white 
noise signal with low amplitude.

The pre-processing of experimental data by singular 
spectral analysis, was able for extracting the unobservable 
components associated to daily deaths reports. The Variance 
Accounted For (VAF) was considered as criterion for evalu-
ating the appropriate number of these components, within 
a range from 2 to 15 ones, for best representation of the 
experimental data, as shown in Fig. 12.

As it can be seen, considering the cost-benefit balance for 
computational practical application of the proposed meth-
odology, the appropriated number of unobservable compo-
nents was � = 10 , with VAF value of 99,98% in efficiency 
to represent as accurately as possible the experimental data 
and, at same time, reducing the computational load of inter-
val type-2 fuzzy Kalman filter algorithm. The illustration of 
spectral unobservable components �1 and �10 , which were 
extracted from daily deaths reports in Brazil, are shown in 
Fig. 13.

Fig. 6   The confidence region obtained for filtering and tracking the 
reference trajectory r2(t) by state variable x2 of Chen’s chaotic attrac-
tor

Fig. 7   The confidence region obtained for filtering and tracking the 
reference trajectory r3(t) by state variable x3 of Chen’s chaotic attrac-
tor
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The partitions of experimental data related to daily deaths 
reports were defined by interval type-2 fuzzy Gustafson-
Kessel clustering algorithm, as shown in Fig. 14, so the 
antecedent proposition, the rules number, and consequent 
proposition, of the type-2 fuzzy Kalman filter, could be esti-
mated successfully. For implementing the proposed type-2 

fuzzy clustering algorithm, the following parameters were 
adopted: number of clusters c = 3 , interval weighting expo-
nent m̃ = [1, 5 2, 3] and termination tolerance E = 10−5.

The implementation of interval type-2 fuzzy OKID algo-
rithm, for parametric estimation of consequent proposition 
in the type-2 fuzzy Kalman filter inference system, in Eq. 15, 

Fig. 8   Interval type-2 fuzzy 
Kalman gain matrix of rule 1 
for filtering and tracking the 
reference trajectory �(t) : a K̃1
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took into account the partitions on daily deaths reports, in 
Fig 14, as weighting criterion, and the parameters values: 
q = 1 , � = 15 e � = 15 . According to experimental data 
of daily deaths reports in Brazil shown in Fig. 11, the pre-
processed unobservable components shown in Fig. 13, the 
interval type-2 fuzzy normalized membership values shown 
in Fig. 14, the initial parametric estimation of the type-2 
fuzzy Kalman filter was computed by training step. The 
confidence region, as shown in Fig. 15, created by initial 
estimation of interval type-2 fuzzy Kalman filter taking into 
account uncertainties estimated by interval type-2 member-
ship functions shown in Fig. 14, inherited to experimental 

data ranging from 29 of February 2020 to 18 of May 2020, 
illustrates its efficiency for tracking the experimental data of 
daily deaths reports in Brazil.

From this confidence region, shown in Fig. 15, an interval 
normal distribution projections were estimated, delimiting 
upper and lower limits for forecasting the future daily deaths 
reports in Brazil. The efficiency of interval type-2 fuzzy 
Kalman filter based on its initial estimation by training step 
from experimental data of daily deaths reports ranging from 
29 of February 2020 to 18 of May 2020, for forecasting the 
future (validation) experimental data of daily deaths reports 
within the period ranging from 19 of May 2020 to 27 of May 

Fig. 10   Instantaneous normal-
ized fuzzy activation degrees: 
a upper activation degrees; b 
lower activation degrees

Table 1   Performance of interval type-2 fuzzy Kalman filter algorithm as compared to (Wu et al. 2015) and others clustering algorithms (Fuzzy 
C-Means and Possibilistic C-Means), for filtering and tracking the reference trajectory �(t) through state variables of Chen’s chaotic attractor

MAE
r1(t)

MAE
r2(t)

MAE
r3(t)

Approach in Wu et al. (2015) 403.92 555.41 415.14
Fuzzy C-Means clustering algorithm 0.3793 0.5209 0.8221
Possibilistic C-Means clustering algorithm 0.5830 0.4892 0.4202
Lower limit of interval type-2 fuzzy Kalman filter 0.3435 0.0308 0.1800
Upper limit of interval type-2 fuzzy Kalman filter 0.3166 0.0205 0.5843
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2020, is shown in Fig. 16a. The new recursive updating of 
interval type-2 fuzzy Kalman filter on 27 of May 2020, for 
proposals of new tracking and forecasting future daily deaths 
reports within the period ranging from 28 of May 2020 to 
24 of June 2020, is shown in Fig. 16b. The new recursive 
updating of the interval type-2 fuzzy Kalman filter was on 24 
of June 2020, for proposals of new tracking and forecasting 
future daily deaths reports within the period ranging from 25 
of June 2020 to 30 of June 2020, is shown in Fig. 16c. The 
new recursive updating of the interval type-2 fuzzy Kalman 
filter was on 30 of June 2020, for proposals of new tracking 

and forecasting future daily deaths reports within the period 
ranging from 01 of July 2020 to 15 of July 2020, is shown in 
Fig. 16d. The new recursive updating of the interval type-2 
fuzzy Kalman filter was on 15 of July 2020, for proposals 
of new tracking and forecasting future daily deaths reports 
within the period ranging from 16 of July 2020 to 23 of July 
2020, is shown in Fig. 16e. The new recursive updating of 
the interval type-2 fuzzy Kalman filter was on 23 of July 
2020, for proposals of new tracking and forecasting future 
daily deaths reports within the period ranging from 24 of 
July 2020 to ahead, is shown in Fig. 16f. It can be seen 
an efficiency in the adaptability of interval normal distribu-
tion projections created in real time by interval type-2 fuzzy 
Kalman filter, which illustrates its applicability for tracking 
and forecasting the COVID-19 dynamic spread experimental 
data related to daily deaths reports in Brazil.

