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Abstract: In recent decades, metasurfaces have emerged as an exotic and appealing group of nanopho-
tonic devices for versatile wave regulation with deep subwavelength thickness facilitating compact
integration. However, the ability to dynamically control the wave–matter interaction with external
stimulus is highly desirable especially in such scenarios as integrated photonics and optoelectronics,
since their performance in amplitude and phase control settle down once manufactured. Currently,
available routes to construct active photonic devices include micro-electromechanical system (MEMS),
semiconductors, liquid crystal, and phase change materials (PCMs)-integrated hybrid devices, etc.
For the sake of compact integration and good compatibility with the mainstream complementary
metal oxide semiconductor (CMOS) process for nanofabrication and device integration, the PCMs-
based scheme stands out as a viable and promising candidate. Therefore, this review focuses on
recent progresses on phase change metasurfaces with dynamic wave control (amplitude and phase
or wavefront), and especially outlines those with continuous or quasi-continuous atoms in favor of
optoelectronic integration.

Keywords: optoelectronic integration; active photonics; dynamic wave control; continuous and
quasi-continuous metasurfaces

1. Introduction

To date, versatile electromagnetic (EM) wave control remains an almost everlasting
topic for applications ranging from the visible to the microwave region. In recent decades,
metasurfaces such as the planar or two-dimensional (2D) version of metamaterials with
deep subwavelength thickness, have proven to be effective and promising in wave regula-
tion in an almost arbitrary way, similar to their traditional volumetric counterpart, but hold
the special ultra-thin nature that facilitates the compact integration of devices with hybrid
architectures. Instead of tuning the propagation phase accumulated through a bulk region
of material as the conventional photonic devices, metasurfaces aim at tailoring the abrupt
change of amplitude, phase and polarization locally and in an accurate pixel-wise manner,
via various subwavelength meta-atoms that are periodically or randomly distributed, e.g.,
nanorods, nanogratings, nano-trapezoids, catenary resonators, LC circuit resonators, split
ring resonators, ring resonators, cross resonators etc.

Especially when competing with nanoelectronic technologies for increasingly high-
speed data processing, communication and interconnection, etc., compact optoelectronic
device integrations or even all-optical integrations become more desirable due to the ultra-
high speed and large bandwidth. In this situation, photonic metasurfaces show more
prospects and outperform their volumetric versions mainly due to the ultra-thin and easy-
to-integrate characteristics. Therefore, a plethora of meta-devices are demonstrated for both
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amplitude [1] and phase regulation [2], from the visible to terahertz (THz) and microwave
range, such as ideal frequency selection [3–5], perfect absorption [6–9], beam steering or
deflection [10,11], flat lensing [12,13], vortex beam generation [14–16], optical activity [17,18],
holography [19–21], 3D color holography [22,23] and nonlinear effect [24,25] etc.

However, for applications of optoelectronic or all-photonic integrations, dynamic
functionalities are imperative since the optical responses usually need to be actively
switched, modulated or flexibly tuned by external stimuli. Therefore, active metasur-
faces with diverse reconfigurable functionalities were extensively explored in recent years,
such as tunable filtration or absorption [26,27], beam steering [28,29], switchable lens-
ing [30] and switchable photonic crystals [31]. In principle, all those actively reconfigurable
metasurfaces can be constructed by: (i) embedding active materials or components into
hybrid device architectures, or (ii) directly structuring into thin films of active materi-
als (e.g., graphene [32–34], phase change chalcogenides [35–37]). After a close inspec-
tion and classification, such active materials or mechanisms include the liquid crystal
(LC) [38], MEMS [39,40], semiconductors [41,42], the 2D materials family represented by
graphene [43–45], atomic-thin-layer direct tuning of 2D electron gas [46], conductive metal
oxide (i.e., Indium Tin Oxide ITO) [10,47–49], magnetic or ferromagnetic materials [50,51],
varactor arrays [52–54], and phase change materials (PCMs) [28–30,36,55–58]. Among these
mainstream options, the LC-based methods are commonly used for conventional optical
modulation, but with intrinsic obstacles in CMOS-compatibility and high-speed operations,
especially for integrated photonics. The MEMS-integrated metadevices exhibit a large
modulation depth with great flexibility and low power consumption, but usually with
high complexity in design and nanofabrication. The schemes using semiconductors or 2D
materials depend on relatively large bias voltage due to low modulation depth. As a result,
PCMs-based approaches turn out to be a prominent and practical category for dynamic
tuning that had been the most intensively explored in a wide range of applications, due
to the overall trade-offs among modulation depth, power consumption, operation speed,
CMOS-compatibility and complexity etc., as well as the flexible tunability of PCM in both
electrical and optical properties. Furthermore, similar schemes were also employed for
active control in silicon photonics by integrating active materials (e.g., graphene [59–61]
or PCM [62–65]) into integrated photonic devices. Due to their prospects in micro and
nanophotonics, a few review papers were recently reported on both on-chip based active
photonic devices [65–69] and tunable metasurfaces [48,70–79].

In the family of PCMs, vanadium dioxide (VO2) somehow grabs earlier attention
for active photonic or EM devices due to its lower temperature for easier and reversible
insulator–metal phase transition [58,80–84]. However, due to the volatile nature of VO2,
which means its metallic or insulative state cannot be maintained without external excita-
tions, the unique traits that lie in the non-volatile chalcogenide PCMs are more desirable,
especially for integrated optoelectronics. Other prevailing performances in chalcogenide
PCMs include long-term stability in both amorphous and crystalline states, ultrafast phase
transition at the nanosecond level, a large number of phase changes in millions of repeat-
able cycles, and CMOS compatibility [85]. In the early days, chalcogenide PCMs have been
pursued for applications in electronic storage and optical memory, such as the phase change
memory [85,86] and the optical compact disks (CD) and digital versatile disks (DVD) [87].
Upon a phase transition of chalcogenide PCMs, the germanium antimony telluride (GST)
alloy with varied ratios of compositions [88] typically assumes large contrasts in both
optical and electrical properties (i.e., refractive index, permittivity, conductivity etc.), which
specially facilitate the active optoelectronic or even all-photonic integration. As a result,
the merits of PCMs integrated metasurfaces and devices enable versatile optoelectronic
integration for dynamically reconfigurable wave–matter interactions, i.e., active amplitude,
phase (or wavefront) and polarization control.

