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Cancer stem cells (CSCs) represent a small portion of tumor cells with self-renewal ability in tumor tissues and are a key factor in
tumor resistance, recurrence, and metastasis. CSCs produce a large number of exosomes through various mechanisms, such as
paracrine and autocrine signaling. Studies have shown that CSC-derived exosomes (CSC-Exos) carry a variety of gene mutations
and specific epigenetic modifications indicative of unique cell phenotypes and metabolic pathways, enabling exchange of
information in the tumor microenvironment (TME) to promote tumor invasion and metastasis. In addition, CSC-Exos carry a
variety of metabolites, especially proteins and miRNAs, which can activate signaling pathways to further promote tumor
development. CSC-Exos have dual effects on cancer development. Due to advances in liquid biopsy technology for early cancer
detection, CSCs-Exos may become an important tool for early cancer diagnosis and therapeutic drug delivery. In this article, we
will review how CSC-Exos exert the above effects based on the above two aspects and explore their mechanism of action.

1. Introduction

The occurrence of malignant tumors is a multistage and grad-
ual process. Tumor cells gradually undergomalignant transfor-
mation through a series of progressive changes. Tumor cells
have the characteristics of accelerated growth, enhanced inva-
siveness and metastasis, and resistance to anticancer drugs
[1–3]. Cancer stem cells (CSCs), a subpopulation of cancer
cells, have characteristic unlimited proliferation, self-renewal,
and multilineage differentiation capabilities. Unlike normal
stem cells, CSCs are tumorigenic and have aberrant forms of
the normal mechanisms that strictly regulate normal physiol-
ogy, enabling them to continue to expand and produce abnor-
mally differentiated progeny. Therefore, CSCs promote the
progression of multiple malignancies in relation to multiple
factors, such as recurrence, metastasis, heterogeneity, multi-
drug resistance, and radioresistance [4]. CSC-derived exosomes
(CSC-Exos) are membranous vesicles secreted by cancer stem
cells that carry a variety of biologically active substances, espe-

cially proteins and RNAs (microRNAs and lncRNAs), mediat-
ing information exchange and material exchange between cells
[5]. CSCs-Exos play important roles in the development of can-
cer due to their biological characteristics; they participate in the
occurrence and development of cancer and may represent tar-
gets for cancer treatment [6, 7]. Understanding the role of
CSC-Exos and their mechanisms can help effectively block
related signaling pathways and maximize the benefit of CSC-
Exos in cancer treatment.

2. The Properties and Biological Functions of
CSCs and CSC-Exos in Cancer

The study of CSCs began in 1994, when it was reported that
CD34/CD38 cells were human acute myeloid leukemia
(AML) stem cells [8]. With the deepening of CSC research in
recent years, CSCs have been isolated from almost all solid can-
cer cell populations. CSCs have characteristic of self-renewal,
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multidirectional differentiation, and unlimited proliferation
capabilities, and they show resistance to chemotherapeutic
drugs, strong tumorigenicity, and a strong ability to invade
and metastasize [9]. Colombel et al. [10] found that the
expression of stem cell-related surface markers such as integ-
rin α-2 and integrin α-6 was positively correlated with bone
metastasis in prostate cancer (PC) patients. CSCs are believed
to have a strong invasive ability. Mare et al. [11] found that the
ability of breast cancer MCF7 cells pretreated with paclitaxel
to form spheroids was enhanced, indicating that paclitaxel
enriched breast cancer stem cells, which was consistent with
the conclusion that CSCs had chemotherapeutic drug resis-
tance. Although CSCs make up a small portion of cancer cells
in cancer tissue, their cancer-forming ability is very strong.
This has been repeatedly verified in in vitro serum-free spher-
oid culture experiments and the in vivo cancer inoculation
experiments in nude mice. Studies have pointed out that 500
to 1000 CSCs are required to form tumors [12]. The above
studies provide a more reasonable explanation for the occur-
rence, invasion, and drug resistance of CSCs in cancers and
provide new ideas for cancer therapy.

