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Extracellular vesicles from bone 
marrow‑derived multipotent mesenchymal 
stromal cells regulate inflammation 
and enhance tendon healing
Zhengzhou Shi, Qi Wang and Dapeng Jiang*

Abstract 

Background:  Extracellular vesicles from bone marrow-derived multipotent mesenchymal stromal cells (BMSC-EVs) 
can play important roles in the repair of injured tissues. However, no reports have investigated the role and underlying 
mechanisms of BMSCs-EVs in the tendon repair process. We hypothesized that BMSC-EVs may play a role in modulat-
ing inflammation during tendon healing and improving tendon repair in a rat model of patellar tendon injury.

Methods:  First, we created window defects in the patellar tendons of Sprague–Dawley rats. Rats (n = 16) were then 
randomly assigned to three groups: BMSC-EVs group, Fibrin group, and control group. Rats in the BMSC-EVs group 
were treated with BMSC-EVs and fibrin glue (25 µg in 10 µL). Rats in the fibrin group were treated with fibrin only, 
and those in the control group received no treatment. Histopathology, immunohistochemistry, and gene expression 
analyses were performed at 2 and 4 weeks after surgery.

Results:  At 4 weeks, tendons treated with BMSC-EVs showed regularly aligned and compact collagen fibers as com-
pared with the disrupted scar-like healing in rats in the fibrin and control groups. The expression of genes related to 
tendon matrix formation and tenogenic differentiation: collagen (COL)-1a1, scleraxis (SCX), and tenomodulin (TNMD) 
was significantly higher in the BMSC-EVs group than in the other two groups. With histopathology, we observed 
significantly higher numbers of CD146+ tendon stem cells and fewer numbers of apoptotic cells and C–C chemokine 
receptor type 7 (CCR7)-positive proinflammatory macrophages in the BMSC-EVs group. BMSC-EVs treatment also led 
to an increase in the expression of anti-inflammatory mediators (IL-10 and IL-4) at 2 weeks after surgery.

Conclusions:  Overall, our findings show that the local administration of BMSC-EVs promotes tendon healing by 
suppressing inflammation and apoptotic cell accumulation and increasing the proportion of tendon-resident stem/
progenitor cells. These findings provide a basis for the potential clinical use of BMSC-EVs in tendon repair.
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Background
Tendons play key roles in connecting muscles to bones. 
They are frequently injured in both occupational and 
athletic activities. Tendon injuries are an acute health 
care burden and have become a significant challenge in 
orthopedics [1]. Natural tendon healing is a complex 

process consisting of three overlapping stages: inflam-
mation, proliferation, and remodeling. Tendon heal-
ing is slow compared with other types of connective 
tissue healing because of its poor vascularization and the 
excessive load-bearing it must withstand [2]. A previous 
study showed that inflammatory factors are dramatically 
upregulated within the first 7  days after tendon injury 
[3]. An intense early inflammatory cascade often results 
in the formation of a scar-like tendon, and is associated 
with chronic matrix degradation and the formation of 
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adhesions, which impede the intrinsic repair process 
and lead to a tendon with poor tissue quality and inferior 
mechanical properties [4]. In recent years, tissue engi-
neering and other biological-based therapeutic strategies 
have been used to modulate inflammation at the repair 
site to effectively enhance tendon healing [5–7].

The use of mesenchymal stem cells (MSCs) is currently 
an attractive solution for tendon repair and regeneration. 
Recent findings show that adipose tissue-derived mesen-
chymal stromal cells and tendon stem/progenitor cells 
(TSCs) can modulate the inflammatory environment 
by regulating the activities of resident macrophages to 
enhance tendon healing [8, 9]. Indeed, one study showed 
that bone marrow-derived multipotent mesenchymal 
stromal cells (BMSCs) can improve early tendon healing 
both histologically and biomechanically [10]. However, 
the implantation of BMSCs can also result in ectopic 
bone formation in the tendon or contribute to teratoma 
formation [11, 12]. Recent studies have demonstrated 
that MSC transplantation therapy promotes tissue repair 
mainly through a paracrine mechanism [13–15], and 
that EVs play an important role in the function of MSCs 
[16, 17]. More recently published results indicate that 
EVs derived from BMSCs (BMSCs-EVs) have promise 
in attenuating inflammation and apoptosis during tissue 
repair [18].

