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Auditory prostheses provide an opportunity for rehabilitation of hearing-

impaired patients. Speech intelligibility can be used to estimate the extent

to which the auditory prosthesis improves the user’s speech comprehension.

Although behavior-based speech intelligibility is the gold standard, precise

evaluation is limited due to its subjectiveness. Here, we used a convolutional

neural network to predict speech intelligibility from electroencephalography

(EEG). Sixty-four–channel EEGs were recorded from 87 adult participants

with normal hearing. Sentences spectrally degraded by a 2-, 3-, 4-, 5-,

and 8-channel vocoder were used to set relatively low speech intelligibility

conditions. A Korean sentence recognition test was used. The speech

intelligibility scores were divided into 41 discrete levels ranging from 0 to

100%, with a step of 2.5%. Three scores, namely 30.0, 37.5, and 40.0%, were

not collected. The speech features, i.e., the speech temporal envelope (ENV)

and phoneme (PH) onset, were used to extract continuous-speech EEGs for

speech intelligibility prediction. The deep learning model was trained by a

dataset of event-related potentials (ERP), correlation coefficients between the

ERPs and ENVs, between the ERPs and PH onset, or between ERPs and the

product of the multiplication of PH and ENV (PHENV). The speech intelligibility

prediction accuracies were 97.33% (ERP), 99.42% (ENV), 99.55% (PH), and

99.91% (PHENV). The models were interpreted using the occlusion sensitivity

approach. While the ENV models’ informative electrodes were located in the

occipital area, the informative electrodes of the phoneme models, i.e., PH and

PHENV, were based on the occlusion sensitivity map located in the language

processing area. Of the models tested, the PHENV model obtained the best

speech intelligibility prediction accuracy. This model may promote clinical

prediction of speech intelligibility with a comfort speech intelligibility test.
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Introduction

Auditory prostheses, such as hearing aids and cochlear
implants, provide an excellent opportunity for hearing-impaired
patients to rehabilitate their auditory modality. The outcome
of auditory prosthesis use depends on the signal processing
strategies: modulation of the current pulse train from sound
in cochlear implants (CI) (Macherey et al., 2006; Wouters
et al., 2015; Nogueira et al., 2019) or reduction of stationary
and background noise and customized personal setting of
hearing aids (Launer et al., 2016). In addition, the individual’s
status, such as the insertion depth of the CI electrode, and
the experience of cochlear implantation, could also affect the
performance of CI (Vandali et al., 2000; Wanna et al., 2014).
To evaluate the benefit of auditory prostheses, a behavioral
speech intelligibility test is typically conducted using rating
scales based on how well the listener comprehends sentences
(Kim et al., 2009). In this behavioral test, a listener is asked
to repeat or write what they hear in a recognition test. Speech
intelligibility is estimated by scoring the number of correctly
identified words (Enderby, 1980; Kent et al., 1989; Healy
et al., 2015; Lee, 2016). Although the behavioral assessment
can be conducted efficiently and quickly, a self-reported
approach may be less reliable and less sensitive in evaluating
the true hearing capability (Koelewijn et al., 2018). Vocoder
simulation has also been used in speech tests to simulate the
performance of hearing impairment in normal-hearing listeners
(Mehta and Oxenham, 2017).

Event-related potentials (ERPs), in response to word
or tone stimuli, have been used to evaluate auditory
function objectively. Recently, several studies have shown
that electroencephalography (EEG) signals in response to
continuous speech stimuli are entrained to speech features:
temporal envelope, spectrogram, and phonetics of speech
(Scott et al., 2000; Liebenthal et al., 2005; Nourski et al., 2009;
Ding and Simon, 2014; O’Sullivan et al., 2015; Crosse et al.,
2016; Di Liberto et al., 2018). The speech temporal envelope
(ENV), developed using the temporal response function model
(TRF), is an effective feature to understand neural responses
to continuous speech (Ciccarelli et al., 2019; Nogueira and
Dolhopiatenko, 2020, 2022). However, the TRF model is
limited in analyzing short (<5 s) responses due to the impact
of onset response to a sentence (Crosse et al., 2016, 2021).
Therefore, cross-correlation, which measures the similarity
between the neural response and the speech sentence, can
be more reliable in tracking neural signals in response to
short sentences.

