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Computational modeling and analysis of dynamic processes on networked sys-
tems is a wide-spread and thriving research area. In particular, much effort has
been put into the study of spreading phenomena [2,16,28,38]. Arguably, the
most common formalism for spreading processes is the so-called Susceptible-
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Introduction

Infected-Susceptible (SIS) model with its variations [28,38,39].

In the SIS model, each node is either infected (I) or susceptible (8). Infected
nodes propagate their infection to neighboring susceptible nodes and become
susceptible again after a random waiting time. Naturally, one can extend the
number of possible node states (or compartments) of a node. For instance, the
SIR model introduces an additional recovered state in which nodes are immune

to the infection.
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SIS-type models are remarkable because—despite their simplicity—they
allow the emergence of complex macroscopic phenomena guided by the topo-
logical properties of the network. There exists a wide variety of scenarios which
can be described using the SIS-type formalism. For instance, the SIS model
has been successfully used to study the spread of many different pathogens like
influenza [26], dengue fever [40], and SARS [36]. Likewise, SIS-type models have
shown to be extremely useful for analyzing and predicting the spread of opinions
[29,49], rumors [52,53], and memes [51] in online social networks. Other areas of
applications include the modeling of neural activity [15], the spread of computer
viruses [11] as well as blackouts in financial institutions [34].

The semantics of SIS-type processes can be described using a continuous-time
Markov chain (CTMC) [28,47] (cf. Sect. 3 for details). Each possible assignment
of nodes to the two node states S and I constitutes an individual state in the
CTMC (here referred to as network state to avoid confusion'). Hence, the CTMC
state space grows exponentially with the number of nodes, which renders the
numeral solution of the CTMC infeasible for most realistic contact networks.

This work investigates an aggregation scheme that lumps similar network
states together and thereby reduces the size of the state space. More precisely, we
first partition the nodes of the contact network. After which, we impose a count-
ing abstraction on each partition. We only lump two networks states together
when their corresponding counting abstractions coincide on each partition.

As we will see, the counting abstraction induces a natural representation of
the lumped CTMC as a Markov Population Model (MPM). In an MPM, the
CTMC states are vectors which, for different types of species, count the number
of entities of each species. The dynamics can elegantly be represented as species
interactions. More importantly, a very rich pool of approximation techniques
has been developed on the basis of MPMs, which can now be applied to the
lumped model. These include efficient simulation techniques [1,7], dynamic state
space truncation [24,33], moment-closure approximations [19,44], linear noise
approximation [18,46], and hybrid approaches [4,43].

The remainder of this work is organized as follows: Sect.2 shortly revises
related work, Sect.3 formalized SIS-type models and their CTMC semantics.
Our lumping scheme is developed in Sect. 4. In Sect. 5, we show that the lumped
CTMCs have a natural MPM representation. Numerical results are demon-
strated in Sect. 6 and some conclusions in Sect. 7 complete the paper and identify
open research problems.

2 Related Work

The general idea behind lumping is to reduce the complexity of a system by
aggregating (i.e., lumping) individual components of the system together. Lump-
ing is a popular model reduction technique which has been used to reduce the
number of equations in a system of ODEs and the number of states in a Markov

! In the following, we will use the term CTMC state and network state interchangeably.
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chain, in particular in the context of biochemical reaction networks [6,8,31,50].
Generally speaking, one can distinguish between ezact and approzimate lumping
[6,31].

Most work on the lumpability of epidemic models has been done in the con-
text of exact lumping [28,42,48]. The general idea is typically to reduce the state
space by identifying symmetries in the CTMC which themselves can be found
using symmetries (i.e., automorphisms) in the contact network. Those methods,
however, are limited in scope because these symmetries are infeasible to find
in real-world networks and the state space reduction is not sufficient to make
realistic models small enough to be solvable.

This work proposes an approximate lumping scheme. Approximate lump-
ing has been shown to be useful when applied to mean-field approximation
approaches of epidemic models like the degree-based mean-field and pair approxi-
mation equations [30], as well as the approximate master equation [14,21]. How-
ever, mean-field equations are essentially inflexible as they do not take topo-
logical properties into account or make unrealistic independence assumptions
between neighboring nodes.