We hypothesized that BMSC-EVs may also play a role 
in modulating inflammation during tendon healing. To 
test this hypothesis, EVs were isolated from BMSCs and 
delivered to a rat model of tendon repair. The impact 
of BMSC-EVs on the expression of proinflammatory 
cytokines, anti-inflammatory mediators, and mac-
rophages during tendon healing was investigated in vivo. 
The effect of BMSC-EVs on the quality of the repaired 
tendon tissue was also characterized.

Methods
Isolation and culture of rat BMSCs
Bone marrow-derived multipotent mesenchymal stro-
mal cells were isolated from eight Sprague–Dawley rats. 
Animal experiments were performed according to the 
Rules and Regulations of the Animal Care and Use Com-
mittee at our University. BMSCs were isolated from rat 
bone marrow as described previously [10]. Briefly, bone 
marrow was flushed from the bone marrow cavities, col-
lected into centrifuge tubes, and mononuclear cells were 
isolated by Ficoll density gradient. The mononuclear cells 
were then suspended in alpha-modified Eagle’s medium 
(α-MEM) containing 10% fetal bovine serum (FBS) and 
plated into T-75 flasks. Cells were incubated at 37  °C 
with 5% CO2, with the medium changed every 3  days. 
Nonadherent cells were discarded after 48  h. The bone 
marrow cells at the third passage were harvested and 

characterized. BMSCs were identified by flow cytom-
etry with a fluorescence-labeled antibody for the positive 
surface markers CD44 and CD90. The negative surface 
markers: CD11b and CD34 were investigated as nega-
tive marker to exclude hematopoietic lineages. Moreover, 
morphology and multipotency of BMSCs were meas-
ured. The BMSCs used in this study were between pas-
sage 3 and 5.

Isolation and identification of BMSCs‑EVs
At 80% to 90% confluence, BMSCs were rinsed with 
phosphate-buffered saline (PBS) and cultured in Mesen 
Gro MSC medium (Thermo Fisher Scientific) for an addi-
tional 48  h. Conditioned media was collected and EVs 
were isolated, as described previously [16]. The purifica-
tion of BMSCs-EVs involves several centrifugation and 
ultracentrifugation. The conditioned media was cen-
trifuged sequentially at 300×g for 10  min followed by 
2000×g for 10 min to remove cellular debris. The super-
natants were then ultracentrifuged at 100,000×g for 2 h 
to obtain a pellet containing the EVs, which was resus-
pended in 200 μL of PBS. EVs-enriched fraction was cen-
trifuged at 1500g, 30 min with 100-kDa molecular weight 
cutoff (MWCO) hollow fiber membrane (Millipore, Bill-
erica, MA, USA). Then, EVs were passed through a 0.22-
μm filter. The total protein concentration in the EVs was 
quantitated using the Micro Bicinchoninic Acid (BCA) 
Protein Assay Kit (Pierce) following the manufacturer’s 
instructions. Transmission electron microscopy (TEM) 
and western blotting were used to examine the morphol-
ogy and the quality of the EVs. The size of EVs were ana-
lyzed with use of qNano. EVs were stored at 4 °C for no 
more than 1 h before used for experiments.

Surgical procedure and treatment
A patellar tendon injury model was created in Sprague–
Dawley rats, according to a previously published method 
[7]. Briefly, in 48 rats, the central one-third of the patellar 
tendon was removed from the distal apex of the patellar 
to the insertion of the tibial tuberosity to create a tendon 
defect (Fig. 1). Then, rats were allocated to one of three 
groups (n = 16): BMSC-EVs group, treated with 10  µL 
of fibrin containing 25  µg BMSC-EVs; Fibrin group, 
treated with 10  µL of fibrin glue alone; and the control 
group, which was left untreated. Fibrin glue containing 
EVs was placed in the window defect of patellar tendon 
after rat tendon injury model. The fibrin glue (Baxter®, 
Vienna, Austria) was considered to act as a useful vehicle 
of growth factors or cells. It has been used extensively in 
all kinds of surgery and research [19, 20]. Fibrin solution 
consists of two main components: fibrinogen and throm-
bin. The final concentration of fibrinogen and thrombin 
was 80  mg/mL and 600  units/mL, respectively. It could 
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produce a fibrin clot in about 10 s after applied to injury 
site. Mixing EVs lysates (25  µg) in fibrin glue (10  µL) 
is easy to deliver locally in window defect of patellar 
tendon.