CSCs-Exos are membranous vesicular bodies secreted by
cancer cells. Similar to other exosomes, CSCs-Exos are
nanosized vesicles that enable communication between can-
cer cells and the TME. The formation of CSC-Exos involves
four processes: budding, invagination, multivesicular body
formation, and secretion [13]. The molecular cargo carried
by CSC-Exos is partly derived from the surface of the parent
tumor cell. Tumor blasts release millions of exosomes, and
CSC-Exos carry oncogenes between cancer cells and normal
cells. CSC-Exos also transfer proteins, lipids, and nucleic
acids in their functionally active forms. After reaching the
recipient cell, CSC-Exos release their contents into specific
cells by ligand binding, phagocytosis, and fusion with the
plasma membrane and regulate gene expression in recipient
cells, thereby determining their behavior [14].

3. Cancer-Promoting Effects of CSC-Exos

3.1. CSCs-Exos Regulate Cancer Cell Proliferation. The prolifer-
ation and apoptosis of cells are controlled by sophisticated
genetically programmed regulatory pathways [15]. However,
the growth regulation mechanism of cancer cells has been dis-
rupted, and the mutation of tumor regulators (including proto-
oncogenes and tumor suppressor genes) is one of the main
causes of malignant proliferation of cancer cells [16]. David
et al. [17] showed that exosomes secreted from p53-mutated
lung cancer cells can promote cancer cell proliferation by
affecting the RCP/DGKα receptor cycling pathway in vitro.
TP53 can be mutated by human papillomavirus (HPV) infec-
tion or exposure to carcinogens. Azulay et al. [18] showed that
exosomes derived from cancer cells can be induced by mutated
TP53 to regulate the expression levels of podocalyxin (PODXL)
and promote cancer cell growth in vitro. PTEN is a tumor sup-
pressor gene with dual-specificity phosphatase activity, and its
expression is generally reduced in liver cancer. Hepatocellular
carcinoma (HCC) cell-derived exosomes (HCC-Exos) carrying
themiR-21molecule promote the proliferation of HCC cells by
inhibiting the expression of PTENp1 and PTEN [19]. In addi-

tion, Ren et al. [20] have demonstrated that hypoxia-
prechallenged exosomes derived from non-small-cell lung can-
cer (NSCLC) cells carry miR-25; this cargo communicates
information with the tumor cell microenvironment, reducing
the expression of the PTEN, PDCD4, and RECK genes in
NSCLC cells, which leads to the growth of cancer cells. Zhu
et al. [21] found that aggressive medulloblastoma cell-derived
exosome (MB-Exo) miRNAs such as miR-181a-5p, miR-
125b-5p, and let-7b-5p promoted the proliferation and inva-
sion of cancer cells via the Ras/MAPK pathway. Yu et al. [22]
showed that icotinib-resistant human NSCLC (HCC827) cells
produced exosomes with mRNA encoding MET oncogenes
that mediate the progression of NSCLC by upregulating
alpha-actinin 4 (ACTN4). CSC-Exos are involved in cancer cell
proliferation, as shown in Figure 1.

3.2. CSCs-Exos Regulate Angiogenesis in Cancer. In the process
of cancer occurrence and development, tumor cells must acti-
vate endothelial cells to promote angiogenesis and provide the
necessary substances for their own cell growth [23]. CSC-Exos
are involved in angiogenesis in cancer, as shown in Figure 2.
The tumor vascular microenvironment greatly promotes the
metabolism of tumor cells by promoting extracellular micro-
angiogenesis [24]. Oxygen deficiency is one of themain factors
that causes tumor angiogenesis and can promote the expres-
sion of exosomal miRNAs [25]. Under hypoxic conditions,
exosomes derived from lung cancer cells carry miR-23a, which
can target prolyl hydroxylases and the tight junction protein
ZO-1, promoting angiogenesis and contributing to cancer
progression [26]. Zhou et al. [27] found that melanoma cell-
secreted exosomal miR-155-5p induced a proangiogenic
switch in cancer-associated fibroblasts via the SOCS1/JAK2/
STAT3 signaling pathway. A study [28] demonstrated that
exosomes derived from bladder cancer (BC) cells contain
CRK, promoting the expression of ErbB2/3 in BC cells and
inducing vascular growth in BC. Moreover, studies [29] have
shown that exosomes derived from gastric cancer (GC) cells
contain miR-130a, and these exosomes carry tumor-derived
stimulating factors to induce c-MYB-related angiogenesis,
thereby promoting vascular growth. Studies [30] have shown
that glioma cell-derived exosomes (GDEs) can transport
miR-9, which targets and inhibits COL18A1, THBS2, PTCH1,
and PHD3 to promote angiogenesis. Moreover, overexpres-
sion of miR-26a in glioma stem cell-derived exosomes (GSC-
Exos) activates the phosphatidylinositol 3-kinase (PI3K)/Akt
pathway by targeting PTEN in vitro, thereby promoting the
proliferation and angiogenesis of human brain microvascular
endothelial cells (HBMECs) [31].