Moreover, [27] proposed using local symmetries in the contact network
instead of automorphisms to construct a lumped Markov chain. This scheme
seems promising, in particular on larger graphs where automorphisms often do
not even exist, however, the limitations for real-world networks due to a limited
amount of state space reduction and high computational costs seem to persist.

Conceptually similar to this work is also the unified mean-field framework
(UMFF) proposed by Devriendt et al.in [10]. Devriendt et al. also partition the
nodes of the contact network but directly derive a mean-field equation from it. In
contrast, this work focuses on the analysis of the lumped CTMC and its relation
to MPMs. Moreover, we investigate different types of counting abstractions,
not only node based ones. The relationship between population dynamics and
networks has also been investigated with regard to Markovian agents [3].

3 Spreading Processes

Let G = (W, &) be a an undirected graph without self-loops. At each time point
t € R>g each node occupies one of m different node states, denoted by S =
{s1,52,...,8m} (typically, S = {S,I}). Consequently, the network state is given
by a labeling z : N' — S. We use

X={z|z:N—S8}

to denote all possible labelings. X is also the state space of the underlying CTMC.
As each of the || nodes occupies one of m states, we find that |X| = |S|WVI.
A set of stochastic rules determines the particular way in which nodes change
their corresponding node states. Whether a rule can be applied to a node depends
on the state of the node and of its immediate neighborhood.
The neighborhood of a node is modeled as a vector m € Z|>SO‘ where m(s]
denotes the number of neighbors in state s € S (we assume an implicit enu-

meration of states). Thus, the degree (number of neighbors, denoted by k) of
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Fig. 1. The CTMC induced by the SIS model (S: blue, I: magenta, filled) on a toy
graph. Only a subset of the CTMC spate space (11 out of 2° = 64 network states) is
shown. (Color figure online)

a node is equal to the sum over its associated neighborhood vector, that is,
k=73 ,csm[s|. The set of possible neighborhood vectors is denoted as

> mlfs] < kmax} ;

seS

M:{melg

where kn.x denotes the maximal degree in a given network.

Each rule is a triplet s; ER s2 (81,82 € S, 81 # s2), which can be applied to
each node in state s;. When the rule “fires” it transforms the node from s; into
s2. The rate at which a rule “fires” is specified by the rate function f : M — R>g
and depends on the node’s neighborhood vector. The time delay until the rule is
applied to the network state is drawn from an exponential distribution with rate
f(m). Hence, higher rates correspond to shorter waiting times. For the sake of
simplicity and without loss of generality, we assume that for each pair of states
$1, So there exists at most one rule that transforms sy to ss.

In the well-known SIS model, infected nodes propagate their infection to sus-
ceptible neighbors. Thus, the rate at which a susceptible node becomes infected
is proportional to its number of infected neighbors:

sL1  with f(m)=X m[I],

where A € R>¢ is a rule-specific rate constant (called infection rate) and m[I]
denotes the number of infected neighbors. Furthermore, a recovery rule trans-
forms infected nodes back to being susceptible:

145 with f(m) = p,

where p € R>q is a rule-specific rate constant called recovery rate.
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A variation of the SIS model is the ST model where no curing rule exists and
all nodes (that are reachable from an infected node) will eventually end up being
infected. Intuitively, each rule tries to “fire” at each position n € N where it can
be applied. The rule and node that have the shortest waiting time “win” and
the rule is applied there. This process is repeated until some stopping criterion
is fulfilled.

3.1 CTMC Semantics

Formally, the semantics of the SIS-type processes can be given in terms of
continuous-time Markov Chains (CTMCs). The state space is the set of possible
network states X'. The CTMC has a transition from state = to 2’ (z,2’ € X,

x # ') if there exists a node n € N and a rule s; ER s such that the appli-
cation of the rule to n transforms the network state from x to z’. The rate of
the transition is exactly the rate f(m) of the rule when applied to n. We use
q(z,z") € R>( to denote the transition rate between two network states. Figure 1
illustrates the CTMC corresponding to an SIS process on a small toy network.