At 2 and 4 weeks after surgery, eight rats in each group 
were killed, and the tissues surrounding the injured patel-
lar tendons were harvested for histology, immunohisto-
chemistry, and gene expression analysis.

Histology and immunohistochemistry
Rat patellar tendon tissues were harvested at 4  weeks 
and fixed in 4% formaldehyde solution and embedded 
in paraffin. Samples were sectioned longitudinally at a 
thickness of 5  μm, and then processed for histological 
examination using hematoxylin–eosin (H&E) and Mas-
son’s trichrome staining. The organization of fibrous con-
nective tissue within the defect site was evaluated using 
a parallel fiber alignment scoring method [21], as previ-
ously described: 3 = 75% to 100% parallel fiber alignment; 
2 = 50% to 75% parallel fiber alignment; 1 = 25% to 50% 
parallel fiber alignment; and 0 = 0% to 25% parallel fiber 
alignment. All sections were analyzed by a single pathol-
ogist, who was blinded of the treatment groups.

Specimens harvested at 2 weeks were used for immu-
nohistochemistry to examine expression changes in 
CD146, cleaved caspase-3, CD163, C–C chemokine 
receptor type 7 (CCR7), interleukin (IL)-10, and IL-6 
(all from Abcam; 1:100 dilution). Immunohistochemi-
cal staining with anti-rat type I collagen antibody (1:300; 
#sc-25974, Santa Cruz Biotechnology, Dallas, TX) was 

also performed to evaluate tendon healing. Briefly, non-
specific reactive sites were masked with 5% bovine serum 
albumin before the slides were incubated overnight at 
4  °C with primary antibodies at 1:100 or 1:300 dilution, 
as specified. Slides were then incubated with a species 
appropriate secondary antibody in the dark at room tem-
perature for 60  min. Nuclei were counterstained with 
Hoechst fluorochrome 33342 (1 mg/mL; Sigma-Aldrich, 
St. Louis, MO, #B2261). Positive cells in the healing ten-
don tissue were quantified using light microscopy at the 
magnification of 400×, defined by an ocular morpho-
metric grid. For each animal, 15 randomly selected tissue 
sections were analyzed.

Gene expression
Gene expression changes in the healing tendons were 
determined using real time PCR. Rats were anesthe-
tized with isoflurane gas on day 14 after surgery. 8 heal-
ing patellar tendon tissues in each group were processed 
for mRNA extraction. Total RNA was extracted using an 
RNeasy mini kit (Qiagen; Hilden, Germany). cDNA was 
synthesized using the First-strand kit (Invitrogen; Carls-
bad, CA). qRT-PCR was carried out with the QuantiTect 
SYBR Green RT-PCR kit (Qiagen). Total RNA isola-
tion, cDNA synthesis, and gene expression assay were 
performed as described previously [22]. Relative gene 
expression levels were calculated with the 2ΔCT formula. 
The gene expression levels were normalized with respect 
to the control group. Each gene analysis was performed 
in triplicate.

Rat-specific primers were synthesized by Invitrogen 
(Carlsbad, CA) and used for tenomodulin (TNMD), scle-
raxis (SCX), collagen type I, collagen type III, IL-1B, IL-6, 
interferon gamma (IFNγ), IL-4, IL-10, IL-13, CCR7, and 
CD163 testing. Glyceraldehyde-3-phosphate dehydroge-
nase (GAPDH) was used as an internal control (Table 1).