3.3. CSCs-Exos Promote Cancer Metastasis and Infiltration.
Exosomes can directly promote cancer cell metastasis and
infiltration because proteins, lipids, and RNA from exosomes
act on recipient cells, weakening the adhesion between cells
[32]. Tumor cell migration is fundamental to the metastasis
and infiltration of surrounding normal tissue by cancer cells.
Epithelial-mesenchymal transition (EMT) is a key step in can-
cer metastasis and infiltration. CSC-Exos act as transporters of
EMT initiation signals and transfer such signals to tumor cells,
causing cancer metastasis and infiltration [33]. For example,
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Figure 1: CSC-Exos are involved in cancer cell proliferation. Exosomes secreted from p53-mutated lung cancer cells promote cancer cells
proliferation by mediating the RCP/DGKα receptor cycling pathway. The production of cancer stem cell-derived exosomes (CSC-Exos)
induced by mutated TP53, and these CSC-Exos can regulate the expression levels of podocalyxin and promote cancer cell growth.
Hepatocellular carcinoma (HCC) cell-derived exosomes carrying miR-21 promote the proliferation of HCC cells by inhibiting the
expression of PTENp1 and PTEN. Exosomes derived from non-small-cell lung cancer (NSCLC) cells carry miR-25 to reduce the
expression of the PTEN, PDCD4, and RECK in NSCLC cells, leading to the growth of cancer cells. Medulloblastoma-derived exosomal
miRNAs such as miR-181a-5p, miR-125b-5p, and let-7b-5p promote the proliferation of cancer cells via the Ras/MAPK pathway.
Medulloblastoma (MB) cell-derived exosomal miRNAs such as miR-181a-5p, miR-125b-5p, and let-7b-5p promote the proliferation and
invasion of cancer cells via the Ras/MAPK pathway. Icotinib-resistant human NSCLC (HCC827) cells produce exosomes carrying
oncogenic MET mRNAs that mediate NSCLC progression by upregulating alpha-actinin 4 (ACTN4).
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Figure 2: CSC-Exos regulate angiogenesis in cancer. Exosomes derived from lung cancer cells carry miR-23a, which target ZO-1 and
promote angiogenesis in cancer. Melanoma cell-derived exosomal miR-155-5p induces a proangiogenic switch of cancer-associated
fibroblasts via the SOCS1/JAK2/STAT3 signaling pathway. Exosomes derived from bladder cancer (BC) cells carry CRK, which promotes
the expression of ErbB2/3 in BC cells and induces vascular growth in BC. Exosomes derived from gastric cancer (GC) cells contain miR-
130a, which induces activation of c-MYB-related angiogenic factors and thereby promotes vascular growth. Glioma cell-derived
exosomes (GDEs) carry miR-9, which targets and inhibits COL18A1, THBS2, PTCH1, and PHD3 to promote angiogenesis. miR-26a
carried by glioma stem cell-derived exosomes (GSCs-Exo) activates the PI3K/Akt pathway by targeting PTEN to promote angiogenesis in
human brain microvascular endothelial cells (HBMECs).
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exosomes derived from renal clear carcinoma (RCC) stem cells
carried miR-19b-3p, which inhibited the expression of PTEN
in the cell, thereby inducing EMT [34]. Melanoma cell-
derived exosomes promoted a phenotypic switch of primary
melanocytes via autocrine signaling. We found that molecules
carried in exosomes (let-7a and miR-191) activate MAPK sig-
naling to mediate the process of EMT and promote metastasis
[35]. miR-140-3p in HCC-Exos can inhibit MAPK/ERK path-
way activity and increase muscle activity, increasing the expres-
sion of vimentin and N-cadherin and ultimately inducing the
occurrence of EMT and tumormetastasis [36]. Therefore, miR-
NAs contained in exosomes participate in EMT regulation and
can enable malignant tumor cells derived from epithelial cells
to acquire stronger invasion and migration capabilities. Fu
et al. clarified that primary HCC-Exos facilitated metastasis
by regulating the adhesion of circulating tumor cells and induc-
ing reactive oxygen species (ROS) production via SMAD3
signaling in a paracrine and autocrinemanner [37]. Hashimoto
et al. [38] found that exosomes secreted by PC cells contain
miR-940, which could act on ARHGAP1 and FAM134A in
osteoblasts to promote the formation of the bone metastatic
microenvironment, which was conducive to the distant metas-
tasis of PC. CSC-Exos are involved in cancer metastasis and
infiltration, as shown in Figure 3.

