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Effect of social odor context on the
emission of isolation-induced
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T+tf/J mouse model for autism
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An important diagnostic criterion for social communication deficits in autism spectrum

disorders (ASD) are difficulties in adjusting behavior to suit different social contexts. While

the BTBR T+tf/J (BTBR) inbred strain of mice is one of the most commonly used mouse

models for ASD, little is known about whether BTBR mice display deficits in detecting

changes in social context and their ability to adjust to them. Here, it was tested therefore

whether the emission of isolation-induced ultrasonic vocalizations (USV) in BTBR mouse

pups is affected by the social odor context, in comparison to the standard control strain

with high sociability, C57BL/6J (B6). It is known that the presence of odors from mothers

and littermates leads to a calming of the isolated mouse pup, and hence to a reduction

in isolation-induced USV emission. In accordance with their behavioral phenotypes

with relevance to all diagnostic core symptoms of ASD, it was predicted that BTBR

mouse pups would not display a calming response when tested under soiled bedding

conditions with home cage bedding material containing maternal odors, and that similar

isolation-induced USV emission rates would be seen in BTBR mice tested under clean

and soiled bedding conditions. Unexpectedly, however, the present findings show that

BTBR mouse pups display such a calming response and emit fewer isolation-induced

USV when tested under soiled as compared to clean bedding conditions, similar to B6

mouse pups. Yet, in contrast to B6 mouse pups, which emitted isolation-induced USV

with shorter call durations and lower levels of frequency modulation under soiled bedding

conditions, social odor context had no effect on acoustic call features in BTBR mouse

pups. This indicates that the BTBR mouse model for ASD does not display deficits in

detecting changes in social context, but has a limited ability and/or reduced motivation

to adjust to them.

Keywords: animal model, neurodevelopmental disorder, ultrasonic vocalization, ultrasonic communication,

maternal odor

Introduction

The BTBR T+tf/J (BTBR) inbred strain of mice is one of the most commonly used mouse models
for autism spectrum disorders (ASD). BTBR mice display behavioral phenotypes with relevance
to all diagnostic core symptoms of ASD, namely persistent deficits in reciprocal social interac-
tion and communication across multiple contexts, together with restricted, repetitive patterns
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of behavior, activities, and interests (DSM-5, 2013), as com-
pared to the social mouse strain C57BL/6J (B6; for review see:
Blanchard et al., 2012; Meyza et al., 2013; Careaga et al., 2015).

Specifically, BTBR mice display reduced reciprocal social
interaction behavior as juveniles (Yang et al., 2007b, 2009; McFar-
lane et al., 2008; Jones-Davis et al., 2013) and lack of socia-
bility as adults (Bolivar et al., 2007; Moy et al., 2007; Yang
et al., 2007a,b, 2009; McFarlane et al., 2008; Defensor et al.,
2011; Jones-Davis et al., 2013) in standard laboratory settings,
but also semi-natural environments (Pobbe et al., 2010), possi-
bly due to reduced social motivation (Pearson et al., 2012; Mar-
tin et al., 2014). For assessing communication deficits, ultrasonic
vocalizations (USV) are typically studied. As pups, BTBR mice
display an unusual pattern of USV categories, including high lev-
els of harmonics, two-syllable, and composite calls, but vocalize
more than B6 mice when being isolated from mother and litter-
mates (Scattoni et al., 2008). During adolescence, low emission
rates of pro-social USV were observed in BTBR mice, consistent
with their strongly reduced juvenile reciprocal social interaction
behavior (Scattoni et al., 2013). Likewise, during reciprocal social
interactions in adulthood also low emission rates of pro-social
USVwere obtained (Scattoni et al., 2011; Yang et al., 2013). More-
over, male BTBRmice do not emit USV to attract females and dis-
play reduced scent marking behavior in response to female urine
cues, in stark contrast to male B6mice (Wöhr et al., 2011b), while
scent marking behavior in response to male urine cues was found
to be unchanged (Roullet et al., 2011). Deficits in the social trans-
mission of food preferences were also reported (McFarlane et al.,
2008). Finally, BTBR mice show high levels of restricted, repet-
itive behavior, such as perseverative self-grooming and marble-
burying (McFarlane et al., 2008; Yang et al., 2009; Pobbe et al.,
2010; Pearson et al., 2011; Amodeo et al., 2012; Jones-Davis et al.,
2013; Molenhuis et al., 2014) or altered exploratory behavior in
the hole board task (Moy et al., 2008) and the repetitive novel
object contact task (Pearson et al., 2011). They were also reported
to display deficits in reversal learning in the Morris water maze
(Moy et al., 2007; Yang et al., 2012a) and a set-shifting task
(Molenhuis et al., 2014), yet conflicting results were obtained
in T-maze reversal learning and related tasks (Moy et al., 2007;
Amodeo et al., 2012; Guariglia and Chadman, 2013).

In addition, BTBR mice are characterized by alterations in
brain development andmorphology associated with ASD, includ-
ing a lack of the corpus callosum (Wahlsten et al., 2003; Kusek
et al., 2007; MacPherson et al., 2008; Jones-Davis et al., 2013),
altered functional connectivity networks (Dodero et al., 2013;
Ellegood et al., 2013, 2015; Miller et al., 2013; Gogolla et al., 2014;
Sforazzini et al., 2015), as well as reduced hippocampal neuroge-
nesis and changes in neurodevelopmental proteins (Stephenson
et al., 2011). BTBR mice further display ASD-related alterations
in neurotransmitter systems, including serotonin (Gould et al.,
2011, 2014; Zhang et al., 2014), dopamine (Squillace et al., 2014),
and acetylcholine (McTighe et al., 2013), as well as in neuro-
modulators, such as oxytocin (Silverman et al., 2010b) and endo-
cannabinoids (Liu et al., 2009; Onaivi et al., 2011; Gould et al.,
2014). Persistent immune dysregulation was also reported (Heo
et al., 2011; Onore et al., 2013; Schwartzer et al., 2013; Zhang
et al., 2013). Not surprisingly, the BTBR inbred strain of mice is

therefore a mouse model for ASD that is commonly used to test
new pharmacological compounds and strategies for their efficacy
in reversing ASD-related behavioral phenotypes, such as negative
allosteric modulation of the mGluR5 receptor (Silverman et al.,
2012), long-term exposure to intranasal oxytocin (Bales et al.,
2014), and others (Silverman et al., 2010a, 2013a,b; Burket et al.,
2013, 2014; Amodeo et al., 2014a,b; Han et al., 2014; Karvat and
Kimchi, 2014; Langley et al., 2015).