Isolation and culture of rat tendon cells
Patellar tendons from SD male rats were used as explants 
for primary cell cultures. Patellar tendons were cut into 
small sections, and then placed and cultured in 6-well 
culture plates in aseptic conditions. After 5  min of air-
drying for better adherence, Dulbecco’s Modified Eagle 
Medium containing 20% fetal bovine serum and 1% 
penicillin/streptomycin were supplemented to each well. 
After 3–4  days in culture, cells began to emerge from 
the tendon pieces. After the cells reached 80% conflu-
ence, tendon cells were detached with trypsin and mixed 
together as passage 0. Tendon cells at passages 3 were 
used in the following experiments.

Fig. 1  Patellar tendon injury model. The central one-third of the 
patellar tendon was removed to create a tendon defect
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Collagen type I expression of tendon cells
After culture in media containing BMSC-EVs (0, 10, 20 μg/
mL) for 48 h, tendon cells were harvested for RNA extrac-
tion. Total RNA was extracted using an RNeasy Mini Kit 
(Qiagen, Hilden, Germany) according to the manufacturer’s 
instructions. cDNA was synthesized using a First-Strand 
Kit (Invitrogen, Carlsbad, CA). qRT-PCR was carried 
out with QuantiTect a SYBR Green RT-PCR Kit (Qiagen, 
Hilden, Germany). Gene expression assay were performed 
as described previously. Glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH) was used as an internal control. 
Relative gene expression was calculated using the 2ΔCT 
formula. Rat-specific primer for collagen type I was as fol-
lows: 5ʹ-CCG​GAC​TGT​GAG​GTT​AGG​AT-3ʹ (forward) and 
5ʹ-AAC​CCA​AAG​GAC​CCA​AAT​AC-3ʹ (reverse).

Cell proliferation assay
The effects of BMSC-EVs on the proliferation of tendon 
cells were determined by using the CCK8 assay. Briefly, 
tendon cells were seeded at 1 × 104 cells/well onto 96-well 
plates in 200 μL of complete culture medium. After 24 h 
in culture, cells were treated with medium containing dif-
ferent concentrations of BMSC-EVs (0, 10, 20 μg/mL) for 
3 days. The value of optical density was measured with a 
microplate reader at 450 nm according to the manufac-
turer’s instructions.

Statistical analysis
All values are expressed as the mean ± standard devia-
tion (SD). Data were compared by an analysis of variance 
(ANOVA) followed by Tukey’s test. Because the number 
of rats was small for parametric statistics, the Kruskal–
Wallis test was used to compare the results of histological 
analysis among groups. Statistical analyses were carried 
out with SPSS 11.0 statistical package. All p values less 
than 0.05 were considered statistically significant.

Results
Characterization of BMSCs and BMSCs‑EVs
Bone marrow-derived multipotent mesenchymal stro-
mal cells were analyzed for expression of a panel of cell 
surface markers as shown in Fig. 2. In the FACS analysis, 
BMSCs were positive for mesenchymal markers CD90 
(99.13%) and CD44 (97.58%), but negative for hematopoi-
etic markers CD34 (0.02%) and C11b (0.15%). Morphol-
ogy and multipotency of BMSCs were showed in Fig. 2.

Surface markers CD9, CD63, and HSP70 were pre-
sented high expression in BMSCs-EVs (Fig.  3a). Under 
transmission electron microscopy, BMSCs-EVs appeared 
as circular particles (Fig. 3c).

Histological analysis
Tendons treated with BMSC-EVs showed regularly 
aligned and compact collagen fibers in contrast to the 
disorganized and disrupted scar-like healing in tendons 
from fibrin and control groups (Fig.  4a, b). The fiber 
alignment score was significantly higher for the rats in 
the BMSC-EVs group compared with those in the fibrin 
and control groups (Fig. 4c).

