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Abstract

Background: Heterogeneity has a key role in meta-analysis methods and can greatly affect conclusions. However, true levels
of heterogeneity are unknown and often researchers assume homogeneity. We aim to: a) investigate the prevalence of
unobserved heterogeneity and the validity of the assumption of homogeneity; b) assess the performance of various meta-
analysis methods; c) apply the findings to published meta-analyses.

Methods and Findings: We accessed 57,397 meta-analyses, available in the Cochrane Library in August 2012. Using
simulated data we assessed the performance of various meta-analysis methods in different scenarios. The prevalence of a
zero heterogeneity estimate in the simulated scenarios was compared with that in the Cochrane data, to estimate the
degree of unobserved heterogeneity in the latter. We re-analysed all meta-analyses using all methods and assessed the
sensitivity of the statistical conclusions. Levels of unobserved heterogeneity in the Cochrane data appeared to be high,
especially for small meta-analyses. A bootstrapped version of the DerSimonian-Laird approach performed best in both
detecting heterogeneity and in returning more accurate overall effect estimates. Re-analysing all meta-analyses with this
new method we found that in cases where heterogeneity had originally been detected but ignored, 17–20% of the
statistical conclusions changed. Rates were much lower where the original analysis did not detect heterogeneity or took it
into account, between 1% and 3%.

Conclusions: When evidence for heterogeneity is lacking, standard practice is to assume homogeneity and apply a simpler
fixed-effect meta-analysis. We find that assuming homogeneity often results in a misleading analysis, since heterogeneity is
very likely present but undetected. Our new method represents a small improvement but the problem largely remains,
especially for very small meta-analyses. One solution is to test the sensitivity of the meta-analysis conclusions to assumed
moderate and large degrees of heterogeneity. Equally, whenever heterogeneity is detected, it should not be ignored.

Citation: Kontopantelis E, Springate DA, Reeves D (2013) A Re-Analysis of the Cochrane Library Data: The Dangers of Unobserved Heterogeneity in Meta-
Analyses. PLoS ONE 8(7): e69930. doi:10.1371/journal.pone.0069930

Editor: Tim Friede, University Medical Center Göttingen, Germany

Received February 20, 2013; Accepted June 13, 2013; Published July 26, 2013

Copyright: � 2013 Kontopantelis et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: EK was partly supported by a National Institute for Health Research (NIHR) School for Primary Care Research fellowship in primary health care. The
funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. No additional external funding received for
this study.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: e.kontopantelis@manchester.ac.uk

Introduction

Meta-analysis (MA), the methodologies of synthesising existing

evidence to answer a clinical or other research question, is a

relatively young and dynamic area of research. The furore of

methodological activity reflects the clinical importance of meta-

analysis and its potential to provide conclusive answers, rather

than incremental knowledge contributions, much more cheaply

than a new large Randomised Clinical Trial (RCT).

The best analysis approach is an Individual Patient Data (IPD)

meta-analysis, which requires access to patient level data and

considerably more effort (to obtain the datasets mainly). However,

with IPD data, clinical and methodological heterogeneity,

arguably the biggest concern for meta-analysts, can be addressed

through patient-level covariate controlling or subgroup analyses

when covariate data are not available across all studies.

When the original data are unavailable, researchers have to

combine the evidence in a two stage process, retrieving the

relevant summary effects statistics from publications and using a

suitable meta-analysis model to calculate an overall effect estimate

m̂m. Model selection depends on the estimated heterogeneity, or

between-study variance, and its presence usually leads to the

adoption of a random-effects (RE) model. The alternative, the

fixed-effects model (FE), is used when meta-analysts, for theoretical

or practical reasons, decide not to adjust for heterogeneity, or have

assumed or estimated the between-study variability to be zero.

Different approaches exist for combining individual study results

into an overall estimate of effect under the fixed- or random-effects

assumptions: inverse variance, Mantel-Haenszel and Peto [1].

Inverse variance approaches are the most flexible and are

suitable for continuous or dichotomous data through a fixed-effect

or one of numerous random-effects methods. The DerSimonian

and Laird [2] method (DL), a moment-based estimator, is the
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oldest and most widely used random-effects model and justifiably

so since it has proven to be remarkably robust in various scenarios

[3] including skew-normal and extreme distributions for the effects

[4]. Numerous other inverse variance-based approaches to meta-

analysis have also been developed: Biggerstaff and Tweedie [5],

Follmann and Proschan [6], Sidik and Jonkman [7], maximum

likelihood, restricted maximum likelihood and profile likelihood

[8]. Most of these are computationally expensive methods and for

some convergence to a solution is not guaranteed, but the added

complexity does not seem to lead to better overall performance.

Although some of the methods perform better on coverage, this is

achieved at the expense of power and wider confidence intervals

on the effect estimate, especially for meta-analyses of small

numbers of studies (with the possible exception of restricted

maximum likelihood and profile likelihood) [4,9,10].

Mantel-Haenszel [11] methods are suitable for dichotomous

data and use a different weighting scheme that depends on the

selected effect measure, which can be an odds ratio, a risk ratio or

a risk difference. These fixed-effects methods have been shown to

have better statistical properties than inverse variance methods

when events numbers are low or studies are small [12]. Another

fixed-effect alternative is the Peto method which is only suitable for

dichotomous outcomes and calculates each study effect as a Peto

odds ratio before combining [13]. The method performs well

when intervention effects are small or when events are very rare.

However, in the presence of heterogeneity, meta-analysts have to

revert to inverse variance weighting to use a random-effects model.

For all random-effects models, an accurate estimate of the true

between-study variance t2 is an important driver of performance.

A large t̂t2 results in wider confidence intervals around the effect

estimate with the models taking into account the variability of the

effect across studies, while a zero t̂t2 reduces the DL, Sidik-

Jonkman, Follmann- Proschan, maximum likelihood and restrict-

ed maximum likelihood methods to a fixed-effect model;

effectively assuming there is study homogeneity. Although the

Biggerstaff-Tweedie and profile likelihood methods take into

account the uncertainty in the between-study variance estimate

and adjust the confidence intervals accordingly (while all other

methods treat the estimate as fixed), their performance is still

dependent on an accurate t̂t2.

The between-study variance can be estimated using a number

of different approaches. The three mainstream approaches stem

from the DL (t̂t2
DL), maximum likelihood (t̂t2

ML) and restricted

maximum likelihood (t̂t2
REML) methods and are inherent in them.

All the other meta-analysis methods discussed above use t̂t2
DL, t̂t2

ML

or t̂t2
REML but vary their approach in estimating the effect m. Other

methods include the variance component (VC) type estimator

[14,15] and the newer two-step VC and DL [16], model error

variance (MV) estimators [17,18] and Bayes estimators [19].

In practice, t̂t2
DL is computed for most meta-analyses and used to

quantify heterogeneity in a more interpretable way through

Cochran’s Qstatistic [20] or I2 [21]. Although these measures are

not without flaws [22,23], they inform the decision between a

fixed-effect and a random-effects meta-analysis model (usually

DL). In our experience, researchers are reassured (and reviewers

are less critical) when the between study variance estimate is zero,

not having to interpret study heterogeneity or deal with model

selection dilemmas. Sometimes, researchers opt to use a fixed-

effect model even when a small amount of heterogeneity is

detected, despite recommendations for the more conservative

nature of the random-effects approach and its better performance

[3,4,23].

