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Heavy metals, various pesticide and herbicides are implicated as risk factors for human
health. Paraquat, maneb, and rotenone, carbamate, and organophosphorous insecticides
are examples of toxicants for which acute and chronic exposure are associated with multiple
neurological disorders including Parkinson’s disease. Nevertheless, the role of pesticide
exposure in neurodegenerative diseases is not clear-cut, as there are inconsistencies
in both the epidemiological and preclinical research. The aim of this short review is to
show that at least, some of the inconsistencies are related to individual differences
in susceptibility to the effects of neurotoxicants, individual differences that can be
traced to the genetic constitution of the individuals and animals studies, i.e., host-based
susceptibility.
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INTRODUCTION
EPIDEMIOLOGICAL STUDIES
At least two major neurodegenerative diseases, Alzheimer’s and
Parkinson’s, can be classified as early or late onset. Early onset
disease (i.e., prior to age 50) is seen as less frequent than late
onset and can often be tied to specific genetic factors (e.g., Jones
et al., 2014a). The etiology of later onset disease is less clear and
very likely a result of genes interacting with the environment.
Parkinson’s disease (PD) is characterized by a loss of dopamine
(DA) neurons in the substantia nigra pars compacta and sub-
sequent loss of DA function in the projection area, namely the
striatum.

A number of researchers have reported the association between
exposure insecticides and herbicides as increasing risk for devel-
oping PD (Hertzman et al., 1990; Liou et al., 1997; Landrigan
et al., 2005; McCormack et al., 2005; Tanner et al., 2011). In a
meta-analysis of 19 studies, Priyadarshi et al. (2000) reported an
association between high pesticide use and increased risk for PD
with combined odds ratio of 2.15 among farmers, people living
close to farms, and those exposed to farm animals. Additionally, in
a review of 38 case-control studies, Brown et al. (2006) showed a
robust relationship between long-term pesticide use and increased
risk for developing PD.

Epidemiological studies are problematic in that most of the
subjects have been exposed to more than one agent, assessment
of chronic exposure is based on recall and that most such studies
do not identify subpopulations that are at differential risk. Nev-
ertheless on the first count, one pesticide, paraquat, an herbicide,
is a major target of study. For example, Liou et al. (1997) showed
chronic exposure to paraquat to be associated with increased risk
for PD. Moreover, individuals who are exposed to paraquat are at
higher risk for developing PD compared to other herbicides and
pesticides (Ritz and Yu , 2000; Dhillon et al., 2008; Gatto et al.,
2009; Tanner et al., 2009). Numerous case-control studies show a

significant association between the extent of exposure to paraquat
and the severity of the disease (Kuopio et al., 1999).

Results of both clinical and epidemiological studies, concerning
environmental toxicants are inconsistent; not all of the epidemi-
ological studies support the contribution of the same toxicants in
PD (Elbaz et al., 2009; Gatto et al., 2009; Firestone et al., 2010).
Gatto et al. (2009) reported that the increased risk for PD was
associated not specifically to a single pesticide, but rather to a
combination of several pesticides including organophosphorous
compounds. In a case-control study conducted by Firestone et al.
(2010), no association was found between exposure to industrial
toxicants and risk for PD.

Some of the inconsistencies may derive from duration of expo-
sure, diagnostic criteria, bias in case-control subject selection, and
lack of control for other confounding factors (Berry et al., 2010;
Moretto and Colosio, 2012).

Although epidemiological studies are important tools for deter-
mining risk, they can be limited by often failing to take into
account the role of individual differences reflected in subpop-
ulations. Identifying subpopulations at different genetic-based
risk is one way to improve the study design. Identifying indi-
viduals carrying such genotypes is challenging, but possible. One
example involves polymorphisms cytochrome P450D6 (CYP2D6;
Smith et al., 1992; Elbaz et al., 2004). CYP2D6 is involved in the
metabolism of several drugs and toxicants, including insecticides
and herbicides. One allele, CYP2D6∗4 is implicated in relatively
slow metabolism of several pesticides, as an autosomal recessive
trait. About 5–10% of white populations are homozygous for
the allele and for them the enzyme activity is practically unde-
tectable. Elbaz et al. (2004) revealed a twofold increase in risk for
PD who were homozygous for the CYP2D6∗4 allele (i.e., poor
metabolizers) and who were exposed to pesticides. The study
population included farmers or people who used pesticides fre-
quently for gardening. Alternatively, normal metabolizers exposed
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to pesticides showed a slight increase in risk for PD compared to
poor metabolizers not exposed to pesticides. These results high-
light the importance of gene-environment interactions relevant to
neurotoxicology.