It was reported that speech intelligibility affected ENV
entrainment (Ding and Simon, 2013; Vanthornhout et al., 2018;
Lesenfants et al., 2019; Nogueira and Dolhopiatenko, 2022).
Sentence comprehension requires complex hierarchical stages
that integrate the phonological and prosodic processes of an

acoustic input (Snedeker and Huang, 2009). Vanthornhout
et al. (2018) developed a prediction model for the speech
reception threshold using the TRF model, which could
explain the variance of speech reception. Moreover, Di
Liberto et al. (2015) showed that a speech prediction model
with a phonetic feature was outperformed by the envelope
model. Thus, a combination of ENV and phoneme (PH)
onset information can be effective for feature computation.
However, predicting a speech intelligibility score from EEG
signals to continuous stimuli with a linear input-output
model is still a challenge. Recently, deep learning models
have been widely used to classify auditory neural outcomes
(Ciccarelli et al., 2019; Craik et al., 2019; Roy et al.,
2019; Nogueira and Dolhopiatenko, 2020). Ciccarelli et al.
(2019), showed that the non-linear model for decoding
of auditory attention outperformed the linear model. As
a sentence is non-linearly and hierarchically processed in
the human brain along the complex auditory pathway, a
non-linear model can perform better in predicting speech
intelligibility. Thereby, deep learning can be successfully
used in a non-linear model to investigate auditory neural
processing. Deep learning requires two essential processes
for better predictive performance. First, the reduction of
attribute noise, which leads to a decrease in overfitting and
memorization of noise data, can be achieved by neural
tracking with speech features from EEG (Zhu and Wu,
2004; Altaheri et al., 2021; Cherloo et al., 2021; Zhou et al.,
2021). Second, data augmentation increases the amount of
data and helps to overcome the problem of limited data
(Lashgari et al., 2020).

Although accurate classification is achieved through deep
learning, it is essential to interpret the results for clinical use.
The explainable deep learning models, the gradient-weighted
class activation map (Grad-CAM), and the occlusion analysis
map have been developed and applied to the classification
tasks of an EEG data model (Jonas et al., 2019; Li et al.,
2020; Mansour et al., 2020; Uyttenhove et al., 2020; Lombardi
et al., 2021). While the Grad-CAM typically highlights the
important lesion, the occlusion analysis map tracks multi-
focal lesions and thus supports information with higher spatial
resolution (Oh et al., 2020; Aminu et al., 2021; Govindarajan
and Swaminathan, 2021). Occlusion analysis has been used
to discover cortical areas related to movement tasks in
EEG classification and identify important regions for image
classification (Zeiler and Fergus, 2014; Ieracitano et al., 2021).
In this study, we developed a deep learning model to predict
speech intelligibility scores with EEG signals to continuous
sentences. The typical speech features of ENV and phoneme
onset impulse were used. An occlusion sensitivity map was
used to select sensitive EEG channels to predict speech
intelligibility scores (Esmaeilzadeh et al., 2018; Singh et al.,
2020).
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FIGURE 1

Summary of the experimental procedure for the behavior speech intelligibility test and EEG recording. During the behavioral test, vocoded
noise, and natural sentence speeches are randomly played, and the participants are asked to repeat the sentences. The electroencephalogram
(EEG) responses to the speech stimuli are recorded during the passive listening task.

FIGURE 2

Schematic diagram of deep learning training and testing. A training dataset is used to build up a speech intelligibility prediction model and an
unseen (test) dataset determines the performance of the model.

Materials and methods

Participants

Eighty-seven participants with normal hearing (44 males
and 43 females) participated in this study. They were 20–
33 years old (mean = 24.0 and standard deviation = 2.4).
All experimental procedures and the written informed consent

procedure were reviewed and approved by the Institutional
Review Board of the University of Ulsan.

Stimuli

Ten continuous sentences spoken by a male speaker were
selected from the Korean standard sentence list for adults
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FIGURE 3

The overall scheme of speech intelligibility prediction, including speech stimuli, electroencephalogram data, feature extraction, and model
prediction. The speech features of envelope (ENV), phoneme onset train (PH), and ENV ⊗ PH generate the features of ENV continuous-speech
evoked potentials (CSEP), PH CSEP, and PHENV CSEP by cross-correlating with the electroencephalogram response (EEG).

(Jang et al., 2008). The duration of each sentence was 1.8± 0.2 s,
and the number of phonemes in each sentence was 18.6 ± 3.9.
The natural (non-vocoded) and noise-vocoded sentences were
used in this study. A noise vocoder was used to simulate
poor sensitivity with normal-hearing listeners. The vocoder
consisted of a logarithmically-spaced filter bank between 200
and 5,000 Hz. Natural sentences are then filtered through the
filter bank, which is modulated with a Gaussian white noise
and synthesized sequentially (Mehta and Oxenham, 2017). The
channel of vocoder parameter was set to 2, 3, 4, 5, and 8 for five
noise-vocoded conditions, wherein a lower number of channels
generated more spectrally degraded stimuli.