The Cochrane Database of Systematic Reviews is the richest

resource of meta-analyses in the world with fifty-four active groups

responsible for organising, advising on and publishing systematic

reviews. Authors are obliged to use RevMan [24], software that

has been developed by the Nordic Cochrane Centre and submit

the data and analyses file along with the review, contributing to the

creation of a vast data resource. Although RevMan offers quite a

few fixed-effect choices, only the DerSimonian-Laird random-

effects method has been implemented to quantify and account for

heterogeneity.

In this paper, following our investigation of effect estimation

methods [4], we assess the performance of heterogeneity

estimation methods, aiming to bring researchers’ attention to the

potential bias from assuming between-study variance is zero. More

specifically, we:

1) Compare the performance of between- study variance

estimators in various scenarios, through simulations, focusing

on non-normal distributions and small numbers of meta-

analysed studies. The distributions of the estimates and bias

will be compared against the hypothetical distribution used in

the simulations. We will also estimate the rates of under- and

over-estimation and zero t̂t2, when heterogeneity is present.

2) Investigate the performance of alternative methods, focusing

on the t̂t2~0 case.

3) Present the distribution of t̂t2 derived from using all meta-

analyses in the Cochrane Library (Aug 2012, up to and

including CD009888), overall and by method type, as well as

details on the number of meta-analysed studies, model

selection and zero t̂t2. We will also assess the sensitivity of

the results and conclusions using alternative models.

Methods

Between-study Variance Estimators
Let us consider a group of k studies with effect size estimates

Y1,Y2, . . . ,Yk from which we wish to estimate the overall true

mean effect h. Under the random-effects model, the effect size will

vary across studies due to error attributed to within- and between-

study variability:

Yi~hizei, ei*N(0,s2
i ) ð1Þ

hi~hzei, ei*N(0,t2)

Where s2
i is the within study variance for study i and t2 the

between-study variance. All variance components are empirically

estimated from the available data and the within-study variance

estimates ŝs2
i are assumed to equate to their true values, a

potentially problematic approach due to the ignored uncertainty

[3]. For the between-variance estimate, a plethora of methods

exist, frequentist and Bayesian. Again, the estimate uncertainty is

almost always ignored and only the point-estimate is incorporated

in the random-effects model, while most methods can return a

negative estimate and have to be constrained (in which case t̂t2 is

set to zero). All the methods we assess have been presented in

detail by Deeks et al [25], Sidik and Jonkman [18], DerSimonian

and Kacker [16] and Rukhin [19] and we are providing a

simplified overview. In terms of a-priori assumptions regarding

heterogeneity, methods can be categorised in two groups: a)

methods which allow heterogeneity to be either zero or positive

A Re-Analysis of the Cochrane Library Data
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(t̂t2
§0); and b) methods that assume heterogeneity is strictly

positive, i.e. always greater than zero (t̂t2
w0). For convenience, we

refer to the first group as zero-or-positive (heterogeneity) methods

and the second group as positive-only methods.

DerSimonian-Laird estimators. The most commonly used

approach is the non-iterative method of moments estimator

proposed by DerSimonian and Laird [2]:

t̂t2
DL~

QŴW {(k{1)Pk
i~1

ŵwi{
Pk
i~1

ŵw2
i

�Pk
i~1

ŵwi

ð2Þ

Where ŵwi~1=ŝs2
i , QŴW ~

Pk
i~1

ŵwi(Yi{ �YY )2 the Cochran heteroge-

neity statistic [15] and �YY the overall effect estimate using the

respective fixed-effects model (i.e. inverse variance, Mantel-

Haenszel or Peto).

More recently, DerSimonian and Kacker [16] suggested a two-

step approach:

t̂t2
DL2~

Pk
i~1

ŵwi(Yi{ĥhDL){
Pk
i~1

ŵwiŝs
2
i {
Pk
i~1

ŵw2
i ŝs2

i

�Pk
i~1

ŵwi

� �
Pk
i~1

ŵwi{
Pk
i~1

ŵw2
i

�Pk
i~1

ŵwi

ð3Þ

Where ŵwi~1= ŝs2
i zt̂t2

DL

� �
and ĥhDL is the effect estimate obtained

from the one-step DL method. When equations (2), (3) provide a

negative estimate, it is truncated to zero in practice.

We also generated a non-parametric bootstrap [26] version of

the DL estimator by randomly sampling studies with replacement

10,000 times and selecting the mean of the truncated estimates.

Under this process, for each selected random sample (e.g. for four

studies a sample might include studies 1, 1, 2 and 4), between-

study variance is estimated using (2) and truncated if negative. The

mean of these 10,000 estimates we called t̂t2
DLb.

For a fairer comparison between the DerSimonian-Laird

estimator and the Sidik-Jonkman and Rukhin estimators that

arbitrarily assume heterogeneity a-priori, we generated estimator

t̂t2
DLi which assumes a between study variance of 0.01 if a zero or

negative t̂t2
DLi is obtained:

t̂t2
DLi~

t̂t2
DL when t̂t2

DLw0

0:01 when t̂t2
DLƒ0

(
ð4Þ

Variance component estimators. Another method of

moments estimator was proposed by Hedges [27]:

t̂t2
VC~

1

k{1

Xk

i~1

(Yi{ �YY ){
1

k

Xk

i~1

ŝs2
i ð5Þ

This simple approach partitions the overall variance estimate

into within- and between-variance components and solves for the

latter.

A two-step approach has also been suggested [16]:

t̂t2
VC2~

Pk
i~1

ŵwi(Yi{ĥhVC){
Pk
i~1

ŵwiŝs
2
i {
Pk
i~1

ŵw2
i ŝs2

i

�Pk
i~1

ŵwi

� �
Pk
i~1

ŵwi{
Pk
i~1

ŵw2
i

�Pk
i~1

ŵwi

ð6Þ

The estimates from the one-step variance component method

are fed into the formula with ŵwi~1= ŝs2
i zt̂t2

VC

� �
and ĥhVC the

effect estimate.

In practice, as with the DL estimators, variance components

estimators are truncated to zero.