Additional evidence to support the importance of host sus-
ceptibility is provided by the results reported by Goldman et al.
(2012). Glutathione S-transferases (GSTM1, GSTT1) are enzymes
involved in detoxification of numerous agents in multiple tissues
of the human body including, liver, gut, and brain. These enzymes
protect different cells of the body against the consequences of
oxidative stress induced by multiple bio-reactions and also PD
(Landi, 2000; Hayes et al., 2005). Approximately 50 and 20% of
Caucasians are homozygous for gene variants, M1 (GSTM1∗0)
and T1 (GSTT1∗0) genotypes, respectively, (Garte et al., 2001).
Both variants confer lack of enzyme activity. Goldman et al. (2012)
showed that individuals homozygous for GSTT1∗0 and exposed
to paraquat had an odds ratio for PD risk of 11.1 compared to
people with GSTT1 and exposed to paraquat with an OR of 1.5.
No additional risk for GSTM1 or GSTM1∗0 and exposure to PQ
was reported in the study.

GENOME-WIDE ASSOCIATION STUDIES
Another approach to understanding individual differences in
disease and that might have appeal here is the genome-wide asso-
ciation study approach, or GWAS. This approach compares 100s
of 1000s or more polymorphic genomic markers in large samples
humans with variable phenotypes. This approach has been par-
ticularly useful for identifying genetic underpinnings of complex
diseases such as restless leg syndrome, (Winkelmann et al., 2007)
and familial PD (Soto-Ortolaza et al., 2013). Application of GWAS
to toxicology can be illustrated by the work of Pierce et al. (2012).
Arsenic contamination of water and soil has been a long-standing
problem in Bangladesh and Pierce et al., reported increased signs
of differential sensitivity to As poisoning (skin lesions) associated
with polymorphisms in arsenite methyltransferase (As3MT) one
gene known to code for a protein involved in arsenic metabolism.
A nearby gene on the same chromosome indicated by the same
study may in fact be a gene that regulates the expression of As3MT.
Whether GWAS is a useful approach to the study of individual
differences in response to environmental toxicants remains to be
seen. As stated by Zhou and Pearson (2013), GWAS applied to
adverse drug reactions (and likely toxicology) may be problem-
atic because of usually small sample sizes and also based on their
observation that allelic variants associated with drug responses
tend to be quite a bit fewer in number than allelic variants asso-
ciated with common diseases. The success of the Pierce et al.,
study is probably attributed to the rather large sample size, the
widespread arsenic contamination and the involvement of one
or more major genes. Thus, large samples, widespread exposure,
well-defined phenotypes, and genes that have major influence on
the affected phenotype are important for GWAS studies. This also
defines the limitations of GWAS studies in toxicogenetics as many
of the effects are polygenic with small additive effects from each
of the genes.

While including susceptible subpopulations in epidemiological
studies is one way to refine our understanding of individual dif-
ferences in susceptibility to toxicants, the underlying mechanisms

are oftentimes difficult to assess. Complementary to epidemio-
logical studies, animal models can help to elucidate the basis for
genetic-based individual differences in susceptibility.

ANIMAL MODELS IN TOXICOGENETICS – TWO COMPLEMENTARY
APPROACHES
Genetic modification is used to create research animals either
lacking in function or amplified function in one or more genes.
Sometimes, the relevant phenotype is known and sometimes left
for discovery. Focusing on the gene initially is often called reverse
genetic analysis. Alternatively, genetic analysis can focus on spe-
cific, well-defined phenotypes initially and then to a search for
relevant genes. This is often termed, “forward genetic analysis.”
An elegant description of both may be found in Alonso and Ecker
(2006).