TABLE 1 Deep learning layers and their specifications.

Deep learning
layer

Filter size Kernel
dimension
(H × W)

Output
(H × W × D)

Input 299× 299× 3

Conv2D 32 16× 16 299× 299× 32

LeakyReLU 299× 299× 32

Conv2D 8 8× 8 299× 299× 8

LeakyReLU 299× 299× 8

Maxpooling2D 2× 2 149× 149× 8

Conv2D 8 4× 4 149× 149× 8

LeakyReLU 149× 149× 8

Maxpooling2D 2× 2 148× 148× 8

Conv2D 3 3× 3 148× 148× 3

LeakyReLU 148× 148× 3

Maxpooling2D 2× 2 147× 147× 3

Batch normalization 147× 147× 3

Fully connected 1× 38 1× 1× 38

Softmax 1× 1× 38

Classification 38

Behavioral test and
electroencephalography

The Korean sentence recognition test was conducted
to evaluate the behavioral speech intelligibility score in a
soundproof room prior to EEG data acquisition. The test used
10 sentences selected out of 90, and the participant was asked
to verbally repeat the sentence which was presented through
a loudspeaker (NS-B51, YAMAHA, Hamamatsu, Japan) at a
comfortable level of 60 dBA. The behavioral speech test was
performed using natural and noise-vocoded sentences. The
behavioral speech intelligibility score, which was calculated

FIGURE 4

The behavioral speech intelligibility score (left panel) of
individuals in response to vocoded and natural
continuous-speech stimuli. The bars (right panel) indicate the
incidence of each score.
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using the number of correctly repeated words out of 40 target
words, ranged from 0 to 100, with a step of 2.5.

EEG data were recorded using a 64-channel system (Biosemi
Active 2, Netherlands) in a soundproof room. The natural and
vocoded sentences were randomly played by a loudspeaker
(NS-B51, YAMAHA, Hamamatsu, Japan) 1 m away from the
participants. The inter-stimulus interval (between sentences)
was set to 3 s, and each sentence was repeated 100 times.
Difficult tasks had precedence over easy tasks to minimize
learning throughout the tasks (Figure 1). During this passive
experiment, a participant could watch a silent video with
subtitles on an LCD monitor and could rest for 10 min between
sessions. The raw EEG data were downsampled to 256 Hz for
computational efficiency and preprocessed using the EEGLAB
toolbox (Delorme and Makeig, 2004). The down-sampled EEG
data were re-referenced using average referencing and band-
pass (1–57 Hz) filtered by a Hamming windowed sinc FIR
filter (Widmann, 2006). The typical eye-movement related
artifact was rejected using the extended infomax independent
component analysis and manually inspected correction. The
EEG data were epoched in the intervals –0.5 to 2.5 s, relative
to stimulus onset.

Speech features: Envelope, phoneme,
and envelope and phoneme

The PH onset impulse train and the ENV of the
natural sentences were used as speech (stimuli) features. All
PH onsets in the sentences were automatically identified

TABLE 2 Results of behavioral speech intelligibility scores with
natural and noise vocoded sentences.

Sentence type Behavioral score (%)

Mean SD

Noise vocoded 2 Channel 7.5 8.08

3 Channel 55.2 17.03

4 Channel 77.3 12.63

5 Channel 86.4 8.01

8 Channel 97.9 3.44

Natural sentence 99.6 1.01

SD, standard deviation.

TABLE 3 Comparison of the performance of deep learning models
using event-related potentials (ERP), stimuli envelopes (ENV),
phonemes (PH), and phoneme-envelopes (PHENV).

Deep learning using

ERP ENV PH PHENV

Accuracy 97.33% 99.42% 99.55% 99.91%

(Yoon and Kang, 2013) using Praat software (University
of Amsterdam, Netherlands) and manually confirmed. The
number of phonemes in each sentence ranged from 17 to 22
(mean: 18.6, standard deviation: 3.9). The PH onset impulse
train consisted of a sequence of unit impulses at the onset
time of the phoneme. The ENVs were computed using a full-
wave rectifier and a low-pass filter (30 Hz cutoff). The cutoff
frequency of 30 Hz was chosen to obtain a sufficient amplitude
envelope of EEG data (Souza and Rosen, 2009; Roberts et al.,
2011). Using these aforementioned values, the product of the
multiplication of the PH and ENV (PHENV) was calculated.

