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Curving the space by non-Hermiticity
Chenwei Lv 1,4, Ren Zhang1,2,4, Zhengzheng Zhai1 & Qi Zhou1,3✉

Quantum systems are often classified into Hermitian and non-Hermitian ones. Extraordinary

non-Hermitian phenomena, ranging from the non-Hermitian skin effect to the super-

sensitivity to boundary conditions, have been widely explored. Whereas these intriguing

phenomena have been considered peculiar to non-Hermitian systems, we show that they can

be naturally explained by a duality between non-Hermitian models in flat spaces and their

counterparts, which could be Hermitian, in curved spaces. For instance, prototypical one-

dimensional (1D) chains with uniform chiral tunnelings are equivalent to their duals in two-

dimensional (2D) hyperbolic spaces with or without magnetic fields, and non-uniform

tunnelings could further tailor local curvatures. Such a duality unfolds deep geometric roots of

non-Hermitian phenomena, delivers an unprecedented routine connecting Hermitian and

non-Hermitian physics, and gives rise to a theoretical perspective reformulating our under-

standings of curvatures and distance. In practice, it provides experimentalists with a powerful

two-fold application, using non-Hermiticity to engineer curvatures or implementing synthetic

curved spaces to explore non-Hermitian quantum physics.
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System-environment couplings lead to a plethora of intri-
guing non-Hermitian phenomena1–9, such as non-
orthogonal eigenstates, the non-Hermitian skin effect10–16,

real energy spectra in certain parameter regimes17,18, collapsed
energy spectra, and coalesced eigenstates at an exceptional point
(EP)12,19,20, and drastic responses to boundary conditions21,22.
While these phenomena have been extensively explored in
quantum sciences and technologies2–5,8,23–27, peculiar theoretical
tools are often required to study non-Hermitian physics. Though
bi-orthogonal vectors and metric operators are introduced to
restore orthogonality11,19,28–30, the underlying physics of these
mathematical tools is not clear yet. Moreover, it remains chal-
lenging to prove the real energy spectra of certain non-Hermitian
systems, as the existence of the PT symmetry does not guarantee
a real energy spectrum and sophisticated mathematical techni-
ques are required17,18,31.

In this work, we show a duality between non-Hermitian
Hamiltonians in flat spaces and their counterparts in curved
spaces. On the theoretical side, this duality leads to a geometric
framework providing a unified explanation of several non-
Hermitian phenomena. For instance, it is the finite curvature that
requires an orthonormal condition distinct from that in flat
spaces, enforces eigenstates to localize at edges, and gives rise to
the supersensitivity to boundary conditions. Dual models in
curved spaces could be Hermitian, providing a simple proof of the
existence of real energy spectra in certain non-Hermitian systems.
Moreover, in sharp contrast to existing schemes of studying
curved spaces32–35, which were built on the conventional wisdom
that a flat space needs to be physically distorted to become
curved, our results show that non-Hermiticity is a controllable
knob for tuning curvatures even when the space appears to be
flat, for instance, in lattices with fixed lattice spacing. This duality
therefore may reform our understanding of distance and
curvatures.

In practice, our duality has a two-fold implication. On the one
hand, it establishes non-Hermiticity as a unique tool to simulate
intriguing quantum systems in curved spaces. For instance, it
offers an approach of using non-Hermitian systems in flat spaces
to solve the grand challenge of accessing gravitational responses
of quantum Hall states (QHS) in curved spaces34,36–38. On the
other hand, the duality allows experimentalists to use curved
spaces to explore non-Hermitian physics. Whereas a variety of
non-Hermitian phenomena have been addressed in experiments,
delicate designs of dissipations are often required2,4,7–9,39–42. Our
results show that curved spaces can serve as an unprecedented
means to explore non-Hermitian Hamiltonians without resorting
to dissipations.

Results
Hatano-Nelson model and hyperbolic surfaces. Our duality can
be demonstrated using the celebrated Hatano-Nelson (HN)
model43, which reads,

�tRψn�1 � tLψnþ1 ¼ Eψn; ð1Þ
where n= 0, 1, . . .N− 1 is the lattice index of a one-dimensional
(1D) chain, ψn is the eigenstate, E is the corresponding
eigenenergy, and tL and tR are the nearest-neighbor tunneling
amplitudes towards the left and the right, respectively.
Under the open boundary condition (OBC), ψ0= ψN−1= 0,
ψn ¼ en lnðγÞ sinðkmndÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN � 1Þ=2

p
, where γ ¼

ffiffiffiffiffiffiffiffiffiffi
tR=tL

p
char-

acterizes the strength of non-Hermiticity, km=mπ/((N− 1)d),
m= 1, 2, . . .N− 2, and d is the lattice constant. The eigenenergy
reads Em ¼ �2

ffiffiffiffiffiffiffiffi
tLtR

p
cosðkmdÞ.