An important diagnostic criterion for social communication
deficits in ASD are difficulties in adjusting behavior to suit dif-
ferent social contexts (DSM-5, 2013). However, little is known
about whether the BTBR mouse model for ASD displays deficits
in detecting changes in social context and their ability to adjust to
them. Yet, the fact that the strain of the partner during reciprocal
social interactions was reported to have minimal effects on the
social behavioral repertoire displayed by BTBR mice is in stark
contrast to the changes that were observed in B6 mice (Yang
et al., 2012a) and suggests that BTBR mice have difficulties in
adjusting their behavior to different social contexts. Here, it was
tested therefore whether the emission of isolation-induced USV
in BTBR mouse pups is affected by the social odor context, in
comparison to the standard control strain with high sociability,
B6. It is known that the presence of odors from mothers and lit-
termates leads to a calming of the isolated mouse pup, and hence
to a reduction in isolation-induced USV emission (Branchi et al.,
1998; Marchlewska-Koj et al., 1999; Kapusta and Szentgyörgyi,
2004; Moles et al., 2004; Zanettini et al., 2010; for similar find-
ings in voles and rats see: Oswalt and Meier, 1975; Conely and
Bell, 1978; Kapusta et al., 1995; Szentgyörgyi et al., 2008; but see:
Lemasson et al., 2005). Highlighting the relevance of this calm-
ing response for behavioral phenotyping of mouse models for
ASD, it was further shown that µ-opioid deficient mice do not
display a reduction in isolation-induced USV emission rates in
the presence of odors from mothers and littermates (Moles et al.,
2004), consistent with a variety of other social and communi-
cation deficits displayed by this ASD mouse model (Tian et al.,
1997; Wöhr et al., 2011a; Cinque et al., 2012; Becker et al., 2014;
Gigliucci et al., 2014; for review see: Oddi et al., 2013).

In accordance with their behavioral phenotypes with relevance
to all diagnostic core symptoms of ASD, it was predicted that
BTBR mouse pups would not display a calming response when
tested under soiled bedding conditions with home cage bedding
material containing maternal odors, and that similar isolation-
induced USV emission rates would be seen in BTBR mice tested
under clean and soiled bedding conditions, while lower isolation-
induced USV emission rates would occur in B6 mice tested
under soiled bedding conditions as compared to clean bedding
conditions.

Materials and Methods

Animals and Housing
Subject mice were N = 30 BTBR T+tf/J (BTBR) and N =

30 C57BL/6J (B6) mice. Breeding pairs were purchased from
The Jackson Laboratory (Bar Harbor, ME, USA) and bred
at the National Institute of Mental Health in Bethesda, MD,
USA. About 2 weeks after pairing for breeding, females were
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individually housed and subsequently inspected daily for preg-
nancy and delivery. The day of birth was considered as postnatal
day (PND) 0. All mice were housed in polycarbonate Makrolon
cages (369 × 156 × 132mm, 435 cm2; 1145T; Tecniplast, Milan,
Italy). Bedding, paper strips, a nestlet square, and a cardboard
tube were provided in each cage. Standard rodent chow andwater
were available ad libitum. The colony room was maintained on
a 12:12 light/dark cycle with lights on at 06:00 h, at 20◦C tem-
perature and 55% humidity. All procedures were conducted in
strict compliance with the National Institutes of Health Guide-
lines for the Care and Use of Laboratory Animals and approved
by the National Institute of Mental Health Animal Care and Use
Committee.

Social Odor Context Manipulation
An experimental design with two independent factors was used
in order to study the effects of social odor context on isolation-
induced pup USV in a strain-dependent manner, namely strain
(BTBR vs. B6) and social odor context (clean bedding vs. soiled
bedding), with N = 15 per strain and social odor context. To
this aim, mouse pups from four different litters per strain (litter
size: BTBR: 7.50 ± 1.50; B6: 7.50 ± 1.26; typically with a male:
female ratio of approximately 50:50 in both strains) were tested
on PND8, using either clean bedding or soiled bedding from the
home cage. Random group assignment was used, with approxi-
mately 50% of pups per sex from a given litter being tested under
clean bedding or soiled bedding conditions, respectively. Pups
were tested only once to avoid carry over effects. Home cages used
to obtain soiled bedding material were not cleaned for at least 2
days prior testing in order to expose mouse pups to sufficiently
distinct odor stimuli.

Isolation-Induced USV—Recording
Pups were isolated from their mother and littermates on PND8
for 5min under room temperature (22–24◦C; humidity: 3–55%).
Pups were removed individually from the nest at random and
gently placed into an isolation container made of glass (10× 8×
7 cm; open surface), containing either clean bedding or soiled
bedding depending on experimental group. The isolation con-
tainer was surrounded by a sound attenuating box (18 × 18 ×

18 cm) made of Styrofoam (thickness of walls: 4 cm). USV emis-
sion was monitored by an UltraSoundGate Condenser Micro-
phone CM16 (Avisoft Bioacoustics, Berlin, Germany) placed in
the roof of the sound attenuating box, 10 cm above the floor.
The microphone was connected via an UltraSoundGate 116
USB audio device (Avisoft Bioacoustics) to a personal com-
puter, where acoustic data were recorded with a sampling rate
of 250,000Hz in 16 bit format by Avisoft RECORDER (version
2.97; Avisoft Bioacoustics). The microphone was sensitive to fre-
quencies of 15–180 kHz with a flat frequency response (±6 dB)
between 25 and 140 kHz. After the 5min isolation period, body
weight and body temperature were determined. Body weight
was measured using a palmscale (PS6-250; My Weigh Europe,
Hückelhoven, Germany). For body temperature determination
a DiGiSense Thermistor Thermometer (Thermo Fisher Scien-
tific Inc., Waltham, MA, USA) was used. Body temperature was
measured by gentle application of the thermal probe onto the

stomach of the mouse pup for 20 s. Isolation occurred between
8:00 and 12:00 h during the light phase of the 12:12 h light/dark
cycle. Prior to each test, behavioral equipment was cleaned using
a 70% ethanol solution, followed by water, and dried with paper
towels.