Deep learning for speech intelligibility
prediction

The EEG data were randomly split into a training set
(80% of the original data set) and an unseen test set (20%),
as depicted in Figure 2. An ERP was computed by averaging
80 EEG data epochs. A bootstrap sampling procedure was
employed to generate ERPs and continuous speech-evoked
potentials (CSEPs), evenly distributed across the range of speech
intelligibility scores. The deep learning features of the CSEPs
were computed by averaging the cross-correlation coefficients
between the EEG data epochs and speech (stimuli) features. As a
result, 800 ERPs and CSEPs from the training set, and 200 ERPs
and CSEPs from the test set, were taken.

To enlarge the number of training datasets and guarantee
that they reached 8,000, the training datasets were augmented
with one of three approaches: Gaussian noise, temporal cutout,
or sensor dropout. One of the approaches was randomly selected
for each augmentation (Wang et al., 2018). The augmentation
techniques used the best parameters obtained in a previous

FIGURE 5

The topographic map of occlusion sensitivity visualizing the
important brain regions for classification. Dark to bright red
color denotes relatively low to high contributive levels for
prediction.
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TABLE 4 Summary of regions of significant contribution for deep learning. The ten most significant EEG channels and their regions, to predict
speech intelligibility, are selected using occlusion sensitivity analysis.

Deep learning using Regions of significant contribution for deep learning

EEG channels Brain regions

ERP Cz, C6, C4, FCz, P6, F1, CP2, C3, Pz, FC3 Central, frontal, parietal

ENV O2, T8, PO4, CP4, C6, C1, T7, CP2, FT8, P5 Occipital, temporal, parietal

PH C3, C1, F1, P10, F3, F8, P9, C5, F6, PO8 Central, frontal, parietal

PHENV C3, C1, F1, F3, F5, P4, C5, TP7, C6, C4 Central, frontal, parietal

EEG, electroencephalography; ERP, event-related potential; ENV, stimuli envelope; PH, phoneme; PHENV, phoneme-envelope.

study (Cheng et al., 2020). Gaussian noise was added to the
signal, and the ratio of noise to signal was 0.6. The temporal
cutout was a random temporal window replaced with Gaussian
noise, and the duration of the temporal window was 0.625 s
(about 20% of the 3 s recording period). The sensor dropout was
a random subset of sensors replaced with zeros, and the number
of dropping sensors was 12 (about 20% of the 64 electrodes). The
validation datasets (20% of the augmented training datasets)
were randomly selected.

Figure 3 shows the overall schematic representation of
speech feature, feature extraction, and speech intelligibility
classification. Four deep learning models to predict the
behavioral speech intelligibility scores were trained using
the ERPs, envelope-based CSEPs, phoneme-based CSEPs, and
phoneme-envelope-based CSEPs. The ERP and CSEP at each
channel were plotted against time after sentence onset, as seen in
Figure 3. The color in each panel indicated the amplitude of the
ERP and CSEP. Each panel was resized to 299 × 299 from the
original size of 64 × 768 for computational efficiency, to build
up the model with small kernels and numbers of layers, and
then used for deep learning (Simonyan and Zisserman, 2014;
Szegedy et al., 2015; He et al., 2016; Tan and Le, 2019). The
deep learning architecture consisted of four convolutional layers
which were fully connected. Max pooling, leakyReLU, and batch
normalization layers were employed in the convolution process.
See Table 1 for more details about the deep learning architecture.
The Adam optimizer was used for training the deep learning
models (Kingma and Ba, 2014). The initial learning rates of the
optimizer, batch size, and epoch value were set to 0.001, 64,
and 5, respectively. Training data were shuffled before training
to avoid any bias and overfitting. Finally, four deep learning
models were evaluated by computing the classification accuracy,
using the unseen test set as follows:

Accuracy = (TN + TP)/(TN + TP + FN + FP).

where TP, TN, FP, and FN denote true positive, true negative,
false positive, and false negative, respectively. The occlusion
sensitivity maps showed which channels contributed more to
classifying the speech intelligibility score. Compromising spatial
resolution and computational efficiency, the map used a 5 × 5
occluding mask and stride.

Results

Figure 4 plots the behavioral speech intelligibility scores in
response to natural and noise-vocoded (2, 3, 4, 5, and 8 channel)
sentences. Although the scores are not evenly distributed, it
covered overall score ranges except 30.0, 37.5, and 40%. Table 2
shows the statistical summary of the behavioral scores.

Table 3 summarizes the performance of the deep learning
models. The predictive accuracies were 97.33% (ERP), 99.42%
(ENV), 99.55% (PH), and 99.91% (PHENV). Compared to
the probabilistic chance level of 2.63%, the four deep learning
models achieved comparable performance on predicting the
speech intelligibility score. The deep learning model with
the feature based on the PHENV yielded the highest
accuracy of 99.91%.