Similar to Hermitian lattice models, the effective theory of Eq.
(1) in the continuum limit describes the motion of a non-
relativistic (relativistic) particle at (away from) the band bottom
and top, with a quadratic (linear) dispersion relation, as shown in
Fig. 1a. At the band bottom, the effective theory is written as

� _2

2M
κ y2∂2y þ

1
4

� �
ψðyÞ ¼ EψðyÞ; ð2Þ

where M ¼ _2=ð2 ffiffiffiffiffiffiffiffi
tLtR

p
d2Þ is the effective mass, and

κ ¼ 4ln2ðjγjÞ=d2. Solutions to Eq. (2), y
1
2y ± iky=

ffiffi
κ

p
, have the same

energy, _2k2y=ð2MÞ. An eigenstate under OBC is their super-

position, ψðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2= lnðyN�1=y0Þ

p
ðy=y0Þ

1
2 sin ky lnðy=y0Þ=

ffiffiffi
κ

ph i
with ky ¼ mπ

ffiffiffi
κ

p
= lnðyN�1=y0Þ and ψ(y0)= ψ(yN−1)= 0. y0 and

yN−1 specify the positions of the two edges. At the band top, we
have M→−M. Eq. (2) is a dimension reduction of the
Schrödinger equation on a Poincaré half-plane,

� _2

2M
κ y2∇2 þ 1

4

� �
Ψðx; yÞ ¼ EΨðx; yÞ; ð3Þ

where ∇2 � ∂2x þ ∂2y

� �
, Ψðx; yÞ ¼ eikxxψðyÞ, and− κ is the

curvature (Supplementary Material). The metric tensor is
g ¼ 1

κy2 ðdx2 þ dy2Þ, g ¼ detðgÞ ¼ 1=ðκ2y4Þ. Since kx is a good
quantum number, Eq. (3) reduces to Eq. (2) when kx= 0. A finite
kx adds an onsite potential to the HN model,

Vnψn � tRψn�1 � tLψnþ1 ¼ Eψn; ð4Þ
where Vn ¼ a2

ffiffiffiffiffiffiffiffi
tRtL

p
γ4n. The dimensionless quantity a2 ¼

4ðln2jγjÞy20k2x characterizes the strength of Vn.
To derive the duality between the continuum limit of Eq. (1) at

the band bottom and Eq. (2), we define ψn �
ffiffiffi
d

p
ψðsnÞ with

sn= nd, such that the eigenstate of the HN model, ψn, defined on
discrete lattice sites is extended to ψ(s) as a function of a
continuous variable s. Since ψn, under OBC, includes a part that
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Fig. 1 The duality between the Hatano-Nelson (HN) model and a
hyperbolic surface. a A HN chain and its energy spectrum as a function of
k. Near a vanishing (finite) K0, the effective theory in curved space is non-
relativistic (relativistic). Eigenstates on the HN chain are localized at the
edge, ∣ψn∣2∝ ∣γ∣2n. b A HN chain is mapped to the shaded strip on the
Poincaré half-plane, in which an eigenstate with kx= 0 satisfies ∣ψ∣2∝ y.
This shaded strip on the Poincaré half-plane with PBC in the x-direction is
equivalent to a pseudosphere embedded in 3D Euclidean space. c The
curvature and the inverse of the effective mass, as functions of tL for a fixed
tR. The unites of κ andM−1 are 1/d2 and 2tRd2/(ℏ2), respectively. (i–v) show
the dual pseudospheres of the HN model at various tL > 0. A pseudosphere
for tL < 0 is the same as that for −tL.
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changes exponentially, i.e., en lnðγÞ, so does ψ. We thus define
ϕ(s)≡ ψ(s)e−qs with q ¼ lnðγÞ=d ¼ 1

2d lnðtR=tLÞ determining the
inverse of the localization length, and ϕ(s) varies slowly with
changing s. Then we have ψn ¼

ffiffiffi
d

p
ϕðsnÞeqsn . Substituting ψn into

Eq. (1) and using the Taylor expansion for ϕ(s), ϕðsn± 1Þ ¼
ϕðsnÞ± d∂sϕþ 1

2 d
2∂2sϕ, we obtain � ffiffiffiffiffiffiffiffi

tLtR
p ð2þ ∂2s Þϕ ¼ Eϕ. Con-

sequently, ψ(s) satisfies

� ffiffiffiffiffiffiffiffi
tLtR

p
d2 ∂2s � 2q∂s þ q2 þ 2=d2
� �

ψðsÞ ¼ EψðsÞ: ð5Þ
It describes a nonrelativistic particle subject to an imaginary

vector potential, A ~ iq39,43. Unlike a real vector potential that
amounts to a U(1) gauge field, here, an imaginary vector potential
curves the space. Performing a coordinate transformation
y/y0= e2qs and applying M ¼ _2=ð2 ffiffiffiffiffiffiffiffi

tLtR
p

d2Þ, κ ¼ 4ln2ðjγjÞ=d2,
we obtain Eq. (2) up to a constant energy shift �2

ffiffiffiffiffiffiffiffi
tLtR

p
. The

mapping between these two models is summarized in Table 1,
which provides a dictionary translating microscopic parameters
between them. For instance, ψn, the wavefunction at the n-th
lattice site of the NH model is identical to ψ(yn), the wavefunction
on the Poincaré half-plane evaluated at yn ¼ y0e

n
ffiffi
κ

p
d . The low-

energy limit of the eigenenergy of Eq. (1) is also identical to the
eigenenergy of Eq. (2) as shown by Table 1.