Therein, one minor issue is the relatively large optical losses co-existing with a large
refractive index contrast for typical chalcogenides (e.g., G2S2T5). Thus, more candidates
from the chalcogenide family emerge with lower optical loss and prove valid to improve
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the performance for visible-range applicability [89–91]. The second issue lies in most tradi-
tional metasurfaces constructed by discontinuous meta-atoms, which inevitably introduce
low efficiency, the involved amplitude interval and phase noise, due to discrete wavefront
sampling by discontinuous meta-resonators even at the subwavelength level. So meta-
surfaces with continuous or quasi-continuous atoms are preferred for practical use due
to higher efficiency as well as the conveniences for optoelectronic integration. The third
concern is the mutual interactions or couplings between photonic and electrical elements in
the optoelectronic integrated architecture of metasurfaces. The ideal case is that photonic
elements of meta-atoms and electrical elements of metal electrodes function independently
without cancelling out or influencing each other. In certain scenarios, the continuous
meta-atoms simultaneously act as electrodes that can be connected externally in arrays
to facilitate pixel-wise addressing and electrical control, e.g., spatial light modulation,
displayer and so on.

Therefore, this review aims at PCMs-integrated metasurfaces for active amplitude and
phase tuning in terms of device architecture and functionality, and specifically features
recent advances in continuous or quasi-continuous metasurfaces facilitating the strategies
of optoelectronic integration. The PCM origins with unique tunable properties for photonic
devices are discussed first in the next section. Then, recent advances in diverse PCM-
integrated metasurfaces for dynamic amplitude and wavefront controls are reviewed,
respectively. Specifically, in the section that follows, a few strategies using metasurfaces
with continuous or quasi-continuous meta-atoms for optoelectronic integration are outlined.
Finally, the conclusion section outlooks several possible trends in the near future.

2. Origin of PCM for Active Photonics

To start with, vanadium dioxide (VO2) might be the first group of PCMs that attracts
intensive interests to construct active photonic devices for a long while [82,92–95]. Upon a
reversible metal-to-insulator phase transition (MIPT) that can be triggered by an electric
field, optical or thermal heating, VO2 exhibits a large contrast of electrical conductivity
and optical constant [96]. Such a unique phase transition process that occurs near room
temperature (~68◦) was fundamentally studied in a few literatures [97,98].

Due to the distinct contrast of electrical conductivity, the insulative VO2 (before
phase transition) shows ultra-high transmission beyond the infrared (IR) range, but the
metallic VO2 (after phase transition) change significantly to become highly absorptive in
almost the whole spectral range. Therefore, a diversity of VO2-hybrid active metamaterials
or metadevices emerged from the visible to THz and microwave range, e.g., tunable
absorbers [83], THz modulators [81,99], THz switches [94], wavefront engineering [95]
etc. In addition, a few review papers about VO2-hybrid active metamaterials had been
reported [56,100–102]. However, due to the volatile nature of VO2, its metallic phase
vanishes as long as the external stimuli are withdrawn.

Therefore, the chalcogenide glass PCMs, typically the germanium (Ge) antimony (Sb)
telluride (Te) alloy (GST), dominates more scenarios due to its non-volatile nature, i.e., the
amorphous or crystalline state still holds in absence of external stimuli, leading to almost
zero static power-consumption. Upon a typical phase transition, GST similarly exhibits
large electrical and optical contrast between the amorphous and crystalline states, in both
the real and imaginary parts of refractive index or dielectric constant. Additionally, an
appreciable loss can be found from the visible to the near-IR range, facilitating certain
applications where absorption is desired. Overall, those superior performances enable
a wide branch of electronic and photonic devices with pronounced tuning ability and
increased freedoms for versatile manipulations [85,103,104]. For applications with varied
pursuits in optical or electrical properties, a compromise among several considerations or
priorities has be to be reached for GSTs with varied proportions of ternary composition,
i.e., rapid phase transition (especially the crystallization), long-term chemical and thermal
stability, a large number of reversible cycles of phase change, large contrast (real part) with
relatively low or high loss (imaginary part) etc.
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As a special group of PCMs, the GST family attracted intensive interests from electron-
ics to photonics. In recent decades, early GSTs with slow speed of crystallization to match
the speed of CD writer have been dominantly used for optical disk/storage [87,88]. Subse-
quently, an increased speed of crystallization makes the GST alloy a good candidate for
the next generation of non-volatile electronic memories, i.e., phase change random access
memory (PCRAM) [85,86], which rival the mainstream flash and dynamic random-access
memory (DRAM). In principle, the amorphous-to-crystalline transition is triggered by a
long (electrical or laser) pulse with lower amplitude to heat GST above its crystallization
temperature Tcrys (or glass temperature Tg elsewhere), termed as “SET” for a low-resistance
state in PCRAM, as shown in Figure 1a. For the reserve process of crystalline-to-amorphous
phase transition, a short pulse with higher amplitude is needed to heat GST above its melt-
ing temperature Tmelt, termed as “RESET” for a high-resistance state in PCRAM.