Isolation-Induced USV—Analysis
For acoustical analysis, recordings were transferred to Avisoft
SASLab Pro (version 4.50; Avisoft Bioacoustics) and a fast Fourier
transform was conducted (512 FFT length, 100% frame, Ham-
ming window, and 75% time window overlap), resulting in spec-
trograms with 488Hz of frequency resolution and 0.512ms of
time resolution. Detection of isolation-induced USV was pro-
vided by an automatic threshold-based algorithm (amplitude
threshold: −40 dB) and a hold-time mechanism (hold time:
10ms). Since no USV were detected below 30 kHz, a high-
pass filter of 30 kHz was used to reduce background noise out-
side the relevant frequency band to 0 dB. The accuracy of USV
detection by the software was verified manually by an expe-
rienced user. When necessary, missed USV were marked by
hand to be included in the automatic parameter analysis. Total
number of isolation-induced USV was calculated for the entire
5min recording session. Based on previous studies on isolation-
induced USV in mouse pups (Wöhr et al., 2008, 2011b; Kurz
et al., 2010; Yang et al., 2012b), the following additional param-
eters were included: latency to start calling, total calling time, call
duration, peak frequency, peak amplitude, and frequency modu-
lation. Peak frequency and peak amplitude were derived from the
average spectrum of the entire USV. Peak amplitude, i.e., loud-
ness, was defined as the point with the highest energy within the
spectrum. Peak frequency was defined as the frequency at the
location of the peak amplitude within the spectrum. The extent of
frequency modulation was defined as the difference between the
lowest and the highest peak frequency within each USV. In addi-
tion, USV subtypes were determined by means of density blots
(Wöhr, 2014), depicting call duration and frequency modulation.
Finally, to assess the temporal organization of isolation-induced
USV emission, sequential analyses were performed by correlating
the durations of given isolation-induced USV with the durations
of the previous ones (N-1), the ones two before (N-2), and the
ones three before (N-3), as described before (Wöhr, 2014).

Statistical Analysis
For statistical comparisons, Two-Way ANOVAs with the
between-subject factors strain (BTBR vs. B6) and social odor
context (clean bedding vs. soiled bedding) were calculated, fol-
lowed by unpaired t-tests when appropriate. Pearson’s prod-
uct moment statistics were used to run correlation analyses
between the durations of given isolation-induced USV with
the durations of the previous ones (N-1), the ones two before
(N-2), and the ones three before (N-3) in mouse pups that
emitted >3 isolation-induced USV. Paired t-tests were used
to compare correlation coefficients against chance level. Sex
had no effect on the emission of isolation-induced USV (all
p > 0.100). A p-value of < 0.050 was considered statistically
significant.
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Results

Effects of Social Odor Context on
Isolation-Induced USV in BTBR and B6 Mouse
Pups
Social odor context significantly affected the emission of
isolation-inducedUSV [main effect social odor context: F(1, 56) =
15.646, p < 0.001; Figure 1A], with emission rates significantly
differing between strains [main effect strain: F(1, 56) = 124.807,
p < 0.001; interaction social odor context × strain: F(1, 56) =

FIGURE 1 | Effects of social odor context on isolation-induced

ultrasonic vocalizations (USV) emitted by BTBR T+tf/J (left) and

C57BL/6J (right) mouse pups (N = 15 per strain and social odor

context). (A) Total number of isolation-induced USV [n] and (B) total calling

time in seconds [s] in BTBR T+tf/J and C57BL/6J mouse pups tested under

clean (black) and soiled (gray) bedding conditions. (C) Call duration in

milliseconds [ms], (D) peak frequency in kilohertz [kHz], (E) peak amplitude in

decibel [dB], and (F) frequency modulation in kilohertz [kHz] of

isolation-induced USV emitted by BTBR T+tf/J and C57BL/6J mouse pups

tested under clean (black) and soiled (gray) bedding conditions. Data are

presented as means ± standard errors of the mean. ⋆p < 0.050 for soiled

bedding vs. clean bedding; #p < 0.050 for BTBR T+tf/J vs. C57BL/6J mouse

pups.

0.001, p = 0.983; Figure 1A]. Specifically, both, BTBR and B6
mouse pups tested under home cage bedding conditions emitted
significantly fewer isolation-induced USV than littermates tested
under clean cage bedding conditions [t(28) = 2.939, p = 0.007
and t(28) = 2.664, p = 0.013; respectively]. In BTBR mouse
pups, a significant reduction in isolation-induced USV was seen
in the first 2min of testing [min 1–5: t(28) = 6.557, p < 0.001;
t(28) = 2.255, p = 0.032; t(28) = 0.605, p = 0.550; t(28) = 0.270,
p = 0.789; t(28) = 0.482, p = 0.633; respectively; Figure 2A],
whereas in B6 mouse pups significant reductions were seen in
the first 4min of testing [min 1–5; t(28) = 2.835, p = 0.008;
t(28) = 2.703, p = 0.012; t(28) = 2.638, p = 0.013; t(28) = 2.332,
p = 0.027; t(28) = 1.470, p = 0.153; respectively; Figure 2B]. As
expected, BTBRmouse pups emitted significantlymore isolation-
induced USV than B6 mouse pups under clean bedding condi-
tions [t(28) = 7.487, p < 0.001], and in line with the results
obtained under clean bedding conditions, BTBRmouse pups also
emitted significantly more isolation-induced USV than B6mouse
pups under soiled bedding conditions [t(28) = 8.385, p < 0.001].