Away from the band bottom(top), similar calculations can be
performed by defining ψðsÞ ¼ e± iK0seqsϕðsÞ using Taylor expan-
sions of the slowly varying ϕ(s) and the same coordinate
transformation y= y0e2qs. We obtain the effective theory near
K0d ≠ 0, ±π,	

EðK0Þ± i
ffiffiffi
κ

p
_vFyð∂y � 1=ð2yÞÞ
ψðyÞ ¼ EψðyÞ; ð6Þ

where EðK0Þ ¼ �2
ffiffiffiffiffiffiffiffi
tLtR

p ðcosðK0dÞ þ K0d sinðK0dÞÞ, vF ¼
�2

ffiffiffiffiffiffiffiffi
tLtR

p
d sinðK0dÞ=_, and ± corresponds to the left and right

moving waves centered near ± K0, respectively, The previously
defined κ ¼ 4ln2ðjγjÞ=d2 has been used. The eigenstate under
OBC includes both the left and right moving waves and is written

as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2= lnðyN�1=y0Þ

p
ðy=y0Þ

1
2 sin

	
ky lnðy=y0Þ=

ffiffiffi
κ

p 

with eigenenergy

of �2
ffiffiffiffiffiffiffiffi
tLtR

p ½cosðK0dÞ þ ðK0 � kyÞd sinðK0dÞ�, which recovers the
results of the HN model near a finite K0.

Geometric interpretations of non-Hermitian phenomena. Our
duality provides a natural explanation of several peculiar non-
Hermitian phenomena. Firstly, the orthonormal condition of
effective theories in Eq. (2) and Eq. (6) readsZ

dy
κy2

ψ�ðy; kyÞψðy; k0yÞ ¼ N δky ;k0y ; ð7Þ

where the normalization constant N can be chosen freely. As a
common feature of curved spaces, a finite curvature appears in
the above equation. Considering a strip in the domain x0≤ x ≤
x0+ L, its width in the x-direction depends on y, LxðyÞ ¼R x0þL
x¼x0

dx=ð ffiffiffi
κ

p
yÞ ¼ L=ð ffiffiffi

κ
p

yÞ. Thus, a wave packet traveling in the

y-direction must include an extra factor y
1
2 to guarantee the

conservation of particle numbers. In the s-coordinate, Eq. (7) is
written as

R
dsffiffi
κ

p
y0
e�2qsψ�

ky
ðsÞψk0y

ðsÞ ¼ N δky ;k0y . Discretizing this

equation with N ¼ ð ffiffiffi
κ

p
y0Þ�1, and transforming it to the HN

model, we obtain,

∑njγj�2nψ�
nðkmÞψnðkm0 Þ ¼ δkm;km0 ; ð8Þ

where ∣γ∣−2n is precisely the difference between the left and right
eigenvectors, or the metric operator30. The mapping to a curved
space thus establishes an explicit physical interpretation of
orthonormal conditions in non-Hermitian systems.

Secondly, the duality allows us to equate the non-Hermitian
skin effect to its counterpart on the Poincaré half-plane we found
recently44. This can be best visualized using the embedding of a
hyperbolic surface in three-dimensional (3D) Euclidean space.
We define y ¼ r0 coshðηÞ, x= r0φ, where r0 is an arbitrary
constant and η > 0, φ∈ (−π, π). The embedding can then be
written as

ðu; v;wÞ ¼ 1ffiffiffi
κ

p ðη� tanhðηÞÞ; cosðφÞ
coshðηÞ ;

sinðφÞ
coshðηÞ

� �
: ð9Þ

This is a parameterization of a pseudosphere with a constant
negative curvature and a radius of 1=

ffiffiffi
κ

p
, which satisfies

ðu� arcsechð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv2 þ w2Þκ

p
Þ= ffiffiffi

κ
p Þ2 þ v2 þ w2 ¼ κ�1. As shown

in Fig. 1b, a pseudosphere features a funnel shape, since the
circumference of the circle with a fixed y(η) changes with
changing y(η). As previously explained, a coordinate transforma-
tion y= y0e2qs maps eigenstates on the hyperbolic surface,
y
1
2yiky=

ffiffi
κ

p
, to eqseið2q=

ffiffi
κ

p Þkys, which exponentially localizes near the
funneling mouth, the smaller end.

Thirdly, the collapsed energy spectrum at EP of the HN models
has a natural geometric interpretation. When tL= tR, the
pseudosphere reduces to a cylinder with a vanishing κ. For a
given tR( > tL), κ increases with decreasing tL. Increasing the non-
Hermiticity thus makes the space more curved, as shown by Fig. 1
redc. Approaching EP, tL→ 0, κ diverges, and the localization
length, 1= lnðjγjÞ, vanishes, forcing all eigenstates to coalesce. As
eigenenergies read E ¼ _2k2y=ð2MÞ with divergent M, eigenener-
gies collapse to zero with a massive degeneracy. Across EP,
tLtR < 0, and the effective mass becomes imaginary, all previous
results of positive tLtR still apply provided that M→ ±iM.
Particles moving in hyperbolic spaces are thus dissipative, and
stationary states no longer exist.