Figure 5 shows the topographical map of occlusion
sensitivity computed from the four deep learning models. The
color indicates the level of contribution to a classification
decision at each channel. Here, the dominant contribution was
observed in the occipital region for the ENV-based model,
whereas the dominancy was spread over the central, frontal, and
parietal brain regions for the ERP, the PH-based model, and the
PHENV-based model. Table 4 summarizes the 10 most sensitive
EEG channels and the corresponding brain regions for deep
learning to predict speech intelligibility scores.

Conclusion and discussion

In this study, we developed a deep learning model to predict
speech intelligibility scores using continuous speech-evoked
EEG signals. The cross-correlation coefficients between typical
speech features (PH and ENV) and EEG responses to speech
were implemented as a feature for deep learning and the model
achieved the highest classification accuracy of 99.91%. The
topographic map illustrating the frontal, central, and parietal
regions provided important information for the classification.

Several studies have employed a linear model (i.e., TRF)
to predict individual speech intelligibility from EEG responses
to overlapped sentences or long story (14 min) stimuli

Frontiers in Neuroscience 06 frontiersin.org

https://doi.org/10.3389/fnins.2022.906616
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-906616 August 12, 2022 Time: 17:59 # 7

Na et al. 10.3389/fnins.2022.906616

(Lesenfants et al., 2019; Muncke et al., 2022). One issue with
stimulus-driven EEG signals is the speech onset response,
which is greater in magnitude than the overall neural
activity. For this reason, Crosse et al. (2021) reported
that the TRF model may not be a feasible approach to
apply in EEG signals in response to short-duration (<5 s)
stimuli (Crosse et al., 2021). It is therefore essential to
consider the methodological approach to model building
in response to speech and continuous stimuli. It should
also be noted that the TRF model requires regularization
coefficient tuning to avoid overfitting, which makes use of
more computational resources and is more complex than cross-
correlation. Furthermore, a deep learning model with the
cross-correlation coefficient can leverage a non-linear feature
to predict the non-linear property of speech intelligibility
(Accou et al., 2021).

Subjects participated in the passive listening condition
during the electrophysiological data collection in this
study. Passive listening provides less experimental fatigue
than active listening and can be performed by young
children (Roy, 2018; O’Neill et al., 2019). Several studies on
selective attention decoding and cortical tracking to long
story stimuli have employed the active listening paradigm
to keep subjects attentive (Vanthornhout et al., 2018;
Lesenfants et al., 2019; Accou et al., 2021; Nogueira and
Dolhopiatenko, 2022). Although these participants were
asked regarding the stimuli during the experiment for active
listening, it may be difficult to ensure a stable attentive
level throughout the entire task. In particular, Kong et al.
(2014) reported that neural responses from active and
passive listeners were similar in quiet conditions, whereas
the differences of cross-correlation function were observed
in competing speaker conditions. Thus, attention should be
considered when predicting speech intelligibility in a selective
listening condition.

The occlusion sensitivity enabled the decision of deep
learning interpretability (Zeiler and Fergus, 2014; Ieracitano
et al., 2021). Here, occlusion sensitivity explained that
neural activity from the central and left frontal region made
the most important contribution to speech understanding.
The topographic map of occlusion sensitivity in PH and
PHENV cases showed that the language dominant region
(typically F3 within the middle frontal gyrus and TP7
within the middle temporal gyrus) was highly involved
in speech intelligibility processes (Scrivener and Reader,
2022). The results are comparable with the findings of
neuroimaging studies, specifically that of the sentence-
processing network, including the middle frontal and
middle temporal gyri (Peelle et al., 2004, 2010; Fiebach
et al., 2005; Smirnov et al., 2014). Also, it supports
the middle temporal gyrus and the supramarginal gyrus
involvement in syntactic and phonological processing
(Friederici, 2011). Deep learning with PH and PHENV

could be reasonably explainable and interpretable by
occlusion sensitivity.

This study has several limitations for clinical
implementation. The deep learning model was developed using
data from a limited group. The noise-vocoder was used to
simulate hearing impairment with normal hearing listeners.
Since no data from cochlear implant and hearing aid users
were accessed, the model should be sufficiently validated with
data of hearing-impaired individuals. In addition, although the
group-level deep learning model was developed and tested in
this study, it was still challenging to optimize the model with
individual-level features due to inter-subject variability (Cheng
et al., 2020; Accou et al., 2021). Further investigation of subject-
specific models is necessary for the clinical prediction of speech
intelligibility. These are the key issues for future studies. We also
plan to improve the model by incorporating source EEG data
rather than 64-channel EEG data and optimizing the channels
based on the occlusion sensitivity map.
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