Explicitly computing the evolution of the probability of x € X over time
with an ODE solver, using numerical integration, is only possible for very small
contact networks, since the state space grows exponentially with the number of
nodes. Alternative approaches include sampling the CTMC, which can be done
reasonably efficiently even for comparably large networks [9,22,45] but is subject
to statistical inaccuracies and is mostly used to estimate global properties.

4 Approximate Lumping

Our lumping scheme is composed of three basic ingredients:

Node Partitioning: The partitioning over the nodes N that is explicitly pro-
vided.

Counting Pattern: The type of features we are counting, i.e., nodes or edges.
Implicit State Space Partitioning: The CTMC state space is implicitly par-
titioned by counting the nodes or edges on each node partition.

We will start our presentation discussing the partitioning of the state space,
then showing how to obtain it from a given node partitioning and counting
pattern. To this end, we use ) to denote the new lumped state space and assume
that there is a surjective? lumping function

L:X =)

that defines which network states will be lumped together. Note that the lumped
state space is the image of the lumping function and that all network states z € X
which are mapped to the same y € YV will be aggregated.

2 If £ is not surjective, we consider only the image of £ to be the lumped state space.
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Later in this section, we will discuss concrete realizations of £. In particular,
we will construct £ based on a node partitioning and a counting abstraction of
our choice. Next, we define the transition rates q(y,y’) (where y, ¢’ € Y, y # v')
between the states of the lumped Markov chain:

q(y7y’)=‘£% S Y @) (1)

y)| zeL-(y) x’'€L-1(y")

This is simply the mean transition rate at which an original state from = goes
to some 2’ € L71(y"). Technically, Eq. (1) corresponds to the following lumping
assumption: we assume that at each point in time all network states belonging
to a lumped state y are equally likely.

4.1 Partition-Based Lumping

Next, we construct the lumping function £. Because we want to make our lump-
ing aware of the contact network’s topology, we assume a given partitioning P
over the nodes A of the contact network. That is, P ¢ 2V and |J pep P =N
and all P € P are disjoint and non-empty. Based on the node partitioning, we
can now impose different kinds of counting abstractions on the network state.
This work considers two types: counting nodes and counting edges. The counting
abstractions are visualized in Fig. 3. A full example of how a lumped CTMC of
an SI model is constructed using the node-based counting abstraction is given
in Fig. 2.

Node-Based Counting Abstraction. We count the number of nodes in each
state and partition. Thus, for a given network state x € X, we use y(s, P) to
denote the number of nodes in state s € S in partition P € P. The lumping
function £ projects x to the corresponding counting abstraction. Formally:

Y={yly:SxP = Z>0}
L(z) =y
with:  y(s,P)=|{neN | X(n) =s,n € P}|.

Edge-Based Counting Abstraction. Again, we assume that a network state
z and a node partitioning P are given. Now we count the edges, that is for
each pair of states s,s’ € S and each pair of partitions P, P’ € P, we count
y(s, P,s', P') which is the number of edges (n,n’) € £ where z(n) = s, n € P,
z(n') = §’, n’ € P’. Note that this includes cases where P = P’ and s = ¢'.
However, only counting the edges does not determine how many nodes there are
in each state (see Fig.3 for an example).

In order to still have this information encoded in each lumped state, we
slightly modify the network structure by adding a new dummy node n, and
connecting each node to it . The dummy node has a dummy state denoted by
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Fig. 2. Illustration of the lumping process. (a): Model. A basic SI-Process where
infected nodes (magenta, filled) infect susceptible neighbors (blue) with rate infec-
tion A = 1. The contact graph is divided into two partitions. (b): The underlying
CTMC with 2* = 16 states. The graph partition induces the edge-based and node-
based lumping. The edge-based lumping refines the node-based lumping and generates
one partition more (vertical line in the central partition). (c): The lumped CTMC using
node-based counting abstraction with only 9 states. The rates are the averaged rates
from the full CTMC. (Color figure online)
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Fig. 3. (a) By adding the dummy-node, the edge-based abstraction is able to differ-
entiate the two graphs. Adding the dummy-node ensures that the nodes in each state
are counted in the edge-based abstraction. (b) Left: A partitioned network (Zachary’s
Karate Club graph from [12]) (S: blue, I: magenta, filled). The network is partitioned
into Py (O-nodes) and P> (O-nodes). Right: The corresponding counting abstractions.
(Color figure online)