Lastly, similar to the HN model, changing OBC to PBC leads to
drastic changes in the curved space. Eigenstates of Eq. (2) and

Eq. (6) normalized to N become
ffiffiffiffiffiffiffi
κN

p
ðy�1

0 � y�1
N�1Þ�

1
2ðy=y0Þiky=

ffiffi
κ

p
,

where ky ¼ 2mπ
ffiffiffi
κ

p
= lnðyN�1=y0Þ) so that ψ(y0)= ψ(yN−1). Corre-

spondingly, eigenenergies become complex. This can be explicitly
shown from the time-dependent Schrödinger equations. For
instance, at the band bottom(top), we multiply ψ*(y) to both sides

of i_∂tψ ¼ � _2κ
2M y2∂2y þ 1=4

� �
ψ, subtract from the resultant

expression its complex conjugate, and integrate over y from y0
to yN−1. We find that the total particle number N p ¼R yN�1
y0

dyjψðyÞj2=ðκy2Þ satisfies,
∂tN p ¼ _

ffiffiffi
κ

p
N ky=M; ð10Þ

Table 1 The mapping between the continuum limit of the HN model near the band bottom under OBC and the Poincaré half-
plane.

2D Hyperbolic surface Curvature− κ Energy scales
ℏ2/(2Md2)

Coordinate
yn ¼ y0e

n
ffiffi
κ

p
d

Eigenfunctions
ψðyÞ / ðy=y0Þ

1
2 sin mπ lnðy=y0 Þ

lnðyN�1=y0Þ

� � Eigenenergies Em ¼ κ_2m2π2

2M ln ðyN�1=y0 Þ2

1D Non-Hermitian chain Non-Hermiticity
�4ln2ðjγjÞ=d2

Tunneling
strength

ffiffiffiffiffiffiffi
tRtL

p Lattice site n ψn / γn sin mπ
N�1 n
� � Em

2
ffiffiffiffiffiffi
tRtL

p ¼ �1þ m2π2

2ðN�1Þ2 þ O m4

N4

� �� �

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29774-8 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:2184 | https://doi.org/10.1038/s41467-022-29774-8 |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


which signifies the absence of a stationary state and explains
complex eigenenergies under PBC. Using ∂tN p ¼ 2

_ ImðEÞN p, we

find ImðEÞ ¼ _2
ffiffiffi
κ

p
ky=ð2MÞ. This is distinct from the result for

OBC, where ψðyÞ � y1=2y ± iky=
ffiffi
κ

p
such that ∂tN p ¼ 0. Similar

calculations can be performed for effective theories away from the

band top (bottom), i_∂tψ ¼ EðK0Þ þ i
ffiffiffi
κ

p
_vFy ∂y � 1=ð2yÞ

� �h i
ψ.

Straightforward calculations show that ∂tN p ¼ � ffiffiffi
κ

p
vFN ,

which explains the imaginary part of the eigenenergy,
ImðEÞ ¼ � ffiffiffi

κ
p

_vF=2.
Despite that y0 ≠ yN−1, these two edges of a hyperbolic surface

can be identified in mathematics, since the solutions under PBC
exist, as we previously discussed. In physical systems, such PBC
can also be realized. In fact, the boundary condition can be
continuously tuned. An onsite energy offset, VL≥ 0, in one of the
lattice sites of the HN model continuously changes PBC to OBC
once VL increase from 0 to ∞. We consider a superlattice of a
lattice spacing of Nd, whose unit cell is a HN chain, as shown in
Fig. 2a. Figure 2b shows eigenenergies as functions of VL.
Similarly, an external potential can be added to the Poincaré half-
plane,

Vδ ¼ dVL

ffiffiffi
κ

p
y∑

l
δðy � YlÞ; ð11Þ

where Yl ¼ y0e
Nl

ffiffi
κ

p
d is the lattice site of the superlattice. The y-

dependent amplitude of the delta-functions guarantees the scale
invariance and the equivalence between each section between Yl

and Yl+1. With VL increasing from zero to infinity, eigenstates
evolve from those under PBC to the ones under OBC.R Yþ

l
Y�
l

ffiffiffi
g

p
dyVδ � 1=

ffiffiffi
κ

p
sets the energy scale of the potential, such

that the larger the non-Hermiticity is, the more sensitive of the
system is to the boundary condition.