3.4. CSCs-Exos Regulate Cancer Cell Evasion of Immune
Surveillance. The immune system can resist attacks from exter-
nal invaders such as bacteria and viruses. Upon recognition of
invaders, the immune systemwill activate various chemical and
physiological processes to form an immune response. How-
ever, many cancer cells have multiple immune escape mecha-
nisms, such as avoiding cytotoxic cell recognition by directly
damaging the function of antigen-presenting cells or cytotoxic
cells and activating immunosuppressive cells [39]. Moreover,
studies [40] have shown that CSCs release exosomes containing
RNAs (microRNAs and lncRNAs) and proteins to participate
in evasion of immune surveillance. CSC-Exos are involved in
regulating cancer cell evasion of immune surveillance, as
shown in Figure 4. Research has shown that exosomes can par-
ticipate in the evasion of immune surveillance through T cells
[41]. Yin et al. [42] found that CSC-Exos were rich in immuno-
suppressive proteins, such as programmed death-ligand 1 (PD-
L1). PDL-1 is highly expressed on the surface of tumor cells
and binds to its receptor on the surface to inhibit the activation
of T cells, causing cancer cells to evade antitumor immunity. Ye
et al. [43] found that miRNAs contained in nasopharyngeal
carcinoma cell-derived exosomes downregulated the MAPKI
and JAK/STAT pathways to impair T-cell proliferation, differ-
entiation, and cytokine secretion. Cancer-associated fibroblasts
(CAFs) are a stromal cell population with various cells of origin
and phenotype and functional heterogeneity [44]. They play an
important role in the development of cancer. The tumor
immune microenvironment (TIME) in tumor pancreatic islets
is mainly composed of different immune cell groups, which are
highly correlated with the antitumor immune status in the
TME [45]. Mao et al. [46] found that CAF exosomes carried
various cytokines, growth factors, chemokines, and other effec-
tor molecules and interacted with tumor-infiltrating immune
cells and other immune components in the TIME to form an

immunosuppressive TME, which enables cancer cells to escape
the immune system. TGF-β is one of the major immunosup-
pressive cytokines, and natural killer (NK) cells are inhibited
by TGF-β1 loaded in blast-derived exosomes [47]. Moreover,
breast cancer cell-derived exosomes also inhibited the prolifer-
ation of T cells through TGF-β1, interfering with normal
immune system function and thereby promoting tumor devel-
opment [48]. Fabbri et al. [49] found that miRNA-21 and
miRNA-29a carried in CSC-Exos can bind to Toll-like receptor
8 (TLR8) on the surface of tumor-associated macrophages
(TAMs), triggering the NF-κB pathway and the secretion of
interleukin-6 (IL-6). CSC-Exos can also interfere with the
immune system in multiple ways and drive cancer cells to
evade immune surveillance. Exosomes derived from pancreatic
cancer (PaCa) cells had high levels of miR-212-3p, which
inhibited the expression of regulatory factor X-associated pro-
tein (RFXAP), resulting in a decrease in the expression of
MHC II molecules and inducing immune tolerance [50]. Xian
et al. found that the tumor-promoting effect of the lncRNA
KCNQ1OT1 occurred through autocrine effects of colorectal
cancer cell-derived exosomes (CRC-Exos), which mediated
the miR-30a-5p/USP22 pathway to regulate the ubiquitination
of PD-L1 and inhibit the CD8+ T-cell response, thereby
promoting colorectal cancer development [51]. Growing evi-
dence links tumor progression with the activity of various
immune cells, such as macrophages. Chow et al. [52] found
that palmitoylated proteins present on the surface of breast
cancer cell-derived exosomes contributed to Toll-like receptor
2-mediated activation of the NF-κB pathway to induce the
pro-inflammatory activity of distant macrophages in cancer
progression.