Iterative estimators. Maximum-likelihood (ML) is a more

computationally demanding iterative approach, assuming within-

study variances are known, solves the log likelihood function

[8,18]:

log L(h,t2)

~{
k

2
log (2p){

1

2

Xk

i~1

log (ŝs2
i zt2){

1

2

Xk

i~1

(Yi{h)2

ŝs2
i zt2

ð7Þ

And the estimate can be obtained from the iteratively solved

equation:

t̂t2
ML~

Pk
i~1

ŵw2
i Yi{

Pk
i~1

ŵwiYi

�Pk
i~1

ŵwi

� �
{ŝs2

i

� �
Pk
i~1

ŵw2
i

ð8Þ

Where ŵwi~1= ŝs2
i zt̂t2

ML

� �
:

Restricted Maximum Likelihood (REML) estimator is another

iterative approach, assuming within-study variances are known,

solves the restricted log likelihood function [8,18]:

log L’(h,t2)~{
1

2

Xk

i~1

log 2p(ŝs2
i zt2)

	 

z
Xk

i~1

Yi{ĥhW

ŝs2
i zt2

" #

{
1

2
log
Xk

i~1

1

ŝs2
i zt2

ð9Þ

Where ĥhW ~
Pk
i~1

wiYi=
Pk
i~1

wi and ŵwi~1= ŝs2
i zt2

� �
:

The iterative solution to the equation is the restricted maximum

likelihood estimate:

t̂t2
REML~

Pk
i~1

ŵw2
i Yi{

Pk
i~1

ŵwiYi

�Pk
i~1

ŵwi

� �
z1

�Pk
i~1

ŵwi{ŝs2
i

� �
Pk
i~1

ŵw2
i

ð10Þ

Where ŵwi~1= ŝs2
i zt̂t2

REML

� �
:

For both ML and REML, truncation to zero at each iteration

prevents the estimate from having a negative value. Convergence

to a solution is not always successful.

Sidik and Jonkman model error variance

estimators. Sidik and Jonkman [17] proposed a non-iterative
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estimator under a different parameterisation of the overall study

variability, assuming a positive a-priori value for the between-

study variance:

t̂t2
MV~

1

k{1

Xk

i~1

1

r̂riz1
Yi{

Pk
i~1

1=r̂riz1ð ÞYi½ �

Pk
i~1

1=r̂riz1ð Þ

0
BBB@

1
CCCA ð11Þ

Where ri is the within- to between-study variance ratio for study i

(ri~s2
i =t2). When crude ratio estimates are used as a-priori values,

with r̂ri~ŝs2
i =

1
k

Pk
i~1

(Yi{ �YY ), truncation at zero is not necessary

since t̂t2
MV is always positive – we call this estimator t̂t2

MVa. An

alternative approach was suggested in which the VC estimator is

used to inform on the a-priori values of the ratios, with

r̂ri~ŝs2
i =t̂t2

VC . Since the denominator can be zero, an arbitrary

value has to be added to it when t̂t2
VC~0. We used 0.01 in

compliance with the method’s authors and call this estimator

t̂t2
MVb. Note that we do not discuss the empirical Bayes estimator

proposed by Morris [28], due to its practical similarity to the

model error variance estimators [18].

Rukhin Bayes estimators. More recently, Rukhin [19]

proposed a Bayes estimator that can be reduced to the following

when the prior between-study variance is set to zero:

t̂t2
B0~

1

kz1

Xk

i~1

(Yi{ �YY )2{

Pk
i~1

ni{k

� �
(kz1)

Pk
i~1

ŝs2
i

k(kz1)
Pk
i~1

(ni{kz2)

ð12Þ

Where ni the number of subjects in study i. Truncation to zero is

necessary since negative estimates are a possibility. Assuming the

between-study variance prior is 0:5(k{1)
Pk
i~1

(ŝs2
i =k), a simpler

and always positive estimator can be obtained:

t̂t2
BP~

1

kz1

Xk

i~1

(Yi{ �YY )2 ð13Þ

Simulations
Our approach was similar to Brockwell’s and Gordon’s [3],

generating effect size estimates Yi and within study variance

estimates ŝs2
i for each simulated meta-analysis study. The

distribution of the ŝs2
i was based on the x2

1 distribution, divided

by four and restricted to the (0.009, 0.6) interval, with a mean of

0.173. For the Yi~hizei, we assumed that ei*N(0,ŝs2
i ). but we

simulated various distribution scenarios for hi with a mean of 0.5

and variance t2 normal skewness = 0, kurtosis = 3), moderate

skew-normal (skewness = 1, kurtosis = 4), extreme skew-normal

(skewness = 2, kurtosis = 9), uniform, bimodal and double-spike

(designed to simulate a situation where study effects take one of

two values, a possibility when testing an intervention under two

experimental designs). We used three t2 values in an attempt to

capture low, medium and large levels of heterogeneity: 0.01, 0.03

and 0.10. These correspond to H2 values of 1.18, 1.54 and 2.78

[23] and I2 values of approximately, since the measure is not

entirely independent of the number of studies in the meta-analysis,

15.1%, 34.9% and 64.1% [21]. To be able to assess t̂t2
B0 we also

independently simulated study sizes ni uniformly distributed in the

[50,500] range, since estimated study mean Yi and variance ŝs2
i are

independent of sample size. For each distributional assumption, t2.

value, and meta-analysis size (which varied from 2 to 30 studies),

10,000 meta-analyses cases were simulated. The full details of the

simulation methods have been provided elsewhere [4]. All

methods were implemented and analysed in Stata v12.1 for

Windows [29].

Assessment Criteria
The performance of the estimators was assessed using four

measures: a) the average bias in the heterogeneity estimate; b) the

percentage of zero heterogeneity estimates; c) the coverage

probability for the effect estimate; and d) the point and error-

interval estimation for the effect.

Average bias in the heterogeneity estimate. This is the

simplest measure, an aggregate of the bias in the estimate provided

by each method (compared to the known t2 value), across the

10,000 meta-analysis cases in each simulation scenario. This will

give us a picture of under-or over-estimation for each method, but

not of the overall level of bias (since negative and positive biases

will cancel each other out). Therefore, we also calculate and report

the average absolute bias.

Percentage of zero heterogeneity estimates. We can get a

better understanding of a method’s performance by summarising

the percentage of cases for which between-study variance is

estimated to be zero. Erroneously assuming homogeneity is

potentially a big problem for all estimators that do not always

return a positive t2.

Coverage probability and error-interval estimation for

the effect. The accuracy of the between-study variance estimate

is just one, albeit very important, parameter for obtaining a precise

overall effect estimate, the main goal of all meta-analysis methods.

The overall random-effects estimate is usually provided by:

ĥh~
Xk

i~1

ŵwiYi=
Xk

i~1

ŵwi ð14Þ

Where ŵwi~1= ŝs2
i zt̂t2

� �
: However, the approach is different for

the iterative likelihood methods, i.e. maximum, restricted maxi-

mum and profile likelihood [8], while variants of (14) have been

proposed by Biggerstaff and Tweedie [5] and Sidik and Jonkman

[7]. Profile likelihood, which has be shown to be an accurate

method [3,4], uses the t̂t2
ML point estimate but also calculates a

confidence interval for the estimator and incorporates the

uncertainty in the overall effect estimate calculation. The

Biggerstaff-Tweedie and Sidik-Jonkman variants provide similar

or worse estimates to (14) with t̂t2
DL [4] and for convenience we

only use the last approach.

The coverage probability is the proportion of 95% confidence

intervals for the overall effect estimate that contain the true overall

effect h, in the 10,000 meta-analysis cases for each simulation

scenario. Theoretically, this should be close to 95% but

heterogeneity, the number of studies in the meta-analysis and, to

a lesser extent, the distribution of the true effects, can affect

coverage levels [3,4].