Generalizations to long-range and non-uniform tunnelings.
Whereas the HN model provides an illuminating example of the
duality, applications of our approach to generic non-Hermitian
models are straightforward. We consider

� ∑
M

m¼1
tRmψn�m � ∑

M

m¼1
tLmψnþm ¼ Eψn; ð12Þ

where tRm and tLm are tunneling amplitudes from the (n∓m)th
to nth sites. An eigenstate under OBC in the bulk is written as
eiknd+qnd, where kd∈ [0, 2π] and q is real. Unlike the HN model,
where q ¼ lnðtR=tLÞ=ð2dÞ is a constant, once beyond the nearest
neighbor tunnelings exist, q becomes a function of k and defines
the so-called generalized Brillouin zone (BZ) in the complex
plane10,15,27,45,46. Near any point in the generalized BZ specified

by K0d∈ [0, 2π], we define ψðsÞ ¼ eiK0seqðK0ÞsϕðsÞ, where ϕ(s)
changes slowly as a function of s, corresponding to small devia-
tions of the momentum in the continuum limit. Similar to dis-
cussions about the HN model, the effective theory can be
formulated straightforwardly using ϕðsn± 1Þ ¼ ϕðsnÞ± d∂sϕþ
1
2 d

2∂2sϕ. The Schrödinger equation satisfied by ψ(s) is written as

�BðK0Þ½∂2s � 2AðK0Þ∂s þ CðK0Þ�ψðsÞ ¼ EψðsÞ; ð13Þ

where AðK0Þ, BðK0Þ and CðK0Þ depend on K0, as well as tRm and
tLm. When only the nearest neighbor tunnelings exist, the above
equation recovers Eq. (5) at K0= 0 and AðK0Þ becomes real and
reduces to a constant imaginary vector potential � lnðtR=tLÞ=ð2dÞ
that we have discussed in the HN model. In the most generic
case, AðK0Þ provides a complex vector potential, whose real
part curves the space. Using a coordinate transformation
y ¼ y0e

2ARðK0Þs, where ARðK0Þ is the real part of AðK0Þ, a
hyperbolic surface is thus obtained in the same manner as the HN
model. The only difference is that κ now is written as κ ¼ 4A2

R
and depends on K0. Such K0-dependent curvature provides a
geometric interpretation for the generalized BZ. Explicit calcu-
lations for a model including the next-nearest-neighbor interac-
tion are given in Supplementary Materials (Fig. S1).

Whereas uniform chiral tunnelings lead to a hyperbolic surface
with a constant curvature, we could also consider non-Hermitian
models with non-uniform tunnelings,

�tR;n�1ψn�1 � tL;nψnþ1 ¼ Eψn; ð14Þ

which gives rise to inhomogeneous local curvatures. For slowly
varying tR,n and tL,n, we define �tðsÞ and �γðsÞ such that �tðndÞ ¼
2Md2

_2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
tR;ntL;n

p
and �γðndÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tR;n=tL;n

q
. We introduce a slowly

changing function ϕ(s)= eν(s)/2ψ(s) with νðsÞ ¼ 2
d

R s
0 lnð�γðs0ÞÞds0.

This is a generalization of the uniform case, where ν(nd) reduces
to a linear function of n, i.e., the previously discussed n lnðγÞ in
the HN model. Using the same procedure, we obtain the effective
theory of Eq. (14). For instance, the non-relativistic theory is
written as

_2

2M
� 1ffiffiffi

g
p ∂ig

ij ffiffiffi
g

p
∂j �

κ

4
þ Vc

� �
Ψðx; yÞ ¼ EΨðx; yÞ; ð15Þ

where gxx ¼ gyy ¼
ffiffiffi
g

p ¼ �tðsyÞe�
4
d

R sy

0
lnð�γðs0 ÞÞds0 , gxy= gyx= 0,

Vc ¼ _2

2Md2
d
2 ∂s ln�γjsy � 2

� �
�tðsyÞ, and the position-dependent cur-

vature is written as κðyÞ ¼ �tðsyÞ 4 ln�γ2ðsyÞ � 2d∂s ln�γjsy
� �

=d2.

In these expressions, sy is obtained from y � y0 ¼R sy
0 ds0e

2
d

R s0

0
lnð�γðs00ÞÞds00

=�tðs0Þ. The constant κ of a hyperbolic surface
is recovered when tR,n and tL,n are constants. Changing tR,n and
tL,n then tunes local curvatures. For instance, when
tR;n ¼ _2

2Md2
e�Θðn�n�Þ=ð2nÞ, tL;n ¼ _2

2Md2
eΘðn�n�Þ=ð2nÞ, where Θ(x) is

the Heaviside step function, the curvature vanishes everywhere
except at a particular location, i.e., κ ~ δ(y− y*), where
y*= y0+ n*d.

In addition to one dimension, many non-Hermitian models in
higher dimensions can be constructed based on the HN model.
For instance, 1D HN chains can be assembled to access higher
dimensional curved spaces. Whereas curved spaces in higher
dimensions are, in general, more complex than those in two
dimensions, inter-chain couplings can be engineered to access
different higher dimensional curved spaces (see Fig. S2 of Supple-
mentary Materials).