Figure 1. The schematic of phase transition in chalcogenide phase change materials (PCMs); (a) a typical cell of phase
change memory and the curve of phase transitions triggered by electrical pulses, reproduced with permission from; (b)
the phases diagram of germanium (Ge) antimony (Sb) telluride (Te) alloy (GST) with varied ternary compositions. The
often-used GST can be found along the pseudobinary route between GT and S2T3, reproduced with permission from [88];
(c) an artistic impression of typical phase transition process of G2S2T5, reproduced with permission from [105]; (d,e) the
optical constants of commonly used GSTs, both reproduced with permission from [106].
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To date, as intensively studied by Wuttig and Taubner’s group [88,104,106,107], a few
representative GST alloys, i.e., the G1S4T7, G2S2T5 and G3S2T6 along the pseudobinary
route between GT and S2T3 in Figure 1b, have been the most favorably used for active
photonic devices. As revealed by early reports [108,109], GSTs with varied ternary com-
positions exhibit distinctly different dynamic performances and optical properties. For a
brief summary, for GST with a higher ratio of Sb along the pseudobinary route in Figure 1b,
the crystallization speed increases, the temperatures of Tcrys and Tmelt decrease and the
amorphous state becomes less stable. For a good compromise, G2S2T5 shows a fast speed
of crystallization (~tens of ns) and moderate high Tcrys (~150◦) to ensure a long-term stable
amorphous state [88]. In this situation, a variety of GSTs with slightly different compo-
sitions were employed for photonic devices, and their optical constants had been well
characterized [106], as shown in Figure 1d.

3. Active Amplitude Control
3.1. Tunable Transmission/Reflection

The pioneering work based on chalcogenide-PCM was reported by Zheludev’s group
in the construction of an electro–optic metasurface switch by integrating the asymmetric
split ring resonators (SRR) with gallium lanthanum sulfide (GLS) [110]. The near-IR
transmission and reflection spectrum of Fano resonance can be electrically tuned (~10 ms,
>45 V) with a contrast ratio of 4:1 and obvious frequency shifts can be observed during
the GLS amorphous-to-crystalline phase transition. Subsequently, they improved the SRR
device setup for a concurrent probe and control by using high-intensity laser pulses instead
of electrical control and replacing the chalcogenide film of GLS with G2S2T5 for an all-
optical meta-switch with bidirectional reversible control [63], shown in Figure 1a. It is
worth noticing that, for both schemes, the optical and electrical pulses need to be precisely
optimized with varied durations and intensities for effective and rapid phase transition
between the amorphous and crystalline states.

Meanwhile, by controlling the baking time in a thermal-stimulated phase transition
process, M. H. Hong’s group demonstrated a G2S2T5 hybrid metasurface working at
intermediate states with varied fraction of crystallization between the amorphous and
crystalline states [111]. By a close inspection of tunable resonance/transmission peak of the
G2S2T5-hybrid plasmonic crystal, the relationship between the fraction of crystallization
and baking time is quantitatively explored, as shown in Figure 2b. In addition, another
type phase change chalcogenide in the PCM family, G3S2T6, with lower mid-IR loss, was
also introduced into the active metasurfaces based on the plasmonic resonances of Al
antenna array [56,112], shown in Figure 2c,d. A femtosecond laser pulse (800 nm, 50 fs and
repetition rate of 960 Hz) was also used to trigger the reversible amorphous–crystalline
phase transition for optically tunable transmission [112].

Other than the frequently used nano-antennas, SRRs or crosses for a GST-integrated
metasurface hybrid framework, other atoms such as nano-holes, squares and rings were
also employed for active tuning, e.g., the tunable extraordinary transmission (EOT) of
visible and near-IR light by both electrically and optically induced GST phase transi-
tion [113,114], the mid-IR transmissive filter [115] and the lately reported mid-wave spec-
tral filter [116], etc. In addition, due to the appreciable visible and UV loss of GST, most
GST-based devices were demonstrated in the middle-IR range except a few that covered
UV, visible and near-IR range [117–119].
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Figure 2. Early reported work on active metasurfaces with tunable amplitude transmission. (a) A near-IR all-optical meta-switch
by integrating split ring resonators (SRR) meta-atoms with G2S2T5; (b) the GST—Au hybrid plasmonic crystal with continuous
transmission tuning by corresponding fractions of crystallization—(a,b) are reproduced with permissions from [63,112],
respectively; (c,d) switchable mid-IR antenna resonance using G3S2T6, reproduced with permission from [55,112].

3.2. Tunable Absorption

As a special subcategory for tunable transmission or reflection, tunable perfect ab-
sorption is always realized in a well-known metal–insulator–metal (MIM) architecture
by the construction of a PCM hybrid metasurface. In such a configuration, a reflective
spectrum was minimized because the transmission of the MIM meta-device was truncated
by the metal ground layer. Following Landy’s pioneering proposal in 2007 [120], MIM ab-
sorbers were intensively constructed by meta-atoms with varied geometries for plasmonic
enhanced sensing [121,122], photodetection [123] etc. Furthermore, to conquer the narrow
band nature of early MIM absorber, broadband absorption was realized by the hybridized
design of multiple meta-atoms [124]. To name a few, exquisite schemes by Luo’s group
and others were used to construct the extremely broadband perfect absorption, e.g., disper-
sion engineering [1,125,126], the impedance matching [127] and diffraction/interference
engineering [7,8,128] etc.

Towards this trend, the PCM hybrid tunable absorber was proposed by replacing the
regular insulative layer with GST film in the MIM configuration. G2S2T5 and G2S1T4 were used
in a few pioneering demonstrations of MIM tunable perfect absorber by Cao et al. [26,129,130],
as shown in Figure 3a,b. Upon an amorphous-to-crystalline phase transition, the absorption
peak by localized magnetic and electric dipole resonances shifted distinctly, due to a
considerable change in the permittivity or optical index of the GST layer. Later, Giessen’s
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group demonstrated another mid-IR tunable perfect absorber using Al antennas and GST-
326 as the spacer [131], shown in Figure 3c. For applications in the THz range, one type of
exquisite composite meta-atom composed of resonant crosses and rings was also used to
demonstrate the meta-switch by Zhou et al. [27,132].

Figure 3. The PCM hybrid metal-insulator-metal (MIM) tunable absorbers by different meta-atoms
or PCMs. Au squares on top of (a) G2S1T4 and (b) G2S2T5 spacer with metal ground underneath;
(c) Al antennas on top of G3S2T6 spacer layer for mid-IR MIM tunable absorber; (d) a THz tunable
absorber for the metaswitch using composite meta-atoms—(a–d) are reproduced with permission
from references [130] (@The Optical Society), [27,129,131] respectively.