Consistently, total calling time was significantly lower in
mouse pups tested in soiled bedding than in littermates tested in
clean bedding [main effect social odor context: F(1, 56) = 14.127,
p < 0.001; Figure 1B], with total calling times significantly dif-
fering between strains [main effect strain: F(1, 56) = 269.882, p <

0.001; interaction social odor context × strain: F(1, 56) = 2.536,
p = 0.117; Figure 1B]. Importantly, however, the reduction was
again seen in both, BTBR and B6 mouse pups [t(28) = 2.996,
p = 0.006 and t(28) = 2.408, p = 0.023; respectively], despite
total calling times being significantly higher in BTBR than in B6
mouse pups under clean and soiled bedding conditions [t(28) =
14.396, p < 0.001 and t(28) = 9.511, p < 0.001; respectively].
The reductions in isolation-induced USV emission rates and total
calling times seen in mouse pups tested in a soiled odor con-
text were not due to longer latencies to start calling [main effect
social odor context: F(1, 56) = 1.085, p = 0.302; not shown],
yet latencies to start calling differed significantly between strains
[main effect strain: F(1, 56) = 9.654, p = 0.003; interaction social

FIGURE 2 | Effects of social odor context on isolation-induced

ultrasonic vocalizations (USV) emitted by BTBR T+tf/J (left) and

C57BL/6J (right) mouse pups (N = 15 per strain and social odor

context)—Time course. Number of isolation-induced USV [n] in (A) BTBR

T+tf/J and (B) C57BL/6J mouse pups tested under clean (black) and soiled

(gray) bedding conditions per minute [min]. Data are presented as means ±

standard errors of the mean. ⋆p < 0.050 for soiled bedding vs. clean bedding.
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odor context × strain: F(1, 56) = 0.061, p = 0.805; not shown].
Specifically, the latency to start calling was significantly reduced
in BTBRmouse pups as compared to B6 mouse pups under both,
clean and soiled bedding conditions [t(28) = 2.110, p = 0.044
and t(28) = 2.281, p = 0.030; respectively], consistent with an
overall higher level of isolation-induced USV emission in BTBR
mouse pups.

Importantly, two out of four acoustic call features determined
were also significantly affected by social odor context, namely
mean call duration [main effect social odor context: F(1, 54) =

8.937, p = 0.004; Figure 1C] and frequency modulation [main
effect social odor context: F(1, 54) = 6.927, p = 0.011; Figure 1F],
with both of them also significantly differing between strains
[main effect strain: F(1, 54) = 349.882, p < 0.001 and F(1, 54) =
175.969, p < 0.001; respectively; interaction social odor context
× strain: F(1, 54) = 2.817, p = 0.099 and F(1, 54) = 1.221, p =

0.274; respectively; Figures 1C,F]. Interestingly, however, when
comparing BTBR mouse pups tested in the two social odor con-
texts, there were no significant differences in mean call duration
[t(28) = 1.152, p = 0.259] and frequency modulation [t(28) =

1.116, p = 0.274]. In contrast to BTBR mouse pups, mean call
duration was affected by social odor context in B6 mouse pups,
which emitted significantly shorter isolation-induced USV when
tested in soiled bedding than littermates tested in clean bedding
[t(26) = 2.789, p = 0.010]. Furthermore, frequency modula-
tion was affected by social odor context, with B6 mouse pups
tested in soiled bedding emitting significantly less frequency-
modulated isolation-inducedUSV than littermates tested in clean
bedding [t(26) = 2.556, p = 0.017], again in contrast to BTBR
mouse pups. Under both, clean and soiled bedding conditions,
isolation-induced USV emitted by BTBR mouse pups were sig-
nificantly longer [t(28) = 12.464, p < 0.001 and t(28) = 9.511,
p < 0.001; respectively] and higher in frequency modulation
[t(28) = 12.373, p < 0.001 and t(28) = 10.964, p < 0.001; respec-
tively] when compared to isolation-induced USV emitted by B6
mouse pups.

Finally, however, the two other acoustic call features deter-
mined were not significantly affected by social odor context,
namely peak frequency [main effect social odor context: F(1, 54) =
2.324, p = 0.133; Figure 1D] and peak amplitude [main effect
social odor context: F(1, 54) = 0.130, p = 0.719; Figure 1E],
yet significant differences between strains were detected for both
measures [main effect strain: F(1, 54) = 070.351, p < 0.001
and F(1, 54) = 228.079, p < 0.001; respectively; interaction
social odor context × strain: F(1, 54) = 0.123, p = 0.727 and
F(1, 54) = 3.329, p = 0.074; respectively; Figures 1D,E]. Specifi-
cally, under both, clean and soiled bedding conditions, isolation-
induced USV emitted by BTBR mouse pups were significantly
lower in peak frequency [t(28) = 8.050, p < 0.001 and t(28) =

5.172, p < 0.001; respectively], but higher in peak amplitude
[t(28) = 12.373, p < 0.001 and t(28) = 9.101, p < 0.001; respec-
tively] when compared to isolation-induced USV emitted by B6
mouse pups.

Of note, body weight and temperature did not differ signifi-
cantly between the two social odor contexts [main effect social
odor context: F(1, 56) = 0.066, p = 0.797 and F(1, 56) = 0.003,
p = 0.954; respectively; not shown], yet significant differences

between strains were detected for both measures [main effect
strain: F(1,56) = 40.815, p < 0.001 and F(1, 56) = 6.110,
p = 0.017; respectively; interaction social odor context × strain:
F(1, 56) = 0.007, p = 0.932 and F(1, 56) = 0.001, p = 0.995;
respectively; not shown]. Specifically, as expected, body weight
was significantly higher in BTBR than in B6 mouse pups under
clean and soiled bedding conditions [t(28) = 4.053, p < 0.001
and t(28) = 5.147, p < 0.001; respectively]. Yet, when comparing
strains tested either in clean or soiled bedding, no significant dif-
ferences in body temperature were detected, but BTBR tended to
have higher body temperatures than B6 [t(28) = 1.748, p = 0.091
and t(28) = 1.748, p = 0.091; respectively].