∝

0 1 2

N − 1

0 1 2

y0

y1 y2
yN−1 y0 y1 y2

Yl Yl+1

a b

Re
(E
)

Im
(E
)

Re(E0)
Re(E1)
Re(E2)

Im(E1)
Im(E2)

Fig. 2 Changing boundary conditions. a A constant potential, VL, is added
to the first site in each unit cell of the superlattice. The corresponding
potential in the curved space depends on the position. b Eigenenergies for
the ground state E0 2 R and the first two excited states E1;2 2 C as
functions of VL.

ffiffiffiffiffiffiffiffiffiffi
tR=tL

p
¼ 1:5 and N= 12 are used.
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Non-Hermitian realization of QHS in curved spaces. The
duality we established has a wide range of profound applications.
For instance, Fig. 3a shows a non-Hermitian realization of QHS
in curved spaces. When a particle with a charge− e is subjected
to a uniform magnetic field, y2∇2 in Eq. (3) is replaced by
y2½ð∂x � i eB_κ

1
yÞ
2 þ ∂2y�, where we have chosen the gauge with the

vector potential A= (−B/(κy), 0)47 such that kx is still a good
quantum number. Wavefunctions of the lowest Landau level
(LLL) are written as,

ψLLL ¼ ð2kxÞ
eB
_κ�1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N κ

Γð2 eB
_κ � 1ÞL

s
e�kxyþikxxy

eB
_κ; ð16Þ

whose eigenenergies, ELLL ¼ � _2κ
8M þ _eB

2M, are independent of kx,
manifesting the degeneracy of the Landau levels. In the dual
non-Hermitian systems, a finite magnetic field corresponds to
an extra onsite potential in Eq. (4), Vn→Vn+ VB,n, where
VB;n ¼ �baγ2n

ffiffiffiffiffiffiffiffi
tLtR

p
, as shown in Fig. 3b. The dimensionless b

characterizing the strength of VB,n relative to Vn is written as

b ¼ eBd2=ð_ ln jγjÞ; ð17Þ
where y0kx ¼ að2 ln jγjÞ�1 has been used. The magnetic flux
density, ρϕ ¼ eB=ð2π_Þ ¼ ln jγj

2πd2
b, is thus determined by the ratio

of VB,n to Vn. For a given B, a finite kx shifts the position of the
minimum of the total onsite potential Vn+ VB,n, similar to the
well-known result of flat spaces where kx determines the location
of the minimum of the potential in the Landau gauge.

A complete description of QHS requires its gravitational
responses in curved spaces. For instance, the particle density, ρ,
depends on the local curvature36,

ρ ¼ νρϕ � κ=ð4πÞ; ð18Þ
where ν is the filling factor. For integer QHS, ν= 1 and Eq. (18)
for a hyperbolic surface can be straightforwardly proved using Eq.
(16) (Supplementary Materials). The counterpart of Eq. (18) in
the non-Hermitian lattice is

jγj2n
Z

daN nða; bÞ ¼ b lnðjγjÞ � 2ln2ðjγjÞ; ð19Þ

where N nða; bÞ ¼ jγj�2nψ�
nψn is the particle number at lattice site

n in the non-Hermitian system. Mapping the magnetic flux, eB/
(2πℏ), to the ratio between onsite potentials, b lnðjγjÞ=ð2πd2Þ, Eq.
(18) and Eq. (19) are equivalent. The dependence of densities of
QHS on curvatures is thus readily detectable using this non-
Hermitian realization. An alternative scheme is to implement a
2D non-Hermitian lattice model as illustrated in Fig. S3
of Supplementary Materials, which serves as a non-Hermitian
generalization of the Harper-Hofstadter Hamiltonian48.

Discussion
In parallel to accessing curved spaces using non-Hermitian sys-
tems, experimentalists could also use curved spaces to study non-
Hermitian physics32,33,35. In conventional understandings,

non-Hermiticity arises when dissipations exist. While dissipations
have been engineered in certain apparatuses to deliver desired
non-Hermitian Hamiltonians1,6,7, in other platforms, such engi-
neering might be more difficult and sometimes experimentalists
may have to use indirect means such as simulating non-
Hermitian quantum walks2,8,27. Our results show that many
non-Hermitian Hamiltonians are readily accessible using existing
curved spaces. For instance, hyperbolic surfaces that have been
created in laboratories could be used to realize the HN model
directly. In particular, in contrast to current schemes used in the
study of non-Hermitian physics, this method does not require
engineering losses or gains. It thus provides a conceptually dif-
ferent protocol to access non-Hermiticity without dissipations.

The duality we have found provides insightful perspectives for
both the studies of non-Hermitian physics and curved spaces. As
the curvature depends on the non-Hermiticity even when the
separation between any two points in the system is not physically
distorted, our conventional understandings of distance may need
to be reformed. We hope that our work will stimulate more
interest in studying deep connections between non-Hermitian
physics and curved spaces.

Data availability
Numerical data for the presented plots are available from the authors upon request.

Code availability
Computer codes for generating the figures presented are available from the authors upon
request.