Effect of BMSC‑EVs on macrophage polarization 
and inflammatory response
We found elevated expression of CD163 as a marker of 
anti-inflammatory macrophages in BMSC-EVs group as 
compared with the other groups (Fig. 5a). Corroborating 
this, we found a significant increase in the mRNA expres-
sion levels of IL-4 and IL-10 (M2 macrophage stimulator) 
in the BMSC-EVs group as compared with the fibrin and 
control groups (Fig. 5b, c). However, there was no signifi-
cant increase in IL-13 mRNA expression in BMSC-EVs 
group (Fig. 5d). Furthermore, we found a reduction in the 
expression in each of IFNγ, IL-1B, IL-6 (markers of M1 
macrophages) in the BMSC-EVs group as compared with 
the fibrin and control groups (Fig. 5f–h).

We also investigated the in  vivo inflammatory 
responses among the three groups. At 2 weeks, we found 
a significantly higher number of cells were expressing 
IL-10 in the BMSC-EVs group as compared with the 

Table 1  Rat primers used for qRT-PCR analysis

Gene Primer sequence

TNMD F: 5′-CCA​TGC​TGG​ATG​AGA​GAG​GTTAC-3′
R: 5′-CAC​AGA​CCC​TGC​GGC​AGT​A-3′

SCX F: 5′-AAC​ACG​GCC​TTC​ACT​GCG​CTG-3′
R: 5′-CAG​TAG​CAC​GTT​GCC​CAG​GTG-3′

COL1a1 F: 5′-CCG​GAC​TGT​GAG​GTT​AGG​AT-3′
R: 5′-AAC​CCA​AAG​GAC​CCA​AAT​AC-3′

COL3a1 F: 5′-AAC​GGA​GCT​CCT​GGC​CCC​AT-3′
R: 5′-ATT​GCC​TCG​AGC​ACC​TGC​GG-3′

IL-1B F: 5′-AGC​AGC​TTT​CGA​CAG​TGA​GG-3′
R: 5′-CTC​CAC​GGG​CAA​GAC​ATA​GG-3′

IL-6 F: 5′-AGA​AAA​GAG​TTG​TGC​AAT​GGCA-3′
R: 5′-GGC​AAA​TTT​CCT​GGT​TAT​ATCC-3′

IFN-γ F: 5′-AGG​CCA​TCA​GCA​ACA​ACA​TAA​GTG​-3′
R: 5′-GAC​AGC​TTT​GTG​CTG​GAT​CTGTG-3′

IL-10 F: 5′-GGA​CTT​TAA​GGG​TTA​CTT​GGG-3′
R: 5′- AGA​AAT​CGA​TGA​CAG​CGT​CG-3′

IL-4 F: 5′-GAA​CTC​ACT​GAG​AAG​CTG​CA-3′
R: 5′-GAA​GTG​CAG​GAC​TGC​AAG​T-3′

IL-13 F: 5′-AGA​CCA​GAA​GAC​TTC​CCT​GT-3′
R: 5′-TCA​ATA​TCC​TCT​GGG​TCC​TG-3′

CCR7 F: 5′-TGG​TCA​TTT​TCC​AGG​TGT​GCT-3′
R: 5′-TAC​AGG​GTG​TAG​TCC​ACG​GT-3′

CD163 F: 5′-GTA​GTA​GTC​ATT​CAA​CCC​TCAC-3′
R: 5′-CGG​CTT​ACA​GTT​TCC​TCA​AG-3′
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control group (Fig.  5i). Comparatively, abundant IL-6 
expression was observed in the control and fibrin ten-
dons (Fig.  5j). These results were confirmed quantita-
tively, with a significantly higher density of IL-10+ cells 

and fewer IL-6+ cells in the BMSC-EVs group than in the 
control group (Fig. 5k, l).

Consistent with the gene expression results, through 
immunostaining we identified increased numbers of 

Fig. 2  Characterization of BMSCs. a FACS analysis for detection of BMSCs surface markers. b Morphology and multipotency of BMSCs. Scale bar: 
100 μm. c The adipogenic, chondrogenic, and osteogenic differentiation potentials of BMSCs. Scale bar: 100 μm

Fig. 3  Characterization of BMSC-EVs. a Western-Blot was used to confirm the expression of EVs signature markers. b Particle size distribution. c 
Morphology using transmission electron microscopy. Scale bar: 0.5 μm
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CD163+ cells at the repair site in the BMSC-EVs-treated 
group (Fig.  6a, c). We also found an accumulation of 
CCR7+ M1 macrophages in the regions of newly formed 
tendon tissue in the control and fibrin groups but not 
in the BMSC-EVs group (Fig. 6b, d), which supports the 
mRNA expression data.