Detailed Spectrographic Analysis—Call
Clustering and Temporal Organization in BTBR
and B6 Mouse Pups
A more detailed analysis was performed to identify clusters of
isolation-induced USV emitted by BTBR and B6 mouse pups
under clean and soiled bedding conditions by means of density
plots. For generating density plots, the two acoustic call fea-
tures most strongly affected by social odor context were used,
namely call duration and frequency modulation. In BTBR mouse
pups tested under clean bedding conditions, four prominent call
clusters were detected. One cluster was characterized by short
call durations (<10ms) and low levels of frequency modulation
(<10 kHz). The other three clusters were characterized by long
call durations (30–90ms), with varying levels of frequency mod-
ulation, namely low (<20 kHz), moderate (30–40 kHz), and high
(40–70 kHz; Figure 3A). Consistent with the lack of significant
differences between clean and soiled bedding conditions in mean
call duration and frequency modulation in BTBR mouse pups,
the social odor context had only minor effects on call cluster-
ing, with the call clusters characterized by long call durations
(30–90ms) and low (<20 kHz) or moderate (30–40 kHz) lev-
els of frequency modulation being more prominent (Figure 3B).
While there were only minor social odor context effects on call
clustering in BTBR mouse pups, call clustering markedly dif-
fered between BTBR and B6 mouse pups. Whereas in BTBR four
prominent call clusters were detected, only two prominent call
clusters were detected in B6 mouse pups. One cluster was char-
acterized by short call durations (<40ms) and low levels of fre-
quency modulation (<30 kHz) and therefore broader than the
corresponding call cluster in BTBR mouse pups. The second one
was characterized by comparably long call durations (30–70ms)
and moderate levels of frequency modulation (40–50 kHz), and
thus possibly corresponding to the call cluster in BTBR that
was characterized by long call durations (30–90ms) and moder-
ate frequency modulation (30–40 kHz; Figure 3C). In B6 mouse
pups, social odor context affected call clustering, with the second
call cluster characterized by comparably long call durations (30–
70ms) andmoderate levels of frequencymodulation (40–50 kHz)
being less prominent and coherent under soiled bedding con-
ditions, in line with the overall reduced mean call duration and
frequency modulation (Figure 3D).

An additional sequential analysis of the durations of sub-
sequent isolation-induced USV finally indicated that the call
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FIGURE 3 | Distribution of individual isolation-induced ultrasonic

vocalizations (USV) in BTBR T+tf/J (upper panel) and C57BL/6J (lower

panel) mouse pups (N = 15 per strain and social odor context). Density

plots depicting the distribution of individual isolation-induced USV depending

on call duration in milliseconds [ms] and frequency modulation in kilohertz [kHz]

in BTBR T+tf/J mouse pups tested under (A) clean and (B) soiled bedding

conditions and in C57BL/6J mouse pups tested under (C) clean and (D)

soiled bedding conditions. Color coding reflects frequencies as percentages.

emission pattern is not random in BTBR mouse pups tested
under both, clean and soiled, bedding conditions, since the dura-
tions of given isolation-induced USV could be predicted by the
durations of the previous ones [N–1; clean bedding: t(14) =

15.248, p < 0.001; soiled bedding: t(14) = 12.774, p < 0.001],
by the ones two before [N–2; clean bedding: t(14) = 10.497,
p < 0.001; soiled bedding: t(14) = 8.022, p < 0.001], and by the
ones three before [N–3; clean bedding: t(14) = 6.353, p < 0.001;
soiled bedding: t(14) = 7.313, p < 0.001; Figure 4A]. Evidence
for such a non-random call emission pattern was also obtained
in B6 mouse pups, again, under both, clean and soiled, bedding
conditions [N–1; clean bedding: t(13) = 6.255, p < 0.001; soiled
bedding: t(12) = 5.647, p < 0.001; N–2; clean bedding: t(13) =

3.970, p = 0.002; soiled bedding: t(12) = 3.187, p = 0.008;
N–3; clean bedding: t(13) = 3.992, p = 0.002; soiled bedding:
t(12) = 1.479, p = 0.165; Figure 4B]. Correlation coefficients
did not differ between BTBR and B6 or between clean and soiled
bedding conditions (all p > 0.100).

Discussion

An important diagnostic criterion for social communication
deficits in ASD are difficulties in adjusting behavior to suit dif-
ferent social contexts (DSM-5, 2013). In experimental studies
assessing social context effects on social behavior, for instance,
individuals with ASD display insensitivity to social reputation as
assessed by the occurrence of charitable donations in the presence

FIGURE 4 | Sequential analysis of the durations of subsequent

isolation-induced ultrasonic vocalizations (USV) indicating

non-random call emission patterns in BTBR T+tf/J (upper panel) and

C57BL/6J (lower panel) mouse pups (N = 15 per strain and social odor

context). Correlations between the call durations of given isolation-induced

USV and the call durations of the previous ones (N–1), the call durations of the

ones two before (N–2), or the call durations of the ones three before (N–3) for

(A) BTBR T+tf/J and (B) C57BL/6J mouse pups tested under clean (black

circles) and soiled (gray circles) bedding conditions. Each circle represents one

mouse pup that emitted >3 isolation-induced USV. The solid line represents

the mean per condition.