3.3. Tunable Thermal Radiations

It is worth noting that the PCM–MIM hybrid meta-devices can be also used for tunable
thermal emission, because the absorptivity of materials directly determines their emissivity
and perfect absorbers simultaneously act as quality emitters or radiators. For example, Qu
and Du et al. presented a type of mid-IR tunable metasurface for dynamic thermal emission
control [133–135] or thermal camouflage [136]. By changing the heating time for different
levels of crystallizations, intermediate states of GST can be obtained, and the emissive peak
and emissivity can be quasi-continuously tuned [133]. Overall, such meta-devices may
provide an alternate approach for nanophotonic engineering the far-field thermal emission,
which has been a ubiquitous and fundamental process for energy harvesting and radiative
cooling [137].

3.4. Tunable Circular Dichroism

As a special subcategory, chiral metamaterials or metadevices act as appealing plat-
forms for handedness control in chiral sensing, polarization engineering and optical activity
etc. [138]. Therefore, recent attempts also aimed at flexibly reconfigurable circular dichro-
ism (CD) by resorting to PCMs–metamolecules hybrid active chiral devices in mid-IR and
THz regimes.

In the mid-IR range, Yin et al. demonstrated active chiral behavior by using a
Born–Kuhn type of chiral plasmonic dimmer together with the GST-326 layer sand-
wiched in-between two vertically displaced, corner-stacked and orthogonal arranged
gold nanorods [139]. Different transmittances and reverse CD degrees were demonstrated
for the left- and right-handed circular polarization (LCP or RCP) at either amorphous or
crystalline state. Upon a phase transition of GST film, both transmittance and CD spectra
underwent a large redshift. In the THz range, Wang et al. recently demonstrated the ac-
tively controllable optical activity using a VO2-grounded MIM setup for THz waves [140].
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Distinct phenomena of tunable CD or transmission spectra can be observed upon the
metal–insulator phase transition of VO2.

3.5. Pixelated Dynamic Tuning for Color Display

Currently, most devices for active amplitude control, as discussed above, are global
based, i.e., phase transition occurs over the whole device non-selectively. However, in
some cases, pixel-by-pixel local tuning of each meta-unit or subsection is imperative for
spatially variant wave control/modulation, e.g., color display. In this regard, there is a
pursuit to pixel-wisely address individual atoms or resonators for programmable or even
smartly controllable metasurfaces.

In 2014, the pioneering work by Hosseini et al. demonstrated a hybrid metasurface of
ITO/GST/ITO framework for greyscale and color imaging [141], as shown in Figure 4a. The
F–P cavity based meta-atoms with GST embedded were selectively addressed and electrically
switched by the conductive tip of atomic force microscopy (AFM). As a result, a dielectric
reflective display film with greyscale and color image was patterned by driving the AFM
tip in a programmable manner. Furthermore, they tended to improve the depth modulation
and resolution in an off-line color modulation mode, by replacing GST-225 with one type of
growth-dominated phase-change alloy, Ag3In4Sb76Te17 (AIST) [142]. A similar setup with
F–P cavities was used for better performances, i.e., non-binary color rendering, resolutions to
300 nm in scanning mode and <50 nm in pixel-by-pixel mode. Etc.

Figure 4. The pixel-wisely programmable GST/dielectric metasurface for color display: (a,b) repro-
duced with permissions from [141,142].

Other than electrical control above, most works in the following years resort to
optical heating, e.g., the spatially controllable femtosecond laser scans [143,144], to realize
the pixelated switching or programming of individual atoms. Also differing from the
dielectric/PCMs F–P setup above, the GST-resonators hybrid architectures were used to
construct the spatially programmable meta-atoms. As typical examples, Taubner and
Wright’s group demonstrated a series of programmable metasurfaces for color display or
spectral imaging using diverse schemes of hybrid meta-atoms, including the PCM hybrid
nanoantennas [145], the MIM setup [146], and PCMs-embedded dielectric nanodisks [147]
etc. Very recently, Ann-Katrin et al. proposed a scheme for the localized phase transition
of germanium telluride (GT) by using the thermal scanning probe [124]. In numerical
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calculation, partial crystallization by scanning-probed-induced localized phase switching
enabled a broadband tunable reflectance or absorption.

4. Active Wavefront/Phase Control

Differing from the previous discussion about active amplitude regulation, dynamic
wavefront control resorts to actively shaping the phase distribution/gradient by tuning the
Pancharatnam–Berry (P–B) or geometric phase, propagation phase or both. By active phase
control, a diversity of typical wavefront-tunable devices were demonstrated, such as beam
steering [29,148], switchable lensing/focusing [30,149], tunable spin angular momentum
(SAM) and orbit angular momentum (OAM) coupling [76,150], tunable optical activity
or vortex beam [151], and switchable holography [150]. A few of those typical categories
are briefly summarized in this section, with a special focus on those based on the most
commonly used GSTs, the GST alloy.

4.1. Tunable/Switchable Steering

In principle, beam steering can be achieved by actively redistributing the linear phase
profile of one state to another with a varied constant phase gradient. Inspired by Huang
and Chen’s work [152], the P–B phase determined that light deflection or propagation can
be controlled by periodically arranging a series of spatially rotated nanorods to produce a
linear phase profile. Therefore, the beam steering devices can be configured by integrating
active materials into the typical P–B phase architecture.