Effect of BMSC‑EVs on tendon matrix formation
We found a significantly higher expression of SCX, an 
early marker for tenogenic differentiation, in the BMSC-
EVs groups as compared with the control and fibrin 
groups (Fig.  7b). Likewise, the expression of TNMD, 
a mature marker of tenogenic differentiation, was also 
significantly higher in the BMSC-EVs group compared 
with the control group (Fig. 7c). For extracellular matrix 
(ECM) gene expression, COL1a1 (which encodes for type 
I collagen) and COL3a1 (which encodes type III collagen) 

were upregulated following BMSC-EVs treatment, with a 
relatively higher abundance of COL1a1 as compared with 
COL3a1 (Fig. 7a, d).

Effect of BMSC‑EVs on tenogenesis during tendon healing
CD146+ is a marker of tendon stem cells. At the tissue 
level, BMSC-EVs treatment induced an accumulation 
of CD146+ cells at the repair site of treated tendons 
(Fig. 8a, c). However, no apparent CD146 staining was 
observed in the control or fibrin groups, suggesting the 
pro-regenerative effects of BMSC-EVs in tendon repair.

Effect of BMSC‑EVs on tendon cell apoptosis
M1 macrophage activation has been linked to apoptotic 
cell death at the tendon repair site. Therefore, we tested 
the potential protective effects of BMSC-EVs against 
apoptotic cell death during repair. In the control group, 

Fig. 4  The results of histological evaluation for tendon repair at 4 weeks after surgery. a The HE staining of window defect on the patellar tendon 
at 4 weeks after surgery. b Masson’s trichrome staining of window defect on the patellar tendon at 4 weeks after surgery. c Fiber alignment score 
was significantly higher for the rats in the BMSC-EVs and fibrin groups compared with control group (n = 8 donors). Bars: 100 μm, ×20. Data are 
represented as mean ± SD. **p < 0.01
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cleaved caspase 3 (a marker of apoptotic cells) signals 
primarily accumulated at the repair site (Fig.  8b, d). 
Comparatively, cleaved caspase 3 signals were reduced 
in tendons from the BMSC-EVs group.

Effect of BMSC‑EVs on tendon cell proliferation 
and collagen type I expression
Cells were treated with BMSC-EVs, and viable cells were 
monitored by CCK-8 assay. Tendon cells exhibited an 
enhanced proliferative capacity after treatment with 
BMSC-EVs at 10 and 20 μg/mL concentrations for 3 days 
(Fig. 9a). However, at concentration of 10 μg/mL, the pro-
liferation of tendon cells was not significantly different 
from the control. Moreover, the expression of collagen 
type I, a tenocyte-related gene, were increased by BMSC-
EVs (10 and 20 ng/mL) (Fig. 9b), whereas no significant 
difference was detected at BMSC-EVs (10 ng/mL) group.

Discussion
Tendon healing progresses through three phases: inflam-
mation, proliferation, and remodeling. The marked 
inflammatory response that occurs after tendon injury 

leads to a loss of ECM organization, the formation of 
scar tissue, and other degenerative events in tendons. 
Controlling the inflammatory environment after ten-
don injury is therefore a potential therapeutic target for 
enhanced healing [23, 24]. Previous studies indicate that 
early suppression of the inflammatory response through 
the delivery of MSCs could promote tendon and liga-
ment regeneration to their original state [25, 26]. In this 
study, we hypothesized that BMSC-derived EVs may play 
a significant role in regulating inflammation and tendon 
healing.