3.5. CSC-Exos Play a Role in Regulating the TME. The cause
of death in patients with cancer is often systemic multiple
organ failure caused by widespread metastasis. CSC-Exos
regulate the formation of the microenvironment before the
arrival of cancer cells, helping cancer cells metastasize and
infiltrate the surrounding tissues [53]. The TME is a
steady-state environment composed of tumor cells, TAMs,
CAFs, myeloid-derived suppressor cells (MDSCs), vascular
endothelial cells, and extracellular matrix (ECM) [54] and
fosters the occurrence and development of tumors. The
components in the TME can directly secrete metabolites
(such as IL-6, FGF-2, PDGF, MMPs, CXC12, VEGF, FGF,
IL8/CXCL8, and PDGF-C) that induce tumor metastasis
and tumor cell proliferation. In response, tumor cells inter-
act with the TME by secreting growth factors (such as
FGF-2 and PDGF) and chemokines (such as CXCL12) and
induce mechanical stress that ultimately leads to cancer pro-
gression [55]. CAFs are the main cellular components of the
TME. They can secrete a large number of cytokines and che-
mokines to participate in tumor growth and metastasis.
Studies have shown that CSC-Exos can induce the genera-
tion of CAFs, which may be related to TGF-β. A study
[56] found that GC-Exos carry TGF-β, which can induce
human umbilical cord mesenchymal stem cells (hucMSCs)
to differentiate into CAFs through the TGF-β/Smad path-
way. Pang et al. [57] found that exosomes derived from PaCa
cells were rich in miR-155 and promoted the differentiation
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of fibroblasts into CAFs by downregulating the level of
TP53INP1 protein in fibroblasts. Immunosuppression is
one of the main features of the TME. TAMs and MDSCs
play an important role in the TME. CSC-Exos usually carry
epidermal growth factor receptor (EGFR) and human epi-
dermal growth factor receptor (HER-2). These receptors
can activate the MAPK signaling pathway of monocytes
and inhibit the cleavage of caspase enzymes, which is condu-
cive to the formation of TAMs, and proteins carried by CSC-
Exos, such as HSP72 and HSP70, can target downstream
Toll-like receptor 2 (TLR2) to activate myeloid-derived sup-
pressor cells (MDSCs) and promote the formation of the
TME [58]. CSC-Exos contain a large number of miRNAs
related to angiogenesis. miR-92a contained in exosomes
derived from K562 tumor cells interacts with the proangio-
genic protein integrin α5, causing endothelial cell migration
and primitive vascular lumen formation [59]. Breast tumor
cell-derived exosomes contained miR-105, which downregu-
lated the expression of the endothelial tight junction protein
ZO-1, directly affecting endothelial tight junctions and
increasing the permeability of tumor blood vessels [60].
CSC-Exos are involved in the regulation of the TME, as
shown in Figure 5.

3.6. The Role of CSCs-Exos in Cancer Chemoresistance. Chemo-
resistance has become the largest obstacle in cancer treatment.
CSC-Exos participate in the development of chemoresistance
through multiple mechanisms. The specific manifestations are
as follows: (1) By acting on recipient cells, CSC-Exos can induce
the formation of premetastatic niches and reprogram the cell
cycle and apoptosis genes of recipient cells [61]. Exosomes
derived from HER2+ breast cancer cells carry lncRNA-
SNHG14, which can induce apoptosis and trastuzumab resis-
tance by targeting the B-cell lymphoma-2 gene (Bcl-2)/BAX
pathway [62]. Fornari F et al. [63] found that miR-221 carried
by exosomes derived from HCC cells directly targeted cas-
pase-3, thus promoting cancer cell apoptosis and increasing
the resistance of HCC cells to sorafenib. (2) CSC-Exos reduce
the effective utilization of drugs by increasing drug efflux,
reducing cell lysis, and isolating cytotoxic drugs. ATP-binding
cassette transporter (ABC) proteins are ATP-driven pumps
responsible for transferring drugs to the outside of the cell;
examples include P-glycoprotein (Pgp, encoded by the ABCB1
gene) and MDR-associated protein 1 (MRP1, encoded by the
ABCC1 gene), which play major roles in chemoresistance
[64]. LV et al. [65] found that chemoresistant breast cancer cells
can transmit P-gp to sensitive cells through CSC-Exos, thereby
making sensitive cells resistant to chemotherapy. Moreover,
studies have found that exosomes derived from PC will transfer
docetaxel from the cell through the MDR-1/P-gp pathway,
increasing the chemoresistance of cancer cells [66]. (3) CSC-
Exos can transfer a chemoresistance phenotype from chemore-
sistant cells to chemosensitive cells and decrease drug sensitivity
in chemosensitive cells. Studies [67] have shown that CSC-Exos
have the ability to horizontally transfer drug resistance by trans-
mitting genetic material, which can make sensitive cells resis-
tant. Hepatoblastoma cell-derived exosomes can induce Huh6
cells to overexpress interleukin-34 (IL-34) via Brd4 signaling
and induce drug resistance in an autocrine manner [68]. Hu