FORWARD GENETIC ANALYSIS OF TOXICITY AS COMPLEX TRAIT
Findings from epidemiological studies would implicate many
if not most effects of environmental toxicants to be complex
traits, i.e., effects influenced by several genes and their interaction
with the environment. For example, consider our findings from
Jones et al. (2013) on the effects of 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) on striatal DA in BXD recombinant
inbred mice (Figure 1). These 10 inbred strains (from among
more than 100 such strains) were derived from C57BL/6J (B) and
DBA/2J (D) parental inbred strains. F1 hybrid mice from these
two strains were bred inter se to produce families that were inbred
brother to sister for 20 or more generations in order to recom-
bine and fix alleles. Allelic differences between the two parental
strains are now distributed throughout these new strains, the BXD
recombinant inbred strains.

The left panel of Figure 1 illustrates striatal DA concentrations
in 10 BXD strains injected with saline (control) or 12.5 mg kg−1

MPTP (s.c.) and the right panel illustrates the effect of MPTP on
DA loss, expressed as percent of control. As can be seen in the left
panel, there is about a 1.5+-fold difference in DA concentration
among saline-treated animals between the highest value (BXD 9)
and the lowest (BXD 29). In the right panel, we see the extent of DA
loss to be highly variable among the strains with BXD 40 being the
most sensitive strain and BXD 29 being the least sensitive. MPTP
neurotoxicity is achieved through its metabolism to 1-methyl-4-
phenylpyridinium MPP+ by astrocytes. MPP+ is then taken up
into neurons by the DA transporter where it then causes destruc-
tion of those neurons. Knowing that the production of MPP+ is
crucial to neurological destruction, we asked the question as to
whether the extent of DA loss in the striatum is directly related to
the amount of MPP+ produced. Comparing the mean loss of DA
with the mean production of MPP+ the correlation was −0.15
and not significant at 7 degrees of freedom (Jones et al., 2014b).
This illustrates one of the advantages of forward genetic analysis
using a systems perspective.

The continuous variation in DA and DA loss from MPTP
treatment shows that MPTP toxicity is polygenic, thus produc-
ing individual differences in susceptibility. Had there been only
one significant gene, the results would have lined up against each
allele from the two progenitor strains – i.e., shown Mendelian
trait characteristic. Also, forward genetic analysis allowed us
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FIGURE 1 | Effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

(MPTP) on dopamine (DA) concentration in the caudate-putamen

in 10 BXD recombinant inbred mouse strains. Male mice were
injected s.c. with 12.5 mg kg−1 of the pro-neurotoxin, MPTP (vs.
saline) and sacrificed 48 h later. DA was assayed from tissue
homogenates by HPLC. Experimental and control values (upper

panel), normalized to tissue weights, are expressed as
means ± SEM. The lower panel presents the effect of MPTP
expressed as % control. ANOVA revealed a significant main effect
of strain, MPTP and a significant interaction (F 9,77 = 11.25;
F 1,77 = 445.61; F 9,77 = 9.05, respectively; all p < 0.001).
Reprinted from Jones et al. (2013).

to compare several MPTP-related phenotypes across the same
strains so that we could get a view of MPTP toxicity from a
systems biology perspective (Jones et al., 2013). Finally, using for-
ward genetic analysis, we can compare our phenotypes against
polymorphic markers in the mouse genome and also with gene
expression in various tissues. Finally, forward genetic analysis is
particularly well-suited for discovery of genes underlying complex
phenotypes.

Recombinant inbred mouse strains are particularly useful in
forward genetic analysis, and outbred stocks are valuable as well.
Two new resources available now are the Collaborative Cross which
promises to deliver several hundred recombinant inbred strains
derived from eight strains including wild-derived stocks (Thread-
gill et al., 2011). These strains present a distinct advantage over
extant recombinant strains by capturing more of the genetic varia-
tion found in mouse populations, compared to those recombinant
strains derived from two inbred strains. The goal is to genotype all
of these strains and to conduct and publish omnibus gene expres-
sion profiles in multiple tissues. Another resource, the Diversity
Outbred mouse population is derived from the same eight strains,
but not inbred (Churchill et al., 2012). The Collaborative Cross
provides a unique platform for systems genetic analysis of com-
plex traits and the Diversity Outbred offers precise mapping of
complex traits.