or absence of an observer (Izuma et al., 2011; Cage et al., 2013)
or flattery behavior following rating of pictures depending on the
drawer’s presence (Chevallier et al., 2012b). Individuals with ASD
further show resistance to social pressure in the Asch conformity
experiment (Bowler and Worley, 1994; Yafai et al., 2014), more
fixed strategies disregarding the partner’s beliefs in a social hunt-
ing game (Yoshida et al., 2010) or trustworthiness in an economic
trust game (Ewing et al., 2015), and lack of social gaze influ-
ences on motor action control (Schilbach et al., 2012). Also, in a
study focusing on social communication, individuals with ASD
were found to use attention-directing behavior less frequently
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than controls and their behavior varied less across social con-
texts (Landry and Loveland, 1989). Together, these experimen-
tal findings echo anecdotal reports of parents emphasizing that
individuals with ASD seem only mildly influenced by considera-
tions of impression management (for review see: Chevallier et al.,
2012a). Finally, social context appears to have opposite effects
on the occurrence of repetitive patterns of behavior in healthy
human subjects and individuals with ASD. While in healthy
human subjects repetitive behavior is inhibited in social situa-
tions (Asendorpf, 1980), studies in individuals with ASD indicate
that repetitive behavior is unchanged or even increased when
exposed to a social context (Baron-Cohen, 1989; Carruthers,
1996).

Considering the diagnostic criteria for ASD and the exper-
imental findings obtained in human ASD studies, surprisingly
little is known about difficulties in adjusting behavior to suit dif-
ferent social contexts in mouse models for ASD (Wöhr and Scat-
toni, 2013). Even in the BTBR mouse model for ASD, which is
one of the most commonly used mouse models (for review see:
Blanchard et al., 2012; Meyza et al., 2013; Careaga et al., 2015),
no study explicitly addressed this issue so far. The present find-
ings show for the first time that BTBR mouse pups adjust their
emission of isolation-induced USV to different social contexts.
Specifically, they displayed a calming response and emitted fewer
isolation-induced USV when tested under soiled bedding con-
ditions with home cage bedding material containing maternal
odors as compared to clean bedding conditions, similar to B6
mouse pups.

This is in contrast to what was expected, considering that
BTBR mice display behavioral phenotypes with relevance to all
diagnostic core symptoms of ASD (for review see: Blanchard
et al., 2012; Meyza et al., 2013; Careaga et al., 2015). The present
findings are further in contrast to a study by Yang et al. (2012a)
who reported that the strain of the partner during reciprocal
social interactions has minimal effects on the social behavioral
repertoire displayed by BTBR mice, suggesting that adult BTBR
mice have difficulties in adjusting their behavior to different social
contexts.

The fact that emission of isolation-induced USV is affected
by social context in BTBR mouse pups might be viewed as
a challenge for the BTBR inbred strain of mice as a mouse
model for ASD. However, it has to be emphasized that very lit-
tle evidence is available up to now supporting the notion that
the inhibition of isolation-induced USV caused by the pres-
ence of odors from mothers and littermates allows the reli-
able assessment of ASD-relevant behavioral alterations in mouse
pups. Probably the strongest finding in support of such a notion
was reported by Moles et al. (2004). They showed that µ-
opioid deficient mice do not display a reduction in isolation-
induced USV emission rates when tested under social odor
conditions, whereas in wildtype controls a clear reduction was
evident. The lack of a calming response in µ-opioid deficient
mice is consistent with a variety of other social and commu-
nication deficits displayed by this ASD mouse model (Tian
et al., 1997; Wöhr et al., 2011a; Cinque et al., 2012; Becker
et al., 2014; Gigliucci et al., 2014; for review see: Oddi et al.,
2013).

It has further to be emphasized that also little is known about
the general mechanisms underlying the inhibition of isolation-
induced USV caused by the presence of odors from mothers and
littermates in mouse pups. In a pioneering study by Branchi et al.
(1998), comparing three different social odor contexts, namely
clean bedding material, bedding material from the home cage,
and bedding material from a male cage, CD-1 mice tended to
vocalize less in the latter two social odor contexts. In similar stud-
ies by Marchlewska-Koj et al. (1999) and Kapusta and Szentgyör-
gyi (2004), CBA mouse pups emitted shorter isolation-induced
USV when tested under home cage bedding conditions as com-
pared to clean bedding conditions, while isolation-induced USV
emission rates and peak frequency were not affected. Finally,
Lemasson et al. (2005) reported no effect of home cage odor on
isolation-induced USV emission rates in B6 mice. In comparison
to most available studies, the inhibition reported in the present
study appears therefore to be comparatively strong, which is
particularly surprising in case of the BTBR mouse model for
ASD. One of the possible reasons for the comparatively strong
odor effects is that isolation-induced USV were recorded for
5min, whereas relatively short recording durations were used
in most other studies (Branchi et al., 1998; Marchlewska-Koj
et al., 1999; Kapusta and Szentgyörgyi, 2004; Lemasson et al.,
2005). However, the detailed time course analysis speaks against
this idea, as the inhibition of isolation-induced USV in mouse
pups tested under soiled bedding conditions was most promi-
nent in the first few minutes of testing, particularly in BTBR
mouse pups.

While BTBR mouse pups unexpectedly displayed a calm-
ing response and emitted fewer isolation-induced USV when
tested under soiled as compared to clean bedding condi-
tions, social odor context had no effect on acoustic call fea-
tures, such as call duration, peak frequency, peak ampli-
tude, and frequency modulation, in BTBR mouse pups.
This is in stark contrast to what was seen in B6 mouse
pups, which emitted isolation-induced USV with shorter call
durations and lower levels of frequency modulation under
soiled bedding conditions as compared to clean bedding
conditions.