et al. [69] found that exosomes secreted by intestinal tumor cells
stabilize β-catenin and induced nuclear translocation, activating
the Wnt/β signaling pathway, which makes colorectal cancer
cells resistant to 5-FU and oxaliplatin. Studies [70] have shown
that exosomes derived from triple-negative breast cancer cells
can induce docetaxel and gemcitabine resistance in nontumori-
genic breast cells by upregulating the PI3K/AKT, MAPK, and
HIF1A signaling pathways.

3.7. The Role of CSC-Exos in Autophagy of Cancer.Autophagy is
a method of eliminating damaged and misfolded proteins, pro-
tein aggregates, damaged organelles, and intracellular patho-
gens [71]. However, under stress conditions such as hypoxia,
nutrient deprivation, organelle damage, and protein damage,
exosome-based autophagy networks crosstalk and contribute
to the development of cancer by increasing drug resistance
and metastasis [72]. Dutta et al. showed that exosomes from
breast cancer cells can induce autophagic flux inmammary epi-
thelial cells in vitro, stimulate the production of large amounts
of ROS, induce autophagy-related tumor growth-promoting
factor secretion from recipient cells, and accelerate cancer pro-
gression [73]. In addition, autophagy can exhibit prometastatic
properties in the early stages of cancer development, promoting
cancer cell survival and migration to secondary tissues.
Exosomes derived from breast cancer cells can activate
autophagy-related genes, including LC3 and Beclin-1, to pro-
mote the proliferation, motility, and invasion of breast cancer
cells [74]. Exosomes derived from breast cancer cells carried
prolyl carboxypeptidase (PRCP), glucose-regulated protein 78
(GRP78), and lncRNA H19, which mediated selective estrogen
receptor modulator (SERM) and resistance to enzyme inhibi-
tors [75], the aforementioned drugs induce autophagy, which
is associated with drug resistance. The above research results
consistently demonstrate that crosstalk between exosome bio-
genesis and autophagy pathways orchestrates intratumoral
communication.

4. Exosomal Contents as Biomarkers in Cancer

Exosomes have many natural advantages; for example, exo-
somes protect nucleic acid substances and prevent them from
being degraded, and the formation of exosomes is closely
related to the state of parent cells. Exosome content is more
specific than traditional tumor markers [76]. Exosomes are
widely present in a variety of body fluid samples, and tumor
monitoring based on exosomes can be used to detect changes
in molecular markers over time during the development of the
disease [77]. Such markers are easier to monitor, and the sam-
ples are easier to collect; as such, exosomes can be used for the
early diagnosis of clinical tumors. Studies [78] have shown
that the composition of miRNAs and proteins secreted by exo-
somes in the body fluids of patients with liver cancer, lung
cancer, PC, BC, and other malignant tumors is quite different
from that of normal human fluids; thus, these contents can be
used as specific markers for some tumor types. Exosome con-
tent is helpful for the diagnosis and prognosis prediction of
disease (see Tables 1 and 2 for details).
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5. Cancer-Inhibiting Effects of Exosomes

5.1. Direct Antitumor Effects of CSC-Exos. CSC-Exos may be
viewed as a “double-edged sword” and are closely related to
cancer [104]. CSCs-Exos play an important role in the occur-
rence and progression of cancer; however, exosomes can also