The estimation of interval type-2 fuzzy Kalman gain 
matrices �̃i|i=1,…,3 , during recursive updating of interval 
type-2 fuzzy Kalman filter, within period ranging from 19 of 
May 2020 to 23 of July 2020, in Brazil, is shown in Fig. 17.

The upper and lower instantaneous activation degrees 
related to interval type-2 fuzzy Kalman filter inference sys-
tem, during its training and recursive steps within period 
ranging from 29 of February 2020 to 23 of July 2020, in 
Brazil, are shown in Fig. 18.

The efficiency of interval type-2 fuzzy Kalman filter, 
during its recursive updating for tracking and forecasting 
the COVID-19 dynamic spread experimental data related to 
daily deaths reports within period ranging from 18 of May 
2020 to 27 of July 2020, in Brazil, was validated through 
Variance Accounted For (VAF) criterion, as shown in 
Fig. 19.

4.3 � Comparative analysis and discussions

In this section, a more detailed discussion on the results 
shown in Sect. 4.2.1, according to comparative analysis 
of proposed methodology with the approaches in Feroze 
(2020), Hazarika and Gupta (2020), considering the metrics 
RMSE (Root Mean Square Error), MAE (Mean Absolute 
Error), RMSPE (Root Mean Square Percentage Error) and 
coefficient of determination ( R2 ), is presented.

The approach in Feroze (2020) is based on Bayes-
ian structural time series (BSTS) models for forecasting 
the COVID-19 dynamic propagation in Brazil, within the 
horizon of 30 days. The efficiency of interval type-2 fuzzy 
Kalman filter, compared to approach proposed in Feroze 
(2020), is shown in Table 2. As it can be seen, although 
the Bayesian model in approach (Feroze 2020) be adap-
tive, it presents a inferior performance compared to interval 
type-2 fuzzy Kalman filter, once that it is based on Bayesian 
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inference mechanism influenced by previously computed 
probability distributions, which contributes for increasing 
the forecasting errors (Berger 1993).

The approach in Hazarika and Gupta (2020) is based 
on Wavelet-Coupled Random Vector Functional Link 
(WCRVFL) network for forecasting the COVID-19 dynamic 

Fig. 13   The spectral unobserv-
able components extracted from 
daily deaths reports in Brazil : a 
�1 and b �10
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propagation in Brazil, within the horizon of 60 days, using 
a normalization procedure of dataset from the following 
formulation:

where � =
[
z1, z2,… , zkcurrent

]T is the experimental dataset, z̆k 
is the normalized value of zk , min(�) is the minimum value 
of � , max(�) is the maximum value of � , and kcurrrent is the 

(70)z̆k =
zk − min(�)

max(�) − min(�)
, k = 1, 2,… , kcurrrent

time for acquisition of the current experimental data zkcurrent . 
The normalization procedure is performed throughout the 
fluctuations of experimental data defined on a temporal win-
dow ( k = 1, 2,… , kcurrrent ), so that min(�) and max(�) values 
are guaranteed for solution of Eq. (70) (?) . The efficiency of 
interval type-2 fuzzy Kalman filter, compared to approach in 
(Hazarika and Gupta 2020), is shown in Table 3. As it can be 
seen, once that the approach in (Hazarika and Gupta 2020) 
uses different types of wavelets to process non-stationarity 

Fig. 16   Performance of the 
interval type-2 fuzzy Kalman 
filter for tracking and forecast-
ing the COVID-19 related to 
daily deaths reports, in Brazil
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of experimental dataset, it presents competitive results com-
pared to interval type-2 fuzzy Kalman filter, but the perfor-
mance is slightly inferior due to its computing limitation 
from determination of the optimal number of nodes in the 

hidden layer of the WCRVFL network, tuning the scaling of 
the uniform randomization range for wavelet estimator and 
accurate data availability.

Fig. 17   Interval type-2 fuzzy 
Kalman gains, for tracking 
and forecasting the COVID-19 
dynamic spread behavior: a 
Rule 1, b Rule 2, c Rule 3
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Fig. 18   Instantaneous normal-
ized fuzzy activation degrees: 
a upper activation degrees, b 
lower activation degrees
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5 � Conclusion

In this paper, an approach for experimental data based 
design of Interval Type-2 Fuzzy Kalman Filters, was pro-
posed. Computational results shown efficiency of designed 
interval type-2 fuzzy Kalman filter, as compared to another 
approaches widely cited in the literature, for filtering and 
tracking the reference trajectory through state variables 
of Chen’s chaotic attractor in noisy environment and time 
delays. Experimental results shown the applicability of 
interval type-2 fuzzy Kalman filter, according to proposed 

methodology, due to its recursive updating mechanism, for 
adaptive and real time forecasting the COVID-19 spreading 
dynamic related to daily deaths reports in Brazil. From the 
recursive updating on 23 of July 2020, it could be inferred 
by forecasting interval projections the month of September 
as more adequate for reassessment the requirements on flex-
ibility of social activities in Brazil (containing the 27 states 
and federal district). For further works, the formulation 
and applicability of proposed methodology in the context 
of evolving interval type-2 fuzzy systems, is of particular 
interest.
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