Received: 2 December 2021; Accepted: 28 March 2022;

References
1. Syassen, N. et al. Strong dissipation inhibits losses and induces correlations in

cold molecular gases. Science 320, 1329 (2008).
2. Regensburger, A. et al. Parity–time synthetic photonic lattices. Nature 488,

167 (2012).
3. Feng, L. et al. Single-mode laser by parity-time symmetry breaking. Science

346, 972 (2014).
4. Longhi, S., Gatti, D. & Valle, G. D. Robust light transport in non-Hermitian

photonic lattices. Sci. Rep. 5, 13376 (2015).
5. Chen, W., Özdemir, Ş. K., Zhao, G., Wiersig, J. & Yang, L. Exceptional points

enhance sensing in an optical microcavity. Nature 548, 192 (2017).
6. Li, J. et al. Observation of parity-time symmetry breaking transitions in a

dissipative Floquet system of ultracold atoms. Nat. Commun. 10, 855 (2019).
7. Gou, W. et al. Tunable nonreciprocal quantum transport through a dissipative

Aharonov-Bohm ring in ultracold atoms. Phys. Rev. Lett. 124, 070402 (2020).
8. Weidemann, S. et al. Topological funneling of light. Science 368, 311 (2020).
9. Helbig, T. et al. Generalized bulk–boundary correspondence in non-

Hermitian topolectrical circuits. Nat. Phys. 16, 747 (2020).
10. Yao, S. & Wang, Z. Edge states and topological invariants of non-Hermitian

systems. Phys. Rev. Lett. 121, 086803 (2018).
11. Kunst, F. K., Edvardsson, E., Budich, J. C. & Bergholtz, E. J. Biorthogonal

bulk-boundary correspondence in non-Hermitian systems. Phys. Rev. Lett.
121, 026808 (2018).

12. Martinez Alvarez, V. M., Barrios Vargas, J. E. & Foa Torres, L. E. F. Non-
Hermitian robust edge states in one dimension: anomalous localization
and eigenspace condensation at exceptional points. Phys. Rev. B 97, 121401
(2018).

13. Lee, C. H. & Thomale, R. Anatomy of skin modes and topology in non-
Hermitian systems. Phys. Rev. B 99, 201103 (2019).

14. Borgnia, D. S., Kruchkov, A. J. & Slager, R.-J. Non-Hermitian boundary modes
and topology. Phys. Rev. Lett. 124, 056802 (2020).

15. Zhang, K., Yang, Z. & Fang, C. Correspondence between winding numbers
and skin modes in non-Hermitian systems. Phys. Rev. Lett. 125, 126402
(2020).

16. Okuma, N., Kawabata, K., Shiozaki, K. & Sato, M. Topological origin of non-
Hermitian skin effects. Phys. Rev. Lett. 124, 086801 (2020).

17. Bender, C. M. & Boettcher, S. Real spectra in non-Hermitian Hamiltonians
having PT symmetry. Phys. Rev. Lett. 80, 5243 (1998).

Vn ∝ γ4n
−VB,n ∝ γ2n

na b Magnetic Field

Fig. 3 Non-Hermitian realization of QHS on hyperbolic surface. a A
hyperbolic surface threaded by uniform magnetic fluxes. b An extra onsite
energy in HN chain, VB,n, encapsulates the magnetic field.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29774-8 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:2184 | https://doi.org/10.1038/s41467-022-29774-8 |www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


18. Mostafazadeh, A. Pseudo-hermiticity versus PT symmetry: The necessary
condition for the reality of the spectrum of a non-Hermitian Hamiltonian. J.
Math. Phys. 43, 205 (2002).

19. Ashida, Y., Gong, Z. & Ueda, M. Non-Hermitian physics. Adv. Phys. 69, 249
(2020).

20. Bergholtz, E. J., Budich, J. C. & Kunst, F. K. Exceptional topology of non-
Hermitian systems. Rev. Mod. Phys. 93, 015005 (2021).

21. Xiong, Y. Why does bulk boundary correspondence fail in some non-
Hermitian topological models. J. Phys. Commun. 2, 035043 (2018).

22. Okuma, N. & Sato, M. Topological phase transition driven by infinitesimal
instability: majorana fermions in non-Hermitian spintronics. Phys. Rev. Lett.
123, 097701 (2019).

23. Wiersig, J. Enhancing the sensitivity of frequency and energy splitting
detection by using exceptional points: application to microcavity sensors for
single-particle detection. Phys. Rev. Lett. 112, 203901 (2014).

24. Kawabata, K., Shiozaki, K., Ueda, M. & Sato, M. Symmetry and topology in
non-Hermitian physics. Phys. Rev. X 9, 041015 (2019).

25. Lee, J. Y., Ahn, J., Zhou, H. & Vishwanath, A. Topological correspondence
between Hermitian and non-Hermitian systems: anomalous dynamics. Phys.
Rev. Lett. 123, 206404 (2019).

26. Zhou, H. & Lee, J. Y. Periodic table for topological bands with non-Hermitian
symmetries. Phys. Rev. B 99, 235112 (2019).

27. Xiao, L. et al. Non-Hermitian bulk–boundary correspondence in quantum
dynamics. Nat. Phys. 16, 761 (2020).

28. Brody, D. C. Biorthogonal quantum mechanics. J. Phys. A: Math. Theoretical
47, 035305 (2013).

29. Scholtz, F., Geyer, H. & Hahne, F. Quasi-Hermitian operators in quantum
mechanics and the variational principle. Ann. Phys. 213, 74 (1992).