At least three possible mechanisms for the reduced adjustment
to different social contexts in BTBR mouse pups can be consid-
ered. Firstly, the fact that social odor context had no effect on
acoustic call features in BTBRmouse pups could be due to deficits
in detecting changes in the social context caused by olfactory
impairments. However, BTBR mice displayed normal olfactory
abilities, both in non-social test paradigms, such as the buried
food task (Moy et al., 2007), as well as in social ones, like the
preference for social novelty task (Moy et al., 2007; McFarlane
et al., 2008). Consistently, olfactory habituation/dishabituation
in response to a sequence of non-social and social odors was
evident in BTBR mice, yet it was clearly less prominent than
in B6 mice (Yang et al., 2012a). It was further reported that
exploratory behavior displayed by BTBR mice in the hole board
task can be altered by presenting soiled bedding (Moy et al.,
2008). Moreover, in a recent study on female-induced USV and
scent marking behavior in adult male mice, both, BTBR and B6
males, spent a similar amount of time in proximity to a salient
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olfactory social cue, a spot of female urine, indicating that female
urine evoked similar levels of interest in BTBR and B6 males
(Wöhr et al., 2011b). Also in pups evidence for intact social olfac-
tory abilities was provided. Specifically, in the homing test, in
which mouse pups are exposed to clean bedding on one side
and soiled bedding from the home cage on the other, it took
BTBR mouse pups less time to reach the side containing the
soiled bedding than B6 mouse pups, yet the finding is difficult to
interpret due to an overall increased level of locomotor activity
in BTBR mouse pups (Scattoni et al., 2008). Finally, the present
results show that both, BTBR and B6mouse pups, display a calm-
ing response and emit fewer isolation-induced USV when tested
under soiled as compared to clean bedding conditions. Together,
this supports the interpretation that BTBR mice are able to pro-
cess social olfactory cues, both in infancy and adulthood, indicat-
ing that the observed deficit in behavioral adjustment to differ-
ent social contexts in BTBR mouse pups is not due to olfactory
impairments.

Secondly, a limited ability to adjust to different social con-
texts could be the reason for the fact that social odor context
had no effect on acoustic call features in BTBR mouse pups. The
unusual repertoire of USV categories seen in BTBR mouse pups,
including high levels of harmonics, two-syllable, and composite
calls (Scattoni et al., 2008), possibly speaks for a limited ability
of BTBR mouse pups to modulate the acoustic call features of
isolation-induced USV, yet the richness of USV subtypes (Scat-
toni et al., 2008) and call clusters in the present study speaks
against it.

Thirdly, a reduced motivation to adjust to different social
contexts could also be the reason and on the basis of the data
available it is currently not possible to differentiate between the
two possible mechanisms. In support of the latter mechanism
it was shown that BTBR mice are characterized by a reduction
in social motivation (Pearson et al., 2012; Martin et al., 2014).
Specifically, Pearson et al. (2012) found no evidence for social
conditioned place preference in BTBR but in B6 mice. Like-
wise, Martin et al. (2014) reported that BTBR mice had lower
breaking points than B6 mice when lever pressing for a social
reward, namely access to a conspecific. Yet, it has to be men-
tioned that breaking points for food reward were also lower
in BTBR, questioning the specificity of the motivational deficit
for the social domain. Finally, it has to be emphasized that a
reduced motivation to adjust to different social context could
also be due to altered levels of anxiety, with anxiety levels being
possibly elevated in BTBR mice (Benno et al., 2009; Frye and
Llaneza, 2010; Pobbe et al., 2011; Gould et al., 2014; Langley et al.,
2015).

In line with the findings obtained by Scattoni et al. (2008)
and Schwartzer et al. (2013), BTBR mouse pups emitted more
isolation-induced USV than B6 mouse pups in the present study.
It is currently unclear what is causing this strain difference in
isolation-induced USV emission rates. It is tempting to spec-
ulate that the strain effect is due to the marked difference in
body weight and/or size between BTBR and B6. Yet, Scattoni
et al. (2008) showed that FVB/NJ mouse pups vocalized almost
as little as B6 mouse pups, despite being close to BTBR mouse

pups in body weight. What also appears possible is that the
strain effect is caused by a difference in anxiety-related behavior.
Isolation-induced USV have been repeatedly associated with anx-
iety in various behavioral studies (for review see: Schwarting
and Wöhr, 2012). For instance, mice selectively bred for high
anxiety-related behavior on the elevated plus maze emit more
isolation-induced USV as pups than mice selectively bred for
low anxiety levels (Krömer et al., 2005; Frank et al., 2009); a
finding confirmed and extended by Kessler et al. (2011) who
showed that this difference is not affected by cross-fostering and
thus likely reflects a line-dependent change in innate anxiety.
Also pharmacological studies support this view (for review see:
Miczek et al., 1995). For instance, anxiolytic benzodiazepines and
other positive modulators of GABA receptors inhibit isolation-
induced USV in mouse pups (Benton and Nastiti, 1988; Nastiti
et al., 1991; Cirulli et al., 1994; Fish et al., 2000; Takahashi et al.,
2009). High levels of isolation-induced USV in BTBR mouse
pups could hence reflect higher responses to stress or higher lev-
els of anxiety-like traits. In fact, Schwartzer et al. (2013) found
that the already high isolation-induced USV emission rates in
BTBR mouse pups can be further enhanced by Poly I:C expo-
sure during pregnancy, mimicking a viral infection and known to
increase anxiety-related behavior in adulthood, including higher
emission rates of fear-induced USV (Yee et al., 2012). Recently,
Langley et al. (2015) further reported increased anxiety-related
behavior in juvenile BTBR mice in the elevated plus maze. More-
over, Pobbe et al. (2011) described more defensiveness to ani-
mate threat stimuli, such as a predator, and an inconsistent
response pattern in elevated plus maze and zero maze in adult
BTBR mice. Most studies, however, did not report an anxiety-
like phenotype in adult BTBR mice in standard tasks, includ-
ing elevated plus-maze, zero maze, and light-dark box (Moy
et al., 2007; McFarlane et al., 2008; Benno et al., 2009; Yang
et al., 2009; Silverman et al., 2010b; Chadman, 2011; Molen-
huis et al., 2014). Also, significantly higher plasma corticos-
terone levels and exaggerated responses to stress were repeatedly
reported in juvenile and adult BTBR mice (Benno et al., 2009;
Frye and Llaneza, 2010; Gould et al., 2014), yet no evidence for
an abnormal stress response was detected by Silverman et al.
(2010b) in adulthood. Thus, it is not clear whether high levels
of isolation-induced USV in BTBR mouse pups reflect higher
responses to stress or higher levels of anxiety-like traits and
future studies on anxiety-related behavior in infant and juvenile
BTBR mice appear indicated. Finally, it is also not clear whether
strain differences in anxiety-like behavior and the production
of isolation-induced USV are due to differences in maternal
behavior. Yang et al. (2007b) reported typical maternal caregiving
behavior in BTBR females and no major changes in the behav-
ioral repertoire of BTBR offspring were seen following cross-
fostering to B6 females. However, when BTBR embryos were
transferred to B6 females, significant improvements in social
and repetitive behavior were observed, yet anxiety-like behavior
and isolation-induced USV were not assessed and it is unclear
whether the observed changes are due to differences in the
maternal immune environment or social factors (Zhang et al.,
2013).
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It is further in line with the findings obtained by Scat-
toni et al. (2008) that the isolation-induced USV emitted by
BTBR mouse pups were longer in call duration, lower in peak
frequency, but higher in peak amplitude than the ones emit-
ted by B6 mouse pups. The higher level of frequency modu-
lation of isolation-induced USV emitted by BTBR muse pups
observed in the present study is probably reflecting the larger
proportion of harmonics, two-syllable, and composite calls, as
reported by Scattoni et al. (2008) before. The present find-
ings show that these strain differences are robust and reliably
detectable in two different social odor contexts, namely clean
and soiled bedding conditions. Such strain differences might
again be due to differences in body weight and/or size, but
also related characteristics, including the length of their vocal
cords.