In this trend, Choi et al. proposed a near-IR broadband wavefront switch by using
two sets of U-shaped G2S2T5 nano-antennas with different sizes on quartz substrate [148].
As shown in Figure 5a, two sets of U-shaped antennas were multiplexed with a different
orientation angle θ1 andθ2. Two sets of antennas dominate alternately in the amorphous or
crystalline state with maximized cross-polarization (CPT), giving rise to a phase profile of
θ1(x, y) or θ2(x, y), respectively. Namely, antenna 1 dominates with large CPT but antenna
2 show almost zero CPT in amorphous state, and vice versa. When two neighboring
antenna were arranged with reverse orientations, shown in Figure 5b, phase transition
between amorphous and crystalline states obviously induced opposite beam deflection.
Subsequently, Yin et al. proposed another G3S2T6 hybrid plasmonic metasurfaces for
mid-IR beam steering by using two sets of linear nanoantenna [149]. In a similar manner,
antenna A and B with different lengths were arranged adjacently with opposite orientations.
Each of them resonated with the incident light of 3.1 µm alternately in the amorphous and
crystalline states and deviated left and right, respectively, as shown in Figure 5c.

According to the generalized Snell’s law [153], anomalous deflection (reflection or refrac-
tion) can be obtained by tailoring the abrupt phase profile in whatever manner, e.g., the P–B
phase, the propagation phase, resonant phase or the hybrid mode. Instead of using the P–B
phase, Tsai’s group presented on types of all-dielectric GST-hybrid phase change metasur-
face with switchable phase control for beam steering in a different manner [28]. Shown in
Figure 5d, the G2S2T5/dielectric nanorods were used to replace the metal atoms in conven-
tional MIM setup, i.e., GST atoms and metal ground sandwiched by a spacer layer. Upon a
crystalline-to-amorphous phase transition, the normally reflected beam was switched/steered
towards the anomalous angle of −40◦, shown in the right part of Figure 5d. Noteworthily, the
GST rods deposited on top of the TiN electrode can be selectively accessed and modified
by electric current pulses, as shown in Figure 5e.
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Figure 5. Beam steering by GST hybrid devices with tunable phase modulation. (a) The U-shaped G2S2T5 nanoantennas
with different sizes and orientations (b) are arranged adjacently, and dominate alternately for opposite deflection in the
amorphous or crystalline state; (a,b) reproduced with permissions from [148]; (c) two neighboring antennas A and B interact
with the incident light of 3.1 µm alternately in the amorphous and crystalline states, reproduced with permission from [149];
(d) all-dielectric G2S2T5 metasurface with switchable steering at 1.55 µm; and (e) selective access and modification of local
antenna by electrical pulse via conductive wires—(d,e) reproduced with permissions from [28].

4.2. Tunable/Switchable Lensing

Similarly to beam steering with tunable linear phase profile, switchable lensing can
be achieved by producing a quadratic phase profile with moveable focusing. For schemes
based on the P–B phase, the GST-metasurface hybrid varifocal lens can be constructed
by translating the quadratic phase into spatially distributed nanorods or antenna with
different orientations.

As was also demonstrated by Yin et al. [49], shown in Figure 6a, a one-dimensional
(1D) cylindrical bifocal metalens with a switchable focus at 0.5 mm and 1 mm was achieved
in the amorphous and crystalline states, with antenna sets A and B being alternately
dominant. Somehow, the resonant nature of sparsely distributed antenna gave rise to a
low efficiency less than 10%. For improved efficiency, Shalaginov et al. proposed one
all-dielectric varifocal metasurface lens based on Ge2Sb2Se4Te (GSST) Huygens meta-atoms
on top of CaF2 substrate [154], as shown in Figure 6b. The phase error was minimized,
and the optical efficiency was maximized in a combination of 16 discrete metatoms for
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quadratic phase sampling. At the incidence of mid-IR wavelength of 5.2 µm, the GSST
atoms metasurface focus on varied focal lengths (1.5 and 2.0 mm) in the amorphous and
crystalline states with the efficiencies above 20%.

Figure 6. (a) The plasmonic metasurface composed of two sets of nanoantenna that interact with incident light alternately
to produce a variable quadratic phase for bifocal lensing; (b) the artistic impression of a tunable metalens composed of
GSST meta-atoms with bifocal length at 1.5 and 2.0 mm in the amorphous and crystalline states, respectively; (c) a type of
mid-IR metalens with switchable focusing in the amorphous (focusing) and crystalline (defocusing) states and (d) tunable
focal length in both states—(a,b) reproduced with permissions from [149,154]; (c,d) reproduced with permissions from [30].

Furthermore, a reflective metalens with switchable and tunable focusing with im-
proved cross-polarization efficiency (up to 80%) was also demonstrated by Zhou et al. in
a G2S2T5-integrated MIM architecture [30]. Working in the switchable mode, the device
focuses with maximally cross-polarized reflectance (CPR) in the amorphous state and
defocus with suppressed CPR in the crystalline state. While working in the varifocal
mode, the GST–MIM metalens was optimized with moderately high CPR for variable
focusing on both states. Bai and Yang et al. also demonstrated a tunable metalens with
similar behaviors of duplex focusing in the near or middle IR range using the GST array of
nanocuboids [155,156].

4.3. Tunable SAM–OAM Coupling

Revealed by Marrucci’s pioneering work [157], the spin angular momentum (SAM)
of circular polarized wave/light can be converted into orbit angular momentum (OAM)
in both optically inhomogeneous and anisotropic media. Therefore, the spin and orbit
properties as well as spin–orbit couplings or interactions, i.e., SAM–OAM coupling or
SOI for short, become additional degrees of freedom for the spatially structured and
inhomogeneous optical field. As one of the basic optical process, SOI plays a key role in
diverse SOI-based phenomena and applications [158,159], e.g., the spin-hall effect [160,161],
P–B phase [161,162], spin-independent helical phase [163] and so on.