However, a method can provide high coverage probability rates

by overestimating the standard error for the overall effect estimate

and thus providing confidence intervals that are overly wide. To

better assess the methods we constructed a measure of the

accuracy of estimation of the error-interval around the point

estimate, computed as the ratio of the estimated confidence

A Re-Analysis of the Cochrane Library Data
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interval for the effect, compared to the interval based on the true

t2:

EI~
upperCI(ĥh){lowerCI(ĥh)

3:92

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

�Pk
i~1

1

t2zŝs2
i

s ð15Þ

Where upperCI(ĥh) and lowerCI(ĥh) are the upper and lower

bounds of the 95% confidence interval for the estimated effect,

respectively. The main advantage of this measure is that it allows a

straightforward comparison across very different methods [4]. We

used the median and the 25th and 75th percentiles of the EI

metric, to assess its performance more effectively.

Cochrane Data
All Cochrane library systematic reviews are constrained to use

RevMan [24] and the data for each review, if any relevant studies

are identified, are available on the Wiley Group website [30].

Institutional or personal access is required and we developed

crawling code in Python [31] to automate the procedure. We were

able to access the Wiley website and all Cochrane systematic

reviews available in August 2012 (CD000004 to CD009888),

downloaded the relevant RevMan files and exported them as *.csv

files, before importing in Stata. A total of 3,984 files were available

and 3,845 were successfully downloaded (139 files were corrupt).

The code has been made available as two supplementary python

script files.

Each RevMan file is a systematic review (e.g. olanzapine for

schizophrenia). Within a review, various research questions might

have been posed (e.g. olanzapine vs placebo, olanzapine vs typical

antipsychotics, olanzapine vs atypical antipsychotics) and each

question might be investigated across various relevant outcomes,

(e.g. global effect: no important clinical response by 6 weeks,

adverse events: other). In each of these, an overall meta-analysis is

performed on all identified studies, if more than one. However,

there might exist a further break-down due to variability in the

intervention or the outcome (e.g. drug dosage, or types of other

adverse events) and sub-group meta-analyses are then performed.

In these cases, an overall meta-analysis which summarises across

all studies in the sub-groups can also be executed, if deemed

reasonable by the researchers, but this is rarely the case.

From each file, available data for all meta-analyses (e.g. study

sizes, event and non-event counts, effect sizes and their variances,

alpha level used), overall or subgroup, were collected including the

meta-analysis method used and the RevMan output. Method

choice in the software is limited to: a) inverse variance fixed-effect

or random-effects with DL for continuous or dichotomous

outcomes; b) Mantel-Haenszel fixed-effect or Mantel-Haenszel

random-effects with DL for dichotomous outcomes; c) Peto fixed-

effect for dichotomous outcomes; and d) Peto ‘‘O-E’’ (observed

minus expected) fixed-effect time-to-event data. Next, we re-

analysed all meta-analyses using the methods implemented in the

software [32] and all the random-effects methods described in

section 2.1 above, in Stata. This allowed us to identify and report

potential bugs in RevMan, assess the sensitivity of the meta-

analyses results to the method choice and compare the distribu-

tions of the between-study variance estimates obtained by the

various methods.

Results

Simulations
We present results for just two of the effect-size distributions we

simulated, since results for the assessment measures we used were

consistent across all distributions: normal and extreme skew-

normal. For the iterative methods, non-convergence varied by

meta-analysis size and heterogeneity level from 0.1% to 3.5%. Bias

assessment is presented in Table S1 in File S1, coverage and zero

between-study variance estimate rates in Table S2 and error

intervals in Table S3 in File S1.

Bias assessment. For low levels of heterogeneity (t2~0:01;

H2~1:18; I2~15:1%), all estimators displayed positive mean bias

with ML having the smaller mean and mean absolute bias across

all meta-analysis sizes, followed by B0 (for kv5) and REML (for

k§5). The worst performers were MVa and BP, for k§3 and

DLb for k~2. The picture was similar for moderate heterogeneity

(t2~0:03; H2~1:54; I2~34:9%) with ML being the best

performer and, overall, only slightly underestimating the be-

tween-study variance for larger meta-analyses. For considerable

heterogeneity (t2~0:10; H2~2:78; I2~64:1%), ML still displays

the smallest absolute bias levels for all meta-analyses sizes except

when k~2, in which case B0 performs slightly better. When it

comes to mean bias levels, however, ML consistently underesti-

mates heterogeneity, especially when k is small. DL and REML

seem to be the best performers for large meta-analyses and B0 for

very small ones. Levels of DLb bias were the highest for meta-

analyses of two studies but acceptable for five or more studies.

Across all three heterogeneity levels, observed levels of mean bias

and mean absolute bias decreased as the number of studies

increased except for the B0 and BP estimators. Interestingly, BP

bias was higher for larger meta-analyses (Table S1 in File S1).

Coverage and erroneous homogeneity assumption. When

heterogeneity was low, DLb, MVb and DLi provided coverage rates

close to 95%, while DL, REML and, for larger meta-analyses only,

PL also performed well. Amongst the zero-or-positive heterogeneity

methods, DLb was the best in terms of detecting any heterogeneity,

especially for larger meta-analyses. For moderate hetero-

geneity levels, DLi and MVb, both of which are positive-only

heterogeneity methods, were the best performers overall. In the

zero-or-positive estimator group, DLb performed the best in terms of

heterogeneity detection while providing good coverage and PL was

the best in coverage. For large heterogeneity, MVa had the most

accurate coverage levels overall, with BP performing well only for

small meta-analyses. Methods DLb and PL also performed well,

with the former outperforming all other zero-or-positive methods

and the latter providing the best coverage levels. The higher

heterogeneity detection rates for DLb are not surprising considering

its high bias for small meta-analyses. However, for larger meta-

analyses of 5 or more studies, when DLb bias is comparable or even

lower to bias observed for other t̂t2
§0 methods, DLb is still the best

performer in heterogeneity detection. Note that across all methods,

levels of coverage decreased as heterogeneity increased (Table S2 in

File S1).

Error interval estimation. For low levels of heterogeneity,

the positive-only heterogeneity methods DLi and MVb did

particularly well, since the assumed minimum degree of positive

heterogeneity matched the mean value in the simulation. Amongst

the zero-or-positive heterogeneity methods, DLb was the best

overall performer in terms of median performance, only slightly

over-estimating the error interval for larger meta-analysis. Other

good performers were DL, REML and B0 (especially for small

study numbers), while MVa, BP and PL provided error intervals

that were too wide (PL for smaller and MVa, BP for larger meta-
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analyses). In terms of the variability in the estimate, B0 was more

consistent in providing an accurate estimate for kv5 and DL and

REML for k§5. When heterogeneity was moderate, the picture

did not change much with the only noticeable differences being

the slight improvement in the DLb median estimate and the small

performance deterioration for DLi and MVb (since the a-priori

assumption is now an under-estimate). For large level of

heterogeneity, most methods underestimated the error interval

by more than 10% when kƒ3. For very small meta-analyses, the

positive-only methods BP and MVa methods performed well. DLb

was the best overall performer and scored particularly well when

kw3 (Table S3 in File S1).