We first examined changes in the tendons using H&E 
staining and Masson’s trichrome staining at 4 weeks after 
injury. We found that the delivery of BMSC-EVs to the 
injury site led to a better arrangement of collagen fibers, 
with fibers more often oriented along the longitudinal 
axis of the tendon. Masson’s trichrome staining further 
confirmed the improved tissue quality in the BMSC-
EVs-treated group, with an abundance of a collagen-rich 
ECM in the tendons as compared with those in the other 
groups.

In many injured tissues, proinflammatory macrophages 
(M1) promote ECM breakdown, inflammation, and 

Fig. 5  The impact of BMSC-Exos on tendon inflammatory response. The graphs show changes in the expression of a CD163, b IL-4, c IL-10, d IL-13, 
e CCR7, f IL-1B, g IL-6, and h INF-γ genes in the repaired tendons (n = 8 donors). The expressions of i IL-10+ cells and j IL-6+ cells at the repair site 
were evaluated by immunofluorescence assay. k Numbers of IL-10+ cells at the repair site (n = 8 donors). l Numbers of IL-6+ cells at the repair site 
(n = 8 donors). Bars: 50 μm, ×200. Data are represented as mean ± SD. *p < 0.05, **p < 0.01
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apoptosis [27–29]. However, anti-inflammatory mac-
rophages (M2) often coordinate ECM deposition and 
tissue repair. Here, we showed a significant reduction in 
the proportion of CCR7+ M1 cells and an increase in 
CD163+ M2 macrophages in tendons from the BMSC-
EVs group. Furthermore, we found elevated expression of 
M2 stimulator genes IL-4 and IL-10, and lower levels of 
inflammatory cytokines (IFNγ, IL-1B, and IL-6). Based on 
these findings, BMSC-EVs treatment may improve tendon 
healing by influencing the balance of macrophages and 
their associated cytokines toward an anti-inflammatory 
environment. IL13 is a proinflammatory cytokine pro-
duced by activated T cells, which can promote the secre-
tion of other inflammatory cytokines and the expression 
of adhesion molecules. It can regulate collagen stability 
of fibroblasts. Chronic inflammation induced by IL-13 
contributes to the pathogenic scar and fibrosis process by 
recruiting fibrocytes, which in turn leads to the deposition 
of excessive ECM that destroy the healing tissue architec-
ture [30]. There was no significant increasement in IL-13 
mRNA expression in healing tendon tissue subsequent 

to BMSCs-EVs treatment in our study, suggesting that 
BMSCs-EVs may play an important role in improving ten-
don repair and remodeling after injury.

Based on the changes in the expression of matrix genes 
involved in tendon healing, our results suggest that 
BMSC-EVs treatment has a positive effect on repair. We 
found increased expression of collagen I and III mRNA 
in healing tendons treated with BMSC-EVs as compared 
with injured tendons in the control and fibrin groups. 
Collagen I is the predominant type of collagen in normal 
tendon tissue, responsible for providing structural and 
mechanical properties [20]. Type III collagen has been 
linked to scar formation and inferior tendon mechani-
cal properties after injury [31]. It has been suggested 
that an optimized collagen type I/III ratio might account 
for the quality of matrix organization in tendon healing 
[32]. We found that the relative abundance of COL1a1 
was approximately twofold higher than that of COL3a1 
in tendons from the BMSC-EVs group. This finding sug-
gests that BMSC-EVs might help to promote the synthe-
sis of ECM components suitable for repair.

Fig. 6  The expressions of a CD163+ cells and b CCR7+ cells at the repair site were evaluated by immunofluorescence assay. c Numbers of 
CD163+ cells at the repair site (n = 8 donors). d Numbers of CCR7+ cells at the repair site (n = 8 donors). Bars: 50 μm, ×200. Data are represented as 
mean ± SD. *p < 0.05, **p < 0.01
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We also examined the expression of genes related to 
tenocyte differentiation. SCX is a basic helix-loop-helix 
transcription factor involved in tendon development, the 
deletion of which dramatically disrupts tendon differenti-
ation. SCX is also a distinct marker of tendon progenitors 
and differentiated cells [33]. In our study, SCX expres-
sion was elevated in tendons from the BMSC-EVs group 
at 2 weeks as compared with the other groups. TNMD is 
another transcription factor involved in tendon matura-
tion. In the present study, we found a significant increase 
in TNMD in the BMSC-EVs group over that in the other 
groups. These results suggest that BMSC-EVs may pro-
mote tendon healing by regulating tenogenesis.