In this trend, people in Luo’s group reported a diversity of SOI-based metadevices
for different scenarios, e.g., achromatic SOI generation [162], achromatic and asymmetric
wavefront shaping [164,165], Bessel beam generation [166], extraordinary Yang’s inter-
ference [167], meta-holography [22] etc. As for tunable or switchable SOI devices, a few



Materials 2021, 14, 1272 12 of 26

phase change metadevices were demonstrated with dynamic SOI and the active tuning
of the geometric phase profile [76,150]. In their first proposal, a type of MIM-G2S2T5 hy-
brid metasurfaces were demonstrated with switchable SOI, enabling three kinds of phase
tailoring, i.e., the spin-hall effect, vortex beam generations and holography [150]. In the
amorphous state, the required phase difference between two reflective components along
two orthogonal axes of nanoantenna led to a maximized efficiency of cross-polarization, so
that the anomalous reflections were observed with varied tailoring of the P–B phase, as
seen from Figure 7c for beam deflection with a linear phase profile. In the crystalline state,
the cross-polarization efficiency was minimized and the geometric phase or SOI-enabled
phenomena disappeared or “switched off”.

Figure 7. (a) Active metasurfaces with GST embedded in MIM setup for switchable SOI; (b) schematic of switchable SOI
with the maximized cross-polarization in the amorphous state and (c) one device was demonstrated with switchable and
selectable beam deflections. Left- and right-handed circular polarization (LCP and RCP, respectively) generated one beam
with opposite deflections and linear polarization (LP) produced two symmetric deflections—(a–c) all figures are reproduced
with permissions from [150].

Very recently, the same group further investigated the multistate switching of photonic
spin–orbit interactions (PSOIs) by proposing another type of G2S2T5-integrated metasurface
composed of MIM nano-cavities [76]. As shown in Figure 8a, by the phase transition of
G2S2T5 embedded as the middle spacer in the MIM setup, the propagation phase can be
actively tuned in combination with the fixed P–B phase for overall phase tailoring as well
as spin control. By tuning the crystallization levels of G2S2T5, the original amorphous state
with symmetric SOI can be switched into more intermediate states with opposite topological
charges and asymmetric SOIs. Also shown in Figure 8b, the exemplary semicrystalline
state can be created for asymmetric SOIs by using the diatomic nanofin resonators that
alternately confined incident fields for the different tuning of the reflected propagation
phase. Upon a phase transition to the crystalline state, the device can be totally “switched
off” with only normal specular reflection.
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Figure 8. The multistate switching of SOIs by G2S2T5-hybrid metasurfaces composed of MIM nano-
cavities: (a) three states with symmetric, asymmetric and “off” PSOIs; (b) the diatomic resonator
used to confine the incident energy for the alternate tuning of the propagation phase—all figures in
(a,b) are reproduced with permissions from [76].

4.4. Tunable Vortex Beam and Holography

As a special subcategory of phase control, helical phase and even arbitrary phase
generation are widely embraced in optical vortex and holography. By hybridizing PCMs
into metadevices with predefined P–B phase controls, helical and holographic phase control
with active tenability can be demonstrated straightforwardly.

As also reported by Luo’s group [150], switchable vortex beams and meta-hologram
were also demonstrated by the mechanism of switchable SOIs discussed in Section 4.3. In
the amorphous state, the incidence of LCP or RCP led to an anomalously reflected vortex
beam with reverse deflections, but linearly polarized (LP) incidence gave rise to two beams
with helical phase simultaneously (shown in Figure 9a). A P–B phase tailoring also made
a hologram of the characters “IOE” displayed in the far field, shown in Figure 9b. In the
crystalline state, both helical and holographic phases were “switched off” with only normal
specular reflection, shown in the right parts of Figure 9a,b.

Very recently, Yuan’s group also presented one type of dielectric metasurface with
dynamic wavefront tunability for optical vortex and holography by using GSST nanopillars
for metamolecule design [90]. Phase modulation is enabled in the amorphous state until
it covers nearly the entire 2π range by periodically arranged nanopillars with varying
diameters. Upon a GSST phase transition to the crystalline state, the phase modulation
was disabled. Furthermore, the multilevel modulation of phase profile was achieved by
selectively controlling the phase transition of each bi-state GSST nanopillar in the molecule
composed of four GSST pillars with fixed diameters.
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Figure 9. (a) Tunable helical phase and (b) holography for metadevices with switchable SOIs; the
tunable holography achieved by the devices with multistate switching SOIs in the (c) amorphous,
(d) semicrystalline and (e) crystalline states, respectively—all figures in (a–e) are reproduced with
permissions from [150].

5. Continuous and Quasi-Continuous Metasurfaces

For the sake of active photonic applications where in situ electrical control is highly
desirable, e.g., integrated optoelectronics, continuous meta-atoms that simultaneously
act as electrodes for the local access of electrical pulses are more viable for practical use.
Towards this trend, myriads of continuous or quasi-continuous meta-atoms were employed
to construct the PCM hybridized active meta-devices, e.g., grids or nanoholes [113,114]
for tunable extraordinary transmission (EOT), gratings [29,36], trapezoids [168,169], and
catenaries [162,167].

5.1. Gratings

For the most common structures, gratings or nanoslits that are one-dimensional (1D)
and continuous were intensively employed in the MIM-based metasurfaces for tunable
absorption by Carrillo et al. [170,171], tunable reflection using the ITO-embedded setup [10],
and GSTs-induced IR beam steering [29] etc.

As a typical proposal from Wright’s group [29], a 1D array of antennas or zone plate
was used as the top layer in the MIM setup for beam steering, shown in Figure 10a.
Anomalous reflection towards a predefined angle was achieved in the amorphous state by
locally arranging 1D antenna with varied widths to generate a linear phase gradient. A
phase transition to the crystalline state driven by the 405 nm laser pulse heating steered the
beam reflection towards the normal angle of specular reflection, shown in Figure 10b. In a
similar example, shown in Figure 11a, Chen et al. demonstrated a G2S2T5 hybrid varifocal
metalens with tunable focusing by embedding G2S2T5 into the intervals of nanoslits for
phase change-based state switching [172]. The varied crystallization level led to different
transmissions and phase modulations for the active tuning of focal lengths.

Specifically, except for most work demonstrated in the IR range, Behrad et al. inves-
tigated the GST phase transition-induced dynamic plasmonic resonances in the UV and
high-energy visible range (UV–HEV) [117,118]. A layered composite grating of G2S2T5
sandwiched between the two protective layers of ZnS/SiO2 was constructed to exhibit
tunable reflection resonances with quality factors up to Q ~ 15 due to the transparency (low
losses) of ZnS/SiO2 [118].