Cochrane Data
Of the 3,845 downloaded files (systematic reviews) only 2,801

had identified relevant studies and contained any data. A total of

98,615 analyses were extracted, 57,397 of which were meta-

analyses (i.e. combined results across more than one study). Of

these, 32,005 were overall meta-analyses and 25,392 were

subgroup meta-analyses. Figure 1 provides the analyses counts

by Cochrane Group. In these meta-analyses, the estimation of an

overall effect was obtained with a Peto method in 4,340 (7.6%)

cases, a Mantel-Haenszel method in 33,184 (57.8%) cases and an

inverse variance method in 19,873 (34.6%) cases. For the Peto

meta-analyses, 585 of these used the ‘‘O-E’’ method. Choice of

fixed- or a random-effects model varied by meta-analysis size and

method; random-effects models were more prevalent in inverse

variance methods and larger meta-analyses (Figure 2).

To assess the validity of a homogeneity assumption and, thus, a

fixed-effect model choice in Cochrane data meta-analyses, we

compared the percentage of zero between-study variance estimates

under the DerSimonian-Laird method, in the real and simulated

data (Figure 3). To proceed with the comparison we calculated the

between-study variance estimate for all Cochrane meta-analyses,

since the measure is not reported in RevMan when a fixed-effect

method is used. We observed that the percentage of zero between-

study variance estimates was lower in the real data than in the low

and moderate heterogeneity simulated data. This suggests that the

mean true between-study variance is higher than generally

assumed but fails to be detected, especially when the number of

studies meta-analyses is small.

RevMan issues. For the Mantel-Haenszel methods, we

encountered some problems, when events or non-events were

very rare. When study event or non-event cells were empty,

calculations for risk ratios and risk differences (in RevMan v5.2.3)

were not in complete agreement with the documentation [32],

potentially affecting overall effect estimates. The issues were

reported to the Nordic Cochrane Centre.

Prior to version 5.0.17 (1 Dec 2008) the Peto method was not

using the correct study (Peto) odds ratio estimates and we

encountered a few meta-analyses that had not been updated with

the corrections.

Method comparison. We applied the methods described in

section 2.1 to all 57,397 meta-analyses to assess the distributions of

t̂t2 and the sensitivity of the results and conclusions. All

comparisons are presented in Tables 1, 2 and 3 but for simplicity

we only discuss differences between the standard methods and the

bootstrapped DerSimonian Laird (not a perfect method, but one

that performs well overall, despite its larger heterogeneity bias for

small meta-analyses).

The distributions of the estimators that do not assume always

present heterogeneity are provided in Figure 4 and cumulative

distributions for all methods in Figure 5 (by approach type and

overall). For inverse variance and Mantel-Haenszel methods, they

are similar and in agreement with the hypothesised x2
1 distribution

we used for the simulations. For Peto methods, the observed

distributions are flatter although the much smaller number of

studies might be a factor. As in the simulations, the bootstrapped

DerSimonian-Laird method identifies more heterogeneous meta-

analyses: overall, t̂t2~0 for 31.2% of analyses with DLb and

50.7% with the standard DL. This ‘success’ is partly attributed to

the higher positive bias rates for very small meta-analyses. The

Figure 1. All meta-analyses, including single-study and subgroup meta-analyses.
doi:10.1371/journal.pone.0069930.g001
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findings are similar when only focusing on the 32,005 ‘overall’

meta-analyses (Figure S1 in File S1). The better performance of

the bootstrap approach in identifying heterogeneity, compared to

the standard approach, is consistent across various meta-analysis

sizes (Figure S2 in File S1) but more profound when the number of

studies is small (Figure S3 in File S1).

For inverse variance methods, the sensitivity of the results to the

method choice, in terms of the statistical conclusion, is summarised

in Table 1. When t̂t2
DL~0, the fixed-effect method is necessarily

used in RevMan and, as expected, the conclusions agree

completely with what we obtained in Stata when using the same

method (DL is reduced to fixed-effect in the absence of

heterogeneity). However, the better at detecting heterogeneity

DLb method identified heterogeneity for some of these studies,

leading to the use of the respective random-effects model and a

change in the conclusion to non-significant effect for 84 meta-

analyses, approximately 0.9% of the analyses in the group. When

t̂t2
DLw0, the authors are given a choice between a fixed-effect and

Figure 2. Model selection by number of available studies (and % of random-effects meta-analyses)*.
doi:10.1371/journal.pone.0069930.g002

Figure 3. Comparison of zero between-study variance estimates rates in the Cochrane library data and in simulations, using the
DerSimonian-Laird method*.
doi:10.1371/journal.pone.0069930.g003
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a DL random-effects model. Ignoring heterogeneity and proceed-

ing with the former is not prudent, if the authors wish to their

findings to be generalizable. In that scenario we identified 6

statistically non-significant effect analyses (0.1%) and 936 signif-

icant effect analyses (19.0%) for which the conclusions changed

with DLb. When authors more appropriately used the DL

random-effects approach, our calculations in Stata agree for the

method but with DLb we also identified 6 non-significant effect

analyses (0.1%) and 140 significant effect analyses (2.3%) for which

the conclusions changed.

For Mantel-Haenszel approaches, we summarise the sensitivity

of the conclusions to the method choice in Table 2. When t̂t2
DL~0,

the MH fixed-effect method is used in RevMan and as before, the

DLb method identified heterogeneity for some of these analyses

and the respective random-effects model produced overall effects

for which the conclusion changed from non-significant in 50 cases

(0.4%) and from significant in 336 cases (2.7%). When t̂t2
DLw0 and

heterogeneity is ignored through the MH fixed-effect approach,

we identified 13 statistically non-significant effect analyses (0.2%)

and 1,676 significant effect analyses (20.1%) for which the results

changed with DLb. When authors took heterogeneity into account

with a DL random-effects approach, we identified 65 non-

significant effect analyses (0.5%) and 265 significant effect analyses

(2.2%) for which the conclusions changed. The computational

issues for the non-iterative methods and some of the changes in

statistical conclusions are due to the very rare events (or non-

events) disagreement with RevMan.

Table 3 summarises the differences in the statistical conclusions

across methods when a Peto fixed-effect approach has been used

in RevMan, irrespective of the estimated heterogeneity. When

t̂t2
DL~0, the DLb method identified heterogeneity for some of

these analyses and the respective random-effects model produced

overall effects for which the conclusion changed from non-

significant in 4 cases (0.2%) and from significant in 36 cases

(1.6%). When t̂t2
DLw0, DLb identified 7 (0.3%) and 359 (16.8%)

analyses for which the statistical conclusion changed from non-

significant and significant respectively. A very few of the changes

in the statistical conclusions are attributed to the unapplied Peto

odds-ratio corrections in analyses executed in RevMan versions

prior to 5.017.

The differences in the statistical conclusions between the

standard methods and the DerSimonian-Laird bootstrap, by

Figure 4. Distribution of between-study variance estimates by method type (including main and subgroup meta-analyses and
truncated to 0.5 for better visualisation).
doi:10.1371/journal.pone.0069930.g004
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meta-analysis size, are presented in Tables S4 to S6 in File S1. For

inverse variance approaches, differences are more common for

smaller meta-analyses and the methods agree more often in meta-

analyses of 10 or more studies. For the Mantel-Haenszel and Peto

approaches, differences are more consistent across meta-analysis

sizes.