30. Mostafazadeh, A. Pseudo-Hermitian representation of quantum mechanics.
Int. J. Geometric Methods Modern Phys. 07, 1191 (2010).

31. Dorey, P., Dunning, C. & Tateo, R. A reality proof in PT-symmetric quantum
mechanics. Czechoslovak J. Phys. 54, 35 (2004).

32. Bekenstein, R. et al. Control of light by curved space in nanophotonic
structures. Nat. Photon. 11, 664 (2017).

33. Zhou, X.-F. et al. Synthetic Landau levels and spinor vortex matter on a
Haldane spherical surface with a magnetic monopole. Phys. Rev. Lett. 120,
130402 (2018).

34. Schine, N., Chalupnik, M., Can, T., Gromov, A. & Simon, J. Electromagnetic
and gravitational responses of photonic Landau levels. Nature 565, 173 (2019).

35. Kollár, A. J., Fitzpatrick, M. & Houck, A. A. Hyperbolic lattices in circuit
quantum electrodynamics. Nature 571, 45 (2019).

36. Wen, X. G. & Zee, A. Shift and spin vector: new topological quantum numbers
for the Hall fluids. Phys. Rev. Lett. 69, 953 (1992).

37. Avron, J. E., Seiler, R. & Zograf, P. G. Viscosity of quantum Hall fluids. Phys.
Rev. Lett. 75, 697 (1995).

38. Can, T., Laskin, M. & Wiegmann, P. Fractional quantum Hall effect in a
curved space: Gravitational anomaly and electromagnetic response. Phys. Rev.
Lett. 113, 046803 (2014).

39. Nelson, D. R. & Vinokur, V. M. Boson localization and correlated pinning of
superconducting vortex arrays. Phys. Rev. B 48, 13060 (1993).

40. Amir, A., Hatano, N. & Nelson, D. R. Non-Hermitian localization in biological
networks. Phys. Rev. E 93, 042310 (2016).

41. Lodahl, P. et al. Chiral quantum optics. Nature 541, 473 (2017).
42. Yang, S.-H., Naaman, R., Paltiel, Y. & Parkin, S. S. P. Chiral spintronics. Nat.

Rev. Phys. 3, 328 (2021).
43. Hatano, N. & Nelson, D. R. Localization transitions in non-Hermitian

quantum mechanics. Phys. Rev. Lett. 77, 570 (1996).
44. Zhang, R., Lv, C., Yan, Y. & Zhou, Q. Efimov-like states and quantum

funneling effects on synthetic hyperbolic surfaces. Sci. Bull. 66, 1967 (2021).

45. Yokomizo, K. & Murakami, S. Non-Bloch band theory of non-Hermitian
systems. Phys. Rev. Lett. 123, 066404 (2019).

46. Yang, Z., Zhang, K., Fang, C. & Hu, J. Non-Hermitian bulk-boundary
correspondence and auxiliary generalized Brillouin zone theory. Phys. Rev.
Lett. 125, 226402 (2020).

47. Comtet, A. On the Landau levels on the hyperbolic plane. Ann. Phys. 173, 185
(1987).

48. Hofstadter, D. R. Energy levels and wave functions of Bloch electrons in
rational and irrational magnetic fields. Phys. Rev. B 14, 2239 (1976).

Acknowledgements
Q.Z. acknowledges useful discussions with Mahdi Hosseini and Pramey Upadhyaya
about realizations of chiral couplings. Q.Z., C.L., and Z.Z. are supported by the Air Force
Office of Scientific Research under award number FA9550-20-1-0221, DOE DE-
SC0019202, DOE QuantISED program of the theory consortium “Intersections of QIS
and Theoretical Particle Physics" at Fermilab, W. M. Keck Foundation, and a seed grant
from PQSEI. R.Z. is supported by the National Key R&D Program of China (Grant No.
2018YFA0307601), NSFC (Grant Nos.12174300, 11804268).

Author contributions
Q.Z. conceived the idea. C.L., R.Z., and Q.Z. performed analytical and numerical cal-
culations with inputs from Z.Z. on parts of finite magnetic fields. Q.Z. wrote the
manuscript with inputs from all authors.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-022-29774-8.

Correspondence and requests for materials should be addressed to Qi Zhou.

Peer review information Nature Communications thanks the other anonymous
reviewer(s) for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29774-8

6 NATURE COMMUNICATIONS |         (2022) 13:2184 | https://doi.org/10.1038/s41467-022-29774-8 | www.nature.com/naturecommunications

https://doi.org/10.1038/s41467-022-29774-8
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Curving the space by non-Hermiticity
	Results
	Hatano-Nelson model and hyperbolic surfaces
	Geometric interpretations of non-Hermitian phenomena
	Generalizations to long-range and non-uniform tunnelings
	Non-Hermitian realization of QHS in curved spaces

	Discussion
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