Previous studies have revealed that apoptosis plays an 
important role in regulating tendon regeneration during 
wound healing [34–36], with higher numbers of apop-
totic cells altering the composition of the tendon matrix 
during repair. Efficient tendon healing should inhibit 
apoptosis. We found fewer apoptotic cells in the tendons 
treated with BMSC-EVs, which may suggest that BMSC-
EVs can help to prevent the accumulation of apoptotic 
cells and the subsequent scar tissues that form during 
early tendon healing.

Previous studies have shown that a reduction in the pres-
ence of M2 macrophages and the loss of TNMD expres-
sion are associated with fewer CD146-positive cells and 
more erroneous matrix deposition at the repair site [8, 36]. 
Furthermore, enriching for CD146-positive cells can lead 
to improved tendon healing outcomes [6, 8, 37]. Therefore, 
as a final test, we examined the expression of CD146 in the 
healing tendons. We found higher proportions of CD146+ 
cells in the BMSC-EVs group, which suggests the poten-
tial for this approach to enhance tendon regeneration. Our 
findings also demonstrate that regulating the proportion 
of CD146+ tendon cells may provide an important foun-
dation for the development of a new strategy for tendon 
healing by encouraging the regenerative capacity of ten-
don-resident stem/progenitor cells.

Fibrin sealant has been used extensively in all kinds of 
surgery and research. In this work, an integrated repair 
was proved effectively by fibrin glue consist of BMSC-
EVs in a rat tendon injury model. It could form a stable 
fibrin polymer after applied to injury site and the window 
defects of injured tendons were closed with fibrin seal-
ant. Mixing BMSC-EVs in fibrin glue is easy to deliver 
locally and safe. This method may be a feasible approach 

Fig. 7  The expression of tenocyte-related genes, a COL1a1, b SCX, c TNMD, and d COL3a1 in tendons 14 days after repair (n = 8 donors). Data are 
represented as mean ± SD. *p < 0.05, **p < 0.01
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for repairing tendon injury in the clinic. Future studies 
should evaluate the physiological and mechanical prop-
erties of the fibrin glue consist of BMSC-EVs for longer 
period [38, 39].

There were several limitations to the current study. 
First, the follow-up time points of 2 and 4 weeks in this 
study may not be long enough for the final analysis, and 
there may be actual tissue healing status at later time. 

Fig. 8  The expressions of a CD146+ cells and b caspase 3+ cells at the repair site were evaluated by immunofluorescence assay. c Numbers 
of CD146+ cells at the repair site (n = 8 donors). d Numbers of caspase 3+ cells at the repair site (n = 8 donors). Bars: 50 μm, ×200. Data are 
represented as mean ± SD. *p < 0.05, **p < 0.01

Fig. 9  Tendon cell proliferation and collagen type I expression. a Treatment of tendon cells with BMSC-EVs (20 μg/mL) increased cell proliferation 
significantly. b The expression of collagen type I, was increased by BMSC-EVs (20 ng/mL). Data are represented as mean ± SD. *p < 0.05
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Study with a longer evaluation period may be needed in 
future. Second, EVs contain a set of bioactive and tissue 
trophic molecules such as proteins, nucleic acids, and 
lipid molecules. Further studies investigating protein or 
nucleic acids, and which molecular content of the EVs 
modulate tendon healing are needed to reinforce the 
results of the current study.

Conclusions
In summary, we demonstrate that EVs derived from 
BMSCs can help to improve the quality of tendon healing 
by modulating macrophage phenotypes, promoting an anti-
inflammatory environment, and encouraging the regenera-
tive capacity of tendon-resident stem/progenitor cells. The 
beneficial effects of BMSC-EVs delivery in tendon healing 
may offer a new avenue for promoting tendon regeneration. 
Future studies will explore the potential for this approach to 
enhance the functional outcomes after tendon repair.
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