Moreover, one type of continuous metasurface constructed with sinusoidal nanos-
trips was demonstrated for SOI-based phase modulation in scattering engineering by
Guo et al. [173]. For high-quality OAM generation or spin–orbit interaction as discussed
above, a quasi-continuous metasurface integrated with circular gratings and discrete scatter
was also proposed in the GHz range [174].
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Figure 10. (a) Continuous metasurface with a 1D array of antennas configured in the MIM setup
for beam steering by Wright’s group; (b) normal incidence and specular reflection in the crystalline
state and (c) anomalous reflection in the amorphous state—all figures in (a–c) are reproduced with
permission from [29].

Figure 11. (a) Continuous metasurface with a 1D array of nanoslits filled with G2S2T5; (b) the schematic of F–P mode
between the Au nanoslit intervals; (c) a varied crystallization level leading to a series of evolved transmission spectrum,
enabling the multistate tuning of focusing—all figures are produced with permissions from [172].

5.2. Catenary Structures

As one type of architectural structure with specified mathematical and mechanical
form by Robert Hooke in the 1670s, a catenary was first introduced into optics in 2015 by
Pu et al. [162]. As a quasi-continuous structure, the optical catenary was adopted as one
type of special meta-atom to construct a diversity of metasurfaces with high-efficiency
phase tailoring [18,166,175–179].

For the pioneering work by Pu et al. [162], a single catenary meta-molecule with
varying tangent angle from −π/2 to π/2 can achieve the full phase modulation from −π

to π, shown in Figure 12b. Therefore, by the predetermined arrangement of the array of
catenary atoms, the phase distribution along the predetermined direction can be tailored
in specified manner. For example, a helical phase for vortex beams can be produced by
arranging the catenary atoms in varied columns along a circular loop with the perfect
axial symmetry, shown in Figure 12c–e. Obviously, as can be seen from the second column
of Figure 12, varied cycles or columns of catenary for a circle enable phase profiles with
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different gradients or “density” for OAMs with different topological charges. Furthermore,
catenary atoms were also used to construct one type of meta-axicon for high order Bessel
beam generation with highly focused OAM propagation. Subsequently, Li et al. specified
this process in detail by optimally configuring catenary atoms in different arrangement to
produce Bessel beams with varied orders and a helical phase profile with varied topological
charges [166].

Figure 12. Catenary structure as a special type of meta-atom for P–B phase modulation under the incidence of circular
polarization; (A) the catenary atoms with varying tangent angle from −π/2 to π/2 and (B) corresponding phase tailoring
from −π to π, and topological charges of (C) −3, (D) −6 and (E) 12 by the catenary-based OAM generator (first column),
in accordance with the helical phase profile (second column) and the simulated (third column) and experimentally
demonstrated intensity pattern. All figures are reproduced with permission from [162].

Following that trend, myriad catenary based meta-devices were demonstrated, such
as a deflector or director [177], lensing [178] and polarizer [179]. In addition, the resonant
optical field in between neighboring meta-atoms or resonators was also found to follow
the rule of catenary function, which revealed a new avenue for dispersion engineering [13],
SOI [180] and perfect absorber [176] etc.

5.3. Grids or Fishnets

The orthogonal or non-orthogonal grids or fishnet structures with square or circular
nanoholes can be regarded as the 2D counterpart of gratings or nanoslits that are frequently
used for diverse metamaterials and metadevices. Among those continuous metasurfaces,
the ones constructed by grids intrinsically exhibit complementary responses with respect
to those constructed by the squares, crosses, or circular pillars.
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Since its emergence decades ago, the fishnet structures or metallic grids had been in-
tensively used in metal mesh filters [181,182], frequency selective surfaces [182,183] and the
negative index metamaterials [184,185] in early days. In recent years, metasurfaces based
on 2D grids or fishnet were demonstrated for optical activity or circular dichroism [140,186],
tunable EOT [114,140] and dispersion engineering [185], etc.

Recently, the PCMs-integrated grids were employed by Rude et al. [114], as a typical
example for an active metasurface with the broadband tuning of EOT in the visible and
near-IR range. In contrast to the MIM setup, GST grids were used on top of metallic grids
with silicon dioxide underneath as the substrate, shown in Figure 13b. Upon a phase
transition from the initial amorphous state to the crystalline state, which can be triggered
by optical excitation (35 fs laser pulse at 800 nm, fluence of 5 mJ/cm 2) or electrical stimuli
(DC current for 20 s at 3.5V, 1.5 A), the samples demonstrated movable EOT peaks of
plasmonic resonance.

Figure 13. The GST-integrated fishnet metasurfaces constructed by a circular holes array for actively tunable EOT [114];
(a) transmission spectra with moveable peaks of EOT for plasmonic resonance by bare metallic hole and the other two
with amorphous and crystalline GST on top; (b) the device setup; (c,d) the field distribution for (c) off-resonance and (d)
on-resonance mode—all figures are reproduced with permission from [114].

Noteworthy, continuous metasurfaces using grids structures were also demonstrated
in THz range with the connected metallic meta-atoms that facilitate electrical access for
phase change control [99,187]. Typically proposed by Zhou et al. [99], the grids pattern
was constructed by interleaving one array of interdigital metal slits with another orthog-
onal array of VO2 slits. The metallic grids act as both the resonators and electrodes for
phase change of VO2 slits. In another VO2-grids hybrid framework by Cai et al. [187], the
meta-atoms of split ring resonators (SRRs) were interconnected by a conductive wire that
strings all SRRs at one side. All VO2–filled SRRs were electrically excited and the overall
transmission spectra were actively tuned by different temperatures under Joule heating.
The inherent hysteresis behavior of VO2 enables a multistate amplitude modulation, poten-
tially in favor of applications as the electrically controlled digital photonic devices, i.e., the
digital optoelectronic integration.