Discussion

The importance of meta-analysis in medical research and its

great influence in clinical practice are unquestionable. However,

researchers and clinicians alike need to be aware of the potential

issues with the current methods and, in particular, the likely fallacy

of a homogeneity assumption. A zero between-study variance

estimate, which is often observed when the number of studies to be

meta-analyses is small, should be a cause for concern and further

investigation.

Strengths and Limitations
The study used a vast resource to meet its goals, all available

Cochrane Database of Systematic Reviews data in August 2012, a

total of 57,397 meta-analyses. Nevertheless, there are a few

limitations that need to be highlighted. Firstly, although the

Cochrane library is the biggest resource for systematic reviews and

meta-analysis it is not the only one. However, we have no reason

to believe that our findings would not be applicable to other

resources. Secondly, we used all reported meta-analyses, including

25,392 subgroup meta-analyses, and therefore there are instances

where the same study is used in numerous analyses. Although this

could potentially affect the distributions of the heterogeneity

estimates (but this does not seem to be the case) we felt that it was

more important to be inclusive and assess the sensitivity of all

meta-analysis, especially since some overall analyses are not

performed and only the subgroup ones are reported. Thirdly, for

dichotomous outcomes, we did not compare across inverse

variance, Mantel-Haenszel and Peto methods, but re-analysed

using the same approach for simplicity. Fourth, the true

heterogeneity distribution will very likely vary by outcome type

or other study characteristics [33] but looking into these sub-

categories is beyond the scope of this study.

Figure 5. Cumulative distribution of between-study variance estimates by method type (including main and subgroup meta-
analyses and truncated to 5 for better visualisation).
doi:10.1371/journal.pone.0069930.g005
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Findings
In simulated data with specified degrees of non-zero heteroge-

neity, we demonstrated that most methods that allow the

heterogeneity estimator to be zero, including the common

DerSimonian-Laird approach, perform well on average, even for

extreme distributions of the effects. However, these methods quite

often fail to detect heterogeneity and thus produce biased estimates

and conclusions, especially for small meta-analyses. The best

method, overall, in particular in terms of detecting heterogeneity

when it is present, appeared to be a non-parametric bootstrap of

the DerSimonian-Laird, which we have implemented in Stata

[34]. Although the method often produces positively biased

heterogeneity estimates, especially for small meta-analyses, it

performs very well on coverage, error-interval estimation and

heterogeneity detection.

Not surprisingly, positive-only heterogeneity methods had high

levels of bias which led to error intervals that were very wide,

especially for larger meta-analyses. The best balance across all

three measures of assessment was achieved by Sidik and Jonk-

man’s MVb [17]. However, by arbitrarily assuming a minimum

level of t̂t2~0:01 with the standard DerSimonian-Laird model, the

same level MVb uses as a starting point, we obtained better results

compared to MVb.

Using the Cochrane Database of Systematic Reviews we gained

access to data for thousands of meta-analysis and using that

resource we were able to further compare the performance of

difference meta-analysis methods. The distribution of the between-

Table 1. Variation in terms of statistical conclusion for inverse variance meta-analyses.

RevMan method

Fixed-effect (t̂t2
DL~0) Fixed-effect (t̂t2

DLw0) Random-effects DL (t̂t2
DLw0)

Counts (cell percentages) Counts (cell percentages) Counts (cell percentages)

Stata method NS Sig NS Sig NS Sig

FE NS 4494(50.3%)* 0(0.0%){ 1743(35.3%) 0(0.0%) 1622(27.0%) 17(0.3%)

Sig 0(0.0%)` 4438(49.7%)1 0(0.0%) 3194(64.7%) 1161(19.3%) 3204(53.4%)

DL NS 4494(50.3%) 0(0.0%) 1737(35.2%) 831(16.8%) 2783(46.4%) 0(0.0%)

Sig 0(0.0%) 4438(49.7%) 6(0.1%) 2363(47.9%) 0(0.0%) 3221(53.6%)

DLb NS 4494(50.3%) 84(0.9%) 1737(35.2%) 936(19.0%) 2777(46.3%) 140(2.3%)

Sig 0(0.0%) 4354(48.7%) 6(0.1%) 2258(45.7%) 6(0.1%) 3081(51.3%)

VC NS 4494(50.3%) 38(0.4%) 1739(35.2%) 857(17.4%) 2646(44.1%) 207(3.4%)

Sig 0(0.0%) 4400(49.3%) 4(0.1%) 2337(47.3%) 137(2.3%) 3014(50.2%)

MVa NS 4415(49.4%) 309(3.5%) 1738(35.2%) 1021(20.7%) 2733(45.5%) 277(4.6%)

Sig 0(0.0%) 4069(45.6%) 5(0.1%) 2173(44.0%) 50(0.8%) 2944(49.0%)

MVb NS 4494(50.3%) 117(1.3%) 1739(35.2%) 878(17.8%) 2680(44.6%) 178(3.0%)

Sig 0(0.0%) 4321(48.4%) 4(0.1%) 2316(46.9%) 103(1.7%) 3043(50.7%)

BP NS 4494(50.3%) 532(6.0%) 1737(35.2%) 952(19.3%) 2579(43.0%) 303(5.0%)

Sig 0(0.0%) 3906(43.7%) 6(0.1%) 2242(45.4%) 204(3.4%) 2918(48.6%)

B0 NS 4494(50.3%) 31(0.3%) 1736(35.2%) 601(12.2%) 2381(39.7%) 120(2.0%)

Sig 0(0.0%) 4407(49.3%) 7(0.1%) 2593(52.5%) 402(6.7%) 3101(51.6%)

VC2 NS 4494(50.3%) 13(0.1%) 1737(35.2%) 898(18.2%) 2754(45.9%) 167(2.8%)

Sig 0(0.0%) 4425(49.5%) 6(0.1%) 2296(46.5%) 29(0.5%) 3054(50.9%)

DL2 NS 4494(50.3%) 0(0.0%) 1736(35.2%) 844(17.1%) 2717(45.3%) 117(1.9%)

Sig 0(0.0%) 4438(49.7%) 7(0.1%) 2350(47.6%) 66(1.1%) 3104(51.7%)

ML NS 4468(50.0%) 1(0.0%) 1725(34.9%) 442(9.0%) 2272(37.8%) 44(0.7%)

Sig 0(0.0%) 4404(49.3%) 8(0.2%) 2721(55.1%) 499(8.3%) 3141(52.3%)

No conv|| 26(0.3%) 33(0.4%) 10(0.2%) 31(0.6%) 12(0.2%) 36(0.6%)

REML NS 4365(48.9%) 14(0.2%) 1730(35.0%) 852(17.3%) 2713(45.2%) 108(1.8%)

Sig 0(0.0%) 4314(48.3%) 6(0.1%) 2332(47.2%) 66(1.1%) 3103(51.7%)

No conv|| 129(1.4%) 110(1.2%) 7(0.1%) 10(0.2%) 4(0.1%) 10(0.2%)

PL NS 4440(49.7%) 514(5.8%) 1716(34.8%) 1006(20.4%) 2709(45.1%) 300(5.0%)

Sig 1(0.0%) 3862(43.2%) 4(0.1%) 2133(43.2%) 50(0.8%) 2881(48.0%)

No conv|| 53(0.6%) 62(0.7%) 23(0.5%) 55(1.1%) 24(0.4%) 40(0.7%)

*Agreement in statistical conclusion (non-significant effect) between RevMan and Stata methods.
{Non agreement in statistical conclusion between RevMan (significant effect) and Stata methods (non-significant effect).
`Non agreement in statistical conclusion between RevMan (significant effect) and Stata methods (non-significant effect).
1Agreement in statistical conclusion (significant effect) between RevMan and Stata methods.
||Iterative method failed to convergence to a solution.
doi:10.1371/journal.pone.0069930.t001
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Table 2. Variation in terms of statistical conclusion for Mantel-Haenszel meta-analyses*.