be used in cancer diagnosis and treatment. Studies [105] have
shown that CSC-Exos can have a direct antitumor effect by
inhibiting the progression of disease. Zhang et al. [106] found
that the level of miR-320a in CAF-derived exosomes of HCC
patients was significantly reduced, and in vivo experiments
further revealed that miR-320a directly interacted with the
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Figure 5: CSC-Exos play a role in the regulation of the tumor microenvironment (TME). Exosomes derived from pancreatic cancer (PaCa)
cells are rich of miR-155 and promote the differentiation of fibroblasts into cancer-associated fibroblasts (CAFs) by downregulating the level
of TP53INP1 protein in fibroblasts. Proteins carried by CSC-Exos, such as HSP72 and HSP70, target downstream Toll-like receptor 2
(TLR2) to activate myeloid-derived suppressor cells (MDSCs) to promote the formation of the TME. miR-92a loaded in exosomes
derived from K562 tumor cells interacts with the proangiogenic protein integrin α5, causing endothelial cell (EC) migration and
primitive vascular lumen formation. Breast cancer-derived exosomes contain miR-105, which downregulates the expression of ZO-1 to
increase the permeability of tumor blood vessels in the TME. Gastric cancer cell-derived exosomes (GC-Exos) carry TGF-β, which
induces human umbilical cord mesenchymal stem cells (hucMSCs) to differentiate into CAFs through the TGF-β/Smad pathway.
Epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor (HER-2) riched in CSC-Exos activate the MAPK
signaling pathway of monocytes and inhibit the cleavage of caspases, which contributes to the formation of tumor-associated
macrophages (TAMs).

Table 1: CSC-Exo-derived RNAs acting as biomarkers in cancers.

Cancer type Biomarkers
Level
trend

Reference

Hepatic cell cancer miR-222, miR-221, miR-23, miR-665, miR-224, miR-103, miR-181c, miR-181a, miR-26a ↑ [79–81]

Lung cancer
miR-181b-5p, miR-21-5p, miR-378a, miR-379, miR-139-5p, miR-200b-5p, miR-151a-5p, miR-

30a-3p, miR-200b-5p
↑ [82]

Lung cancer miR-20b, miR-30e-3p ↓ [83]

Pancreatic cancer miR-1246, miR-4644, miR-3976, miR-4306, miR-21, miR-155, miR-17-5p, miR-196a ↑ [84, 85]

Colorectal cancer miR-23a, miR-1246, miR-21, miR-6803-5p, miR-139-3p, miR-145-3p ↑ [86]

Prostate cancer miR-375, miR-141, miR-200b, miR-516a-3p, miR-21, miR-221 ↓ [87]

Prostate cancer miR-let-7a, miR-let-7e, miR-24, miR-26b, miR-30c, miR-145, miR-155 ↑ [88]

Breast cancer miR-373, miR-155, miR-21, miR-1246, miR-106a363, miR-101, miR-327 ↑ [89–91]

Ovarian cancer miR-21, miR-141, miR-203, miR-205, miR-214, miR-92, miR-93 ↑ [92, 93]

Breast cancer miR-187, miR-18a, miR-25, miR-142-3p, miR-140-5p, miR-204, miR-126, miR-182, miR-199a ↑ [94, 95]

Melanoma
miR-101, miR-182, miR-221, miR-222, miR-106-363, miR-106a, miR-92, miR-196, miR-21,

miR-156, miR-214, miR-30b, miR-30d, miR-532-5p
↑ [96]

Melanoma miR-31, miR-125b, miR-148a, miR-211, miR-193b, miR-196a-1, miR-196a-2, miR-203 ↓ [96]
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downstream target protein PBX3, inhibiting the proliferation
and migration of HCC cells by inhibiting the MAPK pathway.
CSCs-Exos exerted potential antitumor effects by inducing
cancer cell apoptosis. For example, exosomes secreted by PaCa
cells can increase the expression of Bcl-2-related X protein
(Bax) and reduce the expression of Bcl-2, inhibiting the
PI3K/Akt signaling pathway to drive tumor cell apoptosis
[107]. Exosomes derived from the plasma of BC patients car-
ried the lncRNA PTENP1, which increased cell apoptosis
and the invasion and migration ability of BC cells [108]. Xu
et al. [109] found that exosomes from gastric CAFs carried
miR-139, which inhibited the progression and metastasis of
gastric cancer cells by reducing MMP11 in the TME. Exoso-
mal miR-9 from nasopharyngeal carcinoma cells inhibited
the formation of endothelial tubes and the migration of endo-
thelial cells by inhibiting the MDK/PDK/AKT signaling path-
way [110]. The above research shows that CSC-Exos not only
can be used as markers of cancer to facilitate early diagnosis
but also have unlimited potential in the treatment of cancer.