* which never changes, and it can be assigned to a new dummy partition P,.
Formally,

N =Nu{n} S:=8U{x} Ln)=% P:=PU{P}
E:=EU{(n,n,) | neN,n#n.}

Note that the rate function f ignores the dummy node. The lumped represen-
tation is then given as:

YV={yly:SXxPxSEXP—7Zso}
L(z) =y
with:  y(s,P,s',P') = [{(n,n') € £ | x(n) =s,n € P,x(n') = ,n" € P'}|

Example. Figure2 illustrates how a given partitioning and the node-based
counting approach induces a lumped CTMC. The partitions induced by the
edge-based counting abstracting are also shown. In this example, the edge-based
lumping aggregates only isomorphic network states.

4.2 Graph Partitioning

Broadly speaking, we have three options to partition the nodes based on local
features (e.g., its degree) or global features (e.g., communities in the graph)
or randomly. As a baseline, we use a random node partitioning. Therefore, we
fix the number of partitions and randomly assign each node to a partition while
enforcing that all partitions have, as far as possible, the same number of elements.

Moreover, we investigate a degree-based partitioning, where we define the
distance between to nodes m,n’ as their relative degree difference (similar to
[30)):
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|kn - kn’l

di(n, ') = max(kp, kns)

We can then use any reasonable clustering algorithm and build partitions (i.e.,
clusters) with the distance function. In this work, we focus on bottom-up hier-
archical clustering as it provides the most principled way of precisely controlling
the number of partitions. Note that, for the sake of simplicity (in particular, to
avoid infinite distances), we only consider contact networks where each node is
reachable from every other node. We break ties arbitrarily.

To get a clustering considering global features we use a spectral embedding
of the contract network. Specifically, we use the spectral_layout function from
the NetworkX Python-package [23] with three dimensions and perform hierar-
chical clustering on the embedding. In future research, it would be interesting
to compute node distances based on more sophisticated graph embedding as the
ones proposed in [17]. Note that in the border cases |P| = 1 and |P| = [N/ all
methods yield the same partitioning.

5 Markov Population Models

Markov Population Models (MPMs) are a special form of CTMCs where each
CTMC state is a population vector over a set of species. We use Z to denote the
finite set of species (again, with an implicit enumeration) and y € ZLZO‘ to denote
the population vector. Hence, y[z] identifies the number of entities of species z.
The stochastic dynamics of MPMs is typically expressed as a set of reactions R,
each reaction, (a, b) € R, is comprised of a propensity function « : Z|>ZO| — R>o
and a change vector b € ZIZ!. When reaction (cr, b) is applied, the system moves
from state y to state y + b. The corresponding rate is given by the propensity
function. Therefore, we can rewrite the transition matrix of the CTMC as?:

n_ Jaly)if3(a,b) e R,y =y +b
1(y.y') = {O otherwise )

Next, we show that our counting abstractions have a natural interpretation
as MPMs.

5.1 Node-Based Abstraction

First, we define the set of species Z. Conceptually, species are node states which
are aware of their partition:

Z={(s,P)|s€cS,PecP}.

3 Without loss of generality, we assume that different reactions have different change
vectors. If this is not the case, we can merge reactions with the same update by
summing their corresponding rate functions.
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Again, we assume an implicit enumeration of Z. We use z.s and z.P to denote
the components of a give species z.

We can now represent the lumped CTMC state as a single population vector
y € ZLZO‘, where y[z] the number of nodes belonging to species z (i.e., which are

in state z.s and partition z.P). The image of the lumping function £, i.e. the
lumped state space ), is now a subset of non-negative integer vectors: ) C ZLZO‘.

Next, we express the dynamics by a set of reactions. For each rule r = s ER So
and each partition P € P, we define a reaction («, p,b, p) with propensity
function as:

Qp p Sy — |R20
1
ar,p(y) =7-1v) Z Z J(mg )1 my=s,
(y) zeL-1(y)nEP

where m ,, denotes the neighborhood vector of n in network state