RevMan method

Fixed-effect (t̂t2
DL~0) Fixed-effect (t̂t2

DLw0) Random-effects DL (t̂t2
DLw0)

Counts (cell percentages) Counts (cell percentages) Counts (cell percentages)

Stata method NS Sig NS Sig NS Sig

FE (MH fixed) NS 8929(70.8%) 0(0.0%) 4311(51.7%) 2(0.0%) 6422(52.5%) 51(0.4%)

Sig 11(0.1%) 3678(29.1%) 8(0.1%) 3983(47.7%) 1666(13.6%) 4067(33.3%)

No comp{ 0(0.0%) 0(0.0%) 37(0.4%) 3(0.0%) 16(0.1%) 0(0.0%)

DL (MH random) NS 8882(70.4%) 196(1.6%) 4304(51.6%) 1539(18.4%) 8033(65.7%) 33(0.3%)

Sig 58(0.5%) 3482(27.6%) 15(0.2%) 2446(29.3%) 55(0.5%) 4085(33.4%)

No comp{ 0(0.0%) 0(0.0%) 37(0.4%) 3(0.0%) 16(0.1%) 0(0.0%)

DLb NS 8890(70.5%) 336(2.7%) 4306(51.6%) 1676(20.1%) 8023(65.6%) 265(2.2%)

Sig 50(0.4%) 3342(26.5%) 13(0.2%) 2309(27.7%) 65(0.5%) 3853(31.5%)

No comp{ 0(0.0%) 0(0.0%) 37(0.4%) 3(0.0%) 16(0.1%) 0(0.0%)

VC NS 8889(70.4%) 282(2.2%) 4298(51.5%) 1601(19.2%) 7844(64.2%) 316(2.6%)

Sig 51(0.4%) 3396(26.9%) 21(0.3%) 2384(28.6%) 244(2.0%) 3802(31.1%)

No comp{ 0(0.0%) 0(0.0%) 37(0.4%) 3(0.0%) 16(0.1%) 0(0.0%)

MVa` NS 8863(70.2%) 787(6.2%) 4303(51.6%) 1882(22.6%) 7982(65.3%) 683(5.6%)

Sig 19(0.2%) 2876(22.8%) 16(0.2%) 2103(25.2%) 84(0.7%) 3433(28.1%)

No comp{ 58(0.5%) 15(0.1%) 37(0.4%) 3(0.0%) 38(0.3%) 2(0.0%)

MVb NS 8917(70.7%) 399(3.2%) 4303(51.6%) 1603(19.2%) 7912(64.7%) 374(3.1%)

Sig 23(0.2%) 3279(26.0%) 16(0.2%) 2382(28.5%) 176(1.4%) 3744(30.6%)

No comp{ 0(0.0%) 0(0.0%) 37(0.4%) 3(0.0%) 16(0.1%) 0(0.0%)

BP NS 8933(70.8%) 1111(8.8%) 4305(51.6%) 1944(23.3%) 7908(64.7%) 964(7.9%)

Sig 7(0.1%) 2567(20.3%) 14(0.2%) 2041(24.5%) 180(1.5%) 3154(25.8%)

No comp{ 0(0.0%) 0(0.0%) 37(0.4%) 3(0.0%) 16(0.1%) 0(0.0%)

B0 NS 8887(70.4%) 267(2.1%) 4301(51.5%) 1290(15.5%) 7624(62.4%) 217(1.8%)

Sig 53(0.4%) 3411(27.0%) 18(0.2%) 2695(32.3%) 464(3.8%) 3901(31.9%)

No comp{ 0(0.0%) 0(0.0%) 37(0.4%) 3(0.0%) 16(0.1%) 0(0.0%)

VC2 NS 8887(70.4%) 222(1.8%) 4301(51.5%) 1622(19.4%) 7978(65.3%) 202(1.7%)

Sig 53(0.4%) 3456(27.4%) 18(0.2%) 2363(28.3%) 110(0.9%) 3916(32.0%)

No comp{ 0(0.0%) 0(0.0%) 37(0.4%) 3(0.0%) 16(0.1%) 0(0.0%)

DL2 NS 8884(70.4%) 196(1.6%) 4299(51.5%) 1504(18.0%) 7922(64.8%) 116(0.9%)

Sig 56(0.4%) 3482(27.6%) 20(0.2%) 2481(29.7%) 166(1.4%) 4002(32.7%)

No comp{ 0(0.0%) 0(0.0%) 37(0.4%) 3(0.0%) 16(0.1%) 0(0.0%)

ML NS 8831(70.0%) 63(0.5%) 4204(50.4%) 679(8.1%) 7113(58.2%) 64(0.5%)

Sig 42(0.3%) 3571(28.3%) 70(0.8%) 3241(38.8%) 894(7.3%) 3985(32.6%)

No conv/comp{ 67(0.5%) 44(0.3%) 82(1.0%) 68(0.8%) 97(0.8%) 69(0.6%)

REML NS 8629(68.4%) 212(1.7%) 4271(51.2%) 1423(17.1%) 7792(63.8%) 98(0.8%)

Sig 56(0.4%) 3374(26.7%) 26(0.3%) 2538(30.4%) 189(1.5%) 3954(32.4%)

No conv/comp{ 255(2.0%) 92(0.7%) 59(0.7%) 27(0.3%) 123(1.0%) 66(0.5%)

PL NS 8803(69.8%) 846(6.7%) 4260(51.1%) 1679(20.1%) 7876(64.4%) 576(4.7%)

Sig 15(0.1%) 2766(21.9%) 14(0.2%) 2238(26.8%) 114(0.9%) 3463(28.3%)

No conv/comp{ 122(1.0%) 66(0.5%) 82(1.0%) 71(0.9%) 114(0.9%) 79(0.6%)

*Following the RevMan documentation we did not compute effects for some very rare events or non-events studies (although RevMan v5.2.3 does calculate effects for
them) and hence some meta-analyses were not computable; i.e. when the remaining number of eligible studies was one or zero.
{Not computable (see above) or iterative method failed to convergence to a solution.
`MVa fails to produce an estimate when all effects are equal, a scenario not unheard of when meta-analysing dichotomous data.
doi:10.1371/journal.pone.0069930.t002
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study variance estimates was found to be consistent across inverse

variance, Mantel-Haenszel and Peto approaches and similar to a

x2
1 distribution as hypothesised in previous work [3].