5.2. CSC-Exos as Drug Carriers. Targeted therapy has become
an increasingly widely used therapeutic method for cancer
[111]. In recent years, a variety of synthetic targeted drug
delivery systems have been developed and introduced into
the market. However, due to inefficiency, cytotoxicity, and/or
immunogenicity, the application of such systems is limited
[112]. Meanwhile, due to their unique composition, CSC-
Exos have become new carriers for the therapeutic delivery
of drugs [113]. The lipid bilayer maintains the integrity of exo-
somes and stabilizes their biological activity, which makes it
easier for them to pass through biological barriers in the
human body [114]. The proteins on the surface of exosomes
enhance their recognition and targeting capabilities, and the
abundant RNA species promote their regulation of receptor
cell transcription and translation [115]. The small size, low
immunogenicity, long half-life, good permeability, and good
biocompatibility of CSC-Exos make them one of the best
choices for targeted cancer treatment via drug delivery vehicle
[116]. To date, drugs have been transported in a variety of
ways, such as exosomal incubation, electroporation, ultrasonic
treatment, extrusion, freeze–thaw cycle-based administration,
and saponin-based administration [117]. Pan et al. [118]
embedded a nanoparticle called PMA/Fe-HSA@DOX into
the urine exosomes of PC patients to create a bionic Exo-
PMA/Fe-HSA@DOX Trojan nanocarrier. High expression of
the membrane protein antigen CD47 on exosomes can reduce

the clearance rate of new psychoactive substances in circulat-
ing microparticles, making it easier for nanocarriers to enter
the cell, and catalyze endogenous H2O2 in cells to produce
toxic ·OH. Toxic ·OH and low-dose doxycycline (DOX) are
effective in synergistically inducing apoptosis of cancer cells
and inhibiting EGFR and its downstream AKT/NF-κB/IκB
signaling pathway, enhancing the effect of cancer treatment.
CSC-Exos can also be combined with superparamagnetic
nanoparticles to form exosome-superparamagnetic nanopar-
ticle (SMNC-EXO) complexes. Accumulation of the hydro-
phobic drug doxorubicin in the tumor site can help to kill
cancer cells [119]. Studies [120] have shown that exosomes
purified from MCF-7 human cancer breast cells can be used
with ultrasonic electroporation technology to induce antican-
cer effects by silencing lncRNAs and miRNAs related to the
HER2 gene in recipient cells. Yong et al. [121] found that bio-
compatible biomimetic porous silicon nanoparticles (PSiNPs)
of CSC-Exos could be developed as drug carriers for targeted
cancer chemotherapy. Exosome-encapsulated doxorubicin
PSiNPs (DOX@E-PSiNPs) can be endocytosed by CSC-Exos
and targeted for export to dense tumor cells to kill cancer cells.
Doxorubicin can be housed inside exosomes derived from
certain fibrosarcoma cells (HT1080) by membrane extrusion
to form a complex called D-exos. After 12 hours, doxorubicin
is removed from D-exos in HT1080 cells, isolated from the
exosomes, and distributed in the place where cancer cells
gather [122].

6. Conclusion

CSC-Exos represent novel tools for intercellular information
exchanges and sources of noninvasive tumor markers and
participate in the occurrence and development of a variety
of cancers, indicating their substantial application value in
cancer. To date, the study of CSC-Exos has led to new ave-
nues for the study of mechanisms such as the immune
response, immune escape, immune tolerance, tumor inva-
sion, and metastasis and has provided new ideas for targeted
tumor therapy. Although reports and studies of CSC-Exos
have emerged widely in recent years, there is much that
remains unknown about exosomes, and their specific mech-
anism of action in the TME has not been clarified and needs
further research. However, it is believed that an increased
understanding of the various mechanisms of exosomes will
reveal that exosomes are better options for clinical treatment

Table 2: CSC-Exo-derived proteins acting as biomarkers in cancer.

Cancer type Biomarkers Level trend Reference source

Glioblastoma HSP, NANOGP8, (EGFR), EGFRv11I, IDHl ↑ [97]

Pancreatic cancer ZIP4, GPC1 ↑ [98]

Colorectal cancer CD147, CPNE3 ↑ [99]

Prostate cancer CD276, HSP72, PSA, PSMA, ITGA3, ITGB1 ↑ [100]

Gastric cancer AHSG, FGA, APOA-I ↑ [101]

Ovarian cancer TUBB3, EpCAM, CLDN3, PCNA, EGFR, APOE ↑ [102]

Breast cancer Mucin-1, CEACAM-5, EPS8L2, moesin, K17 ↑ [103]
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strategies, and they can be used to develop new methods of
tumor treatment and bring benefit to cancer patients.
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