5.4. Others

Other than the structures discussed above, a few other metamolecules of antennas or slits
with diversely structured geometries were also frequently used to construct the continuous
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or quasi-continuous metasurfaces, e.g., trapezoids [168,169,188], crescents [189,190], and
zigzags [191–193], just to name a few.

For one typical candidate of metamolecules with the structural characteristic of spatial
continuity, the trapezoid antennas intrinsically offer distortion-free and continuous phase
tailoring for the incidence of linearly polarized waves. As an example, Qiu’s group
demonstrated one type of continuous metasurface for high-efficiency anomalous wave
bending [169], to conquer the efficiency issue existing for most traditional metadevices,
shown in Figure 14a. By aligning the parallel edges of trapezoids along the polarization
direction of LP incidence, a broad band phase modulation covering almost the entire
visible range can be obtained with combined resonances of different cross-sections at
varied wavelengths. The spatial continuity in phase modulation was further specified
by regarding each single trapezoid antenna as a series of rods with continuously varied
widths [188], shown in Figure 14b. For coherent control in multiple anomalous scattering,
the trapezoid-shaped slit metasurface was also numerically studied [168].

Figure 14. Typical examples of metasurfaces constructed by continuous or quasi-continuous meta-
molecules, such as (a) trapezoids (b) that be regarded as combined rods with varied widths, (c)
crescents and (d) zigzags array—(a–d) are reproduced with permissions from references [169,188]
(Copyright (2014) The Japanese Society of Applied Physics), [190,193] sequentially.

Similarly, the quasi-continuous metasurface composed of crescent antenna was typ-
ically used for circular dichroism (CD) control using the MIM setup [189]. As shown in
Figure 14c, Li’s group also presented one type of metasurface with spirally combined
crescent-shaped meta-atoms for versatile Fano-based CD control [190]. However, as
revealed earlier in 2015 by Pu et al. [162], such quasi-continuous atoms as crescent or
parabolas caused nonlinear phase tailoring as compared to catenary meta-atoms.

Furthermore, as proposed by Buchnev et al. from Zheludev’s group [191,192], another
type of continuous atoms, the zigzag atoms of nanowires, were actually used as connected
“V”-shaped antenna array enabling electrical access as electrodes, such as the liquid crystal
hybridized metamaterials or devices with active electro–optical control. As shown in
Figure 14d, the zigzag nanoslits or nanowires were also used to construct the metasurface
that is immune to high-order diffraction for coherence recognition [193]. In contrast to the
spectra caused by coherent waves, incoherent illuminations caused a local resonance or
split to global resonant band that was exclusive to the continuous atoms.
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6. Conclusions and an Outlook

In summary, we briefly reviewed the PCMs-integrated active metasurfaces for dynami-
cally tunable phase and amplitude regulation, especially featuring those with continuous or
quasi-continuous meta-atoms enabling convenient electrical control as well as the compact
electro–optical or optoelectronic integration. Basically, two types of PCMs are currently
being used as the mainstream candidates for active photonic devices from the visible to
THz range. In contrast to VO2 that is volatile in the active control, the chalcogenide PCMs
of GST alloy exhibited great potential and intensive applications for the non-volatile and
active control of diverse photonic devices, due to their advantages in large cycles of re-
versible phase change, long-term stability and distinct optical and electrical contrast in the
amorphous and crystalline states. As discussed above, GST alloys have been immensely
used in diverse hybridized architectures or directly in dielectric metasurfaces for dynamic
tuning of amplitude control (e.g., tunable absorption, reflection, transmission, thermal
emission and circular di-chroism etc.) and phase tailoring (e.g., tunable deflection, lensing,
vortex beam and holography etc.). However, the PCMs-based active metasurfaces just
started to set sail and diverse architectures of device with versatile functionalities are still
emerging. In this situation, a few foreseeable challenges or directions may come out to be
addressed toward multifunctionality or versatility, long-term reliability and ultra-compact
integration for future trends.

First, it is imperative to further expand the passive functionalities of current meta-
surfaces for different purposes or figures of merits, e.g., efficiency, broadband control,
phase continuity and even versatile smart controls including the functional multiplexing of
wavelength, polarization and resonant modes etc. Moreover, it is highly desirable to endow
such passive versatility with more degrees of freedom in the dynamic control of amplitude,
wavefront or polarization. Second, multi-state active control achieved by the multi-level
crystallization of PCMs enables a few intriguing phenomena and emerging metadevices.
So, some GSTs or VO2-based applications may evoke further investigations into the phase
change process with more intermediate states between the common bi-state controls. A few
examples can be found in previous discussions [76,187,194]. Third, although the commonly
used GST alloys exhibit the advantageous contrast of optical constants, relatively high opti-
cal loss still exists for most of them, especially in the visible and near-IR range. Therefore,
GSTs with exquisitely optimized compositions and thus minimized optical losses would
attract more research of interest in this field. For an example, a new class of PCMs, namely
Ge–Sb–Se–Te (GSST) [90,91], was recently found to exhibit well transparency and low
loss in an extremely broadband range (1–18.5 µm) by adequately sacrificing the switching
speed, and somehow shows prospects for the emerging infrared photonic devices.

Finally, on-chip photonic and electronic integration is becoming an inevitable trend,
especially for ultra-compact metadevices with natural CMOS-compatibility for monolithic
integration. Specifically, given the actively reconfigurable functionalities by thermal, op-
tical and electrical stimuli, it is somewhat highly desirable to practically achieve fully
reversible and real-timely active control by the in-site photonic or electrical stimuli, espe-
cially the electrical control that facilitates monolithic electro–optical integrations. Therefore,
metasurfaces with continuous atoms for electrical connectivity are preferred for future
device integration. Furthermore, for certain applications of integrated photonic devices
with more active versatility, it is highly urgent to introduce the locally selective access of
electrical stimuli for addressable phase transition of individual atoms, especially for future
monolithic on-chip electro–optical integration.
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