A comparison between real and simulated data using the

DerSimonian-Laird method suggested that mean true heteroge-

neity is higher than assumed or estimated in practice (higher than

moderate) but the standard method fails to detect it, especially for

meta-analyses of few studies. Thus we observed that random-

effects methods are much more common in larger meta-analyses.

This finding agrees with the conclusion of Turner et al, who found

that meta-analysis size had a small effect on heterogeneity [33].

We found that to be true on average, but also that the risk of

undetected heterogeneity is much higher when the number of

studies to be meta-analysed is small. This reduced likelihood in

identifying true underlying heterogeneity in small meta-analyses

appears to be compensated for by the relatively larger positive bias

in the bootstrap method, for those cases.

Even when heterogeneity is detected, it is not uncommon for

researchers to ignore it and use a fixed-effect method. Such an

approach has implications for the generalisability of the conclu-

sions beyond the specific conditions and locations pertaining to the

included studies. For full generalisability, a random-effects

approach is required. The distributions of the between-study

variance estimates from the various methods we used demonstrat-

ed that the bootstrap approach was better at detecting low

heterogeneity levels in the real data, as in the simulations. Re-

analysing all meta-analyses with this method we found that 19 to

21% of the statistical conclusions change, when heterogeneity is

detected and ignored. The rates were much lower when the

standard DerSimonian-Laird method did not detect heterogeneity,

Table 3. Variation in terms of statistical conclusion for Peto fixed-effect meta-analyses.

RevMan method

Fixed-effect (t̂t2
DL~0) Fixed-effect (t̂t2

DLw0)

Counts (cell percentages) Counts (cell percentages)

Stata method NS Sig NS Sig

FE (Peto) NS 1367(62.0%) 0(0.0%) 1184(55.5%) 0(0.0%)

Sig 4(0.2%) 835(37.9%) 0(0.0%) 950(44.5%)

DL NS 1367(62.0%) 0(0.0%) 1178(55.2%) 318(14.9%)

Sig 4(0.2%) 835(37.9%) 6(0.3%) 632(29.6%)

DLb NS 1367(62.0%) 36(1.6%) 1177(55.2%) 359(16.8%)

Sig 4(0.2%) 799(36.2%) 7(0.3%) 591(27.7%)

VC NS 1367(62.0%) 17(0.8%) 1181(55.3%) 343(16.1%)

Sig 4(0.2%) 818(37.1%) 3(0.1%) 607(28.4%)

MVa NS 1366(61.9%) 117(5.3%) 1178(55.2%) 448(21.0%)

Sig 4(0.2%) 718(32.5%) 6(0.3%) 502(23.5%)

No comp* 1(0.0%) 0 (0.0%) 0(0.0%) 0 (0.0%)

MVb NS 1367(62.0%) 39(1.8%) 1180(55.3%) 344(16.1%)

Sig 4(0.2%) 796(36.1%) 4(0.2%) 606(28.4%)

BP NS 1369(62.1%) 179(8.1%) 1178(55.2%) 462(21.6%)

Sig 2(0.1%) 656(29.7%) 6(0.3%) 488(22.9%)

B0 NS 1367(62.0%) 13(0.6%) 1182(55.4%) 266(12.5%)

Sig 4(0.2%) 822(37.3%) 2(0.1%) 684(32.1%)

VC2 NS 1367(62.0%) 4(0.2%) 1177(55.2%) 362(17.0%)

Sig 4(0.2%) 831(37.7%) 7(0.3%) 588(27.6%)

DL2 NS 1367(62.0%) 0(0.0%) 1180(55.3%) 333(15.6%)

Sig 4(0.2%) 835(37.9%) 4(0.2%) 617(28.9%)

ML NS 1362(61.7%) 1(0.0%) 1174(55.0%) 156(7.3%)

Sig 4(0.2%) 826(37.4%) 2(0.1%) 790(37.0%)

No conv{ 5(0.2%) 8(0.4%) 8(0.4%) 4(0.2%)

REML NS 1343(60.9%) 3(0.1%) 1177(55.2%) 293(13.7%)

Sig 4(0.2%) 819(37.1%) 6(0.3%) 653(30.6%)

No conv{ 24(1.1%) 13(0.6%) 1(0.0%) 4(0.2%)

PL NS 1364(61.8%) 135(6.1%) 1174(55.0%) 382(17.9%)

Sig 2(0.1%) 690(31.3%) 1(0.0%) 564(26.4%)

No conv{ 5(0.2%) 10(0.5%) 9(0.4%) 4(0.2%)

*MVa fails to produce an estimate when all effects are equal, a scenario not unheard of when meta-analysing dichotomous data.
{Iterative method failed to convergence to a solution.
doi:10.1371/journal.pone.0069930.t003
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between approximately 1% (inverse variance) and 3% (Mantel-

Haenszel), depending on the approach. When heterogeneity was

detected and the random-effects model was used, we found that

the statistical conclusions changed for approximately 2.5% of

analyses, under the bootstrap.

Amongst the methods that permitted a zero-heterogeneity

estimate, the bootstrapped DerSimonian-Laird performed best on

the basis of our simulations – despite its higher bias for small meta-

analyses. Even so, the high rate of failure to detect existing

heterogeneity indicates that positive-only heterogeneity methods

may be preferred, depending on the setting. MVa and BP, the

Bayesian estimators proposed by Sidik and Jonkman [17] and

Ruhkin [19] respectively, performed very well when two or three

studies were meta-analysed and should be considered.

Conclusions
Not surprisingly, detecting heterogeneity and accurately esti-

mating it when the number of studies being meta-analysed is very

small is difficult, if not impossible, yet more than half of all the

meta-analyses in the Cochrane database include just two or three

studies.

Current practice assumes that a zero between-study variance

estimate leads to a more reliable meta-analysis, while high levels of

estimated heterogeneity are alarming and potentially prohibitive

for an analysis. However, our results indicate that estimates of zero

(or even low) heterogeneity should also be a concern since

heterogeneity is very likely present but undetected (or underesti-

mated). Although the bootstrapped DerSimonian-Laird leads to a

small improvement over the standard random-effects model, the

problem largely remains, especially for very small meta-analyses.

One possible solution in these cases is to arbitrarily assume

moderate or large levels of heterogeneity and to test the sensitivity

of the conclusions to these degrees of unobserved heterogeneity.

This sensitivity-analysis approach, along with the bootstrapped

DerSimonian-Laird have been included in an update for metaan

[34]. Alternatively, confidence intervals for the bootstrapped

DerSimonian-Laird estimate can easily be obtained and consid-

ered for sensitivity-analyses, but we found them to be of little value

when the number of studies was small.

Finally, we must caution researchers against ignoring heteroge-

neity when detected. The narrower confidence intervals for the

estimate and the fact that results are more likely to be statistically

significant under the fixed-effect approach, should not influence

their decision. Perhaps software developers should not offer a

choice and sensitivity analyses should be reported as standard.
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