WHAT ABOUT REVERSE GENETIC ANALYSIS?
The distinction between forward and reverse genetics is some-
what arbitrary, but useful in focusing attention on what to
examine first, phenotypes or genes. Gene modification can
be particularly useful when working with well-established bio-
chemical pathways and whose genes are known. A recent study
by Choi et al. (2010) showed that repression of the gene that
produces c-Jun-N-terminal kinase three reduced paraquat- and
rotenone- related destruction of DA neurons – an example of spe-
cific gene targeting. A recent review by Eastmond et al. (2013)
present evidence in the toxicogenetics of cancer that the use of

genetically modified organisms may not be an efficient method
for the detection of carcinogenic toxicants. We propose that
genetically modified organisms may indeed be employed in the
verification of candidate genes nominated via forward genetic
analysis.

PUTTING IT ALL TOGETHER
For the most part, we may consider responses to toxicants as com-
plex traits; that is to say, for most individuals, targeted phenotypes
are under the influence of multiple genes interacting with each
other and with the environment. This means that most toxicant-
related, phenotype-relevant genes are many and with small and
possibly (hopefully) additive effects. Less commonly, we might
expect to identify individuals who show a large effect produced
by a rare genetic variant. Polygene identification in the former
leads to difficulty in understanding which genes do what relative
to the phenotype and in the latter case, sampling may miss those
carrying the rare variant altogether. GWAS studies and forward
genetics studies in animals can be complementary and infor-
mative. For example, Winkelmann et al. (2007) and Stefansson
et al. (2007) each reported GWAS studies of individuals with rest-
less legs syndrome and periodic limb movements that identified
associated genetic markers near BTBD9 gene in humans. Rest-
less legs syndrome and periodic limb movements are associated
with low iron in the substantia nigra and related DA dysfunction.
When we conducted a study of iron concentration in ventral mid-
brain of mice (Jones et al., 2003), we noticed a weak QTL near
Btbd9 in the mouse genome and remarked on this in a subse-
quent article (Jones et al., 2008). DeAndrade et al. (2012) were
able to produce mice with mutations in Btbd9 similar to those
seen in humans and observed decreased iron, sleep disturbances
and abnormal movements similar to human RLS. In this case the
mouse researchers were able to capitalize on findings from GWAS,
partly confirm through forward genetics and then finally target the
gene for manipulation and eventual identification of underlying
mechanism.

www.frontiersin.org September 2014 | Volume 5 | Article 327 | 3

http://www.frontiersin.org/
http://www.frontiersin.org/Toxicogenomics/archive


Alam and Jones Host susceptibility

GENERAL COMMENTS CONCERNING RODENTS IN TOXICOLOGY
There are a number of valid criticisms about in vivo assessment of
toxicants. Of utmost importance is whether the studies in animals
provide useful information concerning humans. A recent article
outlined the advantages and drawbacks of the two-year bioas-
say (standardized testing as developed more than 40 years ago)
of proposed carcinogens in rodents Marone et al. (2013). In fact,
the Marone article joins a number of others expressing some dis-
satisfaction with the assay, with criticisms including time, large
numbers of animals, often single-endpoints without concern for
the rest of the biological system and finally cost-effectiveness con-
cerning informing human carcinogenesis. These problems lead
some to question the value of animal studies in this effort alto-
gether. Among ethical concerns about animal research in general
and toxicology specifically, is the effort to refine, reduce and to
replace (the three Rs). We propose that the use of genetically
diverse animals (genetic reference populations of rats and mice)
for initial screening for differences in response to toxicants can
identify genes and biochemical pathways underlying the differ-
ences. Follow-up genetic manipulation studies can offer proof-of
concept. This approach has the potential to refine methods and
therefore reduce animal numbers. Moreover, a systems study of
toxicity in rodents can further elucidate the impact of toxicant
exposure. In our recent MPTP study (Jones et al., 2013), we per-
formed principal components analysis on a number of DA-related
measures and then were able to relate the composite index to a
network of co-expressed genes and possible involved biochemical
pathways.

CONCLUSION
Now that people are living longer, numerous chronic diseases that
would be considered to be rare in earlier times are becoming more
common. The remarkable increase in life expectancy over the past
100 years accompanied by longer exposures to environmental tox-
icants underscore the importance of toxicological research. Better
identification of host characteristics in epidemiological and GWAS
studies that affect toxicity to specific agents, coupled with carefully
planned experiments in genetic reference populations in animals
(Ermann and Glimcher, 2012) can lead to better prediction of
individuals at risk and may even facilitate better prevention and
treatment post exposure.
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