The present study further identified clusters of isolation-
induced USV emitted by BTBR and B6 mouse pups under clean
and soiled bedding conditions bymeans of density plots. In BTBR
mouse pups, four prominent call clusters were detected, virtually
independent from social odor context, further highlighting their
limited ability and/or reduced motivation to adjust to different
social contexts. One cluster was characterized by short call dura-
tions and low levels of frequency modulation. The other three
clusters were characterized by long call durations, with varying
levels of frequency modulation, namely low, moderate, and high.
Therefore, by means of the quantitative approach applied here,
no clear evidence for the existence of 10 distinct USV subtypes
as reported by Scattoni et al. (2008) was obtained. However, it
has to be emphasized that the 10 USV subtypes differentiated by
Scattoni et al. (2008) were identified by means of visual anal-
yses of waveform patterns; a strategy that allows to take vari-
ous different call features into account, while the quantitative
approach applied here is based on two factors only, namely call
duration and frequency modulation. Yet, despite the different
approach and the difference in USV subtypes/clusters, remark-
able consistencies were obtained. For instance, Scattoni et al.
(2008) reported that USV subtypes characterized by a high level
of frequency-modulation, such as harmonics, two-syllable, and
frequency step calls, are longer in duration than less frequency-
modulated USV subtypes. This is perfectly in line with the
present findings obtained by means of density plots. Future stud-
ies are needed to test whether certain USV subtypes reported
by Scattoni et al. (2008) are exclusively present in specific call
clusters.

Call clustering markedly differed between BTBR and B6
mouse pups. While in BTBR four prominent call clusters were
detected, only two prominent call clusters were detected in B6
mouse pups. One cluster was characterized by short call dura-
tions and low levels of frequency modulation, whereas the sec-
ond one was characterized by comparably long call durations
and moderate levels of frequency modulation. Interestingly, in
B6 mouse pups, social odor context affected call clustering, with
the second call cluster characterized by comparably long call
durations and moderate levels of frequency modulation being
less prominent and coherent, in line with the overall reduced

mean call duration and frequency modulation. Shorter call dura-
tions in mouse pups tested in soiled bedding were reported
before (Marchlewska-Koj et al., 1999; Kapusta and Szentgyörgyi,
2004).

Finally, an additional sequential analysis of the durations
of subsequent isolation-induced USV indicated that the USV
emission pattern is not random in BTBR mouse pups tested
under both, clean and soiled bedding conditions, and that the
temporal pattern does not differ significantly from the one
obtained in B6 mouse pups. Specifically, in both, BTBR and
B6 mouse pups, the durations of given isolation-induced USV
could be predicted by the durations of the previous ones. Con-
sidering the unusual pattern of USV categories displayed by
BTBR mouse pups (Scattoni et al., 2008), it might seem surpris-
ing that the temporal organization as assessed here appears to
be unaltered in the BTBR mouse model for ASD, particularly
because a distorted sequential organization was recently reported
in a genetic mouse model for ASD, the Shank1 deficient mouse
(Wöhr, 2014). Shank1 deficient mice display a variety of behav-
ioral alterations with relevance to ASD (Hung et al., 2008; Silver-
man et al., 2011;Wöhr et al., 2011b; Sungur et al., 2014; for a USV
emission pattern analysis in Shank2 deficient mice see: Ey et al.,
2013).

Conclusion

In accordance with their behavioral phenotypes with relevance
to all diagnostic core symptoms of ASD, it was predicted that
BTBR mouse pups would not display a calming response when
tested under soiled bedding conditions with home cage bedding
material containing maternal odors, and that similar isolation-
induced USV emission rates would be seen in BTBR mice tested
under clean and soiled bedding conditions. Unexpectedly, how-
ever, the present findings show that BTBR mouse pups display
such a calming response and emit fewer isolation-induced USV
when tested under soiled as compared to clean bedding condi-
tions, similar to B6 mouse pups. Yet, in contrast to B6 mouse
pups, which emitted isolation-induced USV with shorter call
durations and lower levels of frequency modulation under soiled
bedding conditions, social odor context had no effect on acous-
tic call features in BTBR mouse pups. This indicates that the
BTBRmousemodel for ASD does not display deficits in detecting
changes in social context, but has a limited ability and/or reduced
motivation to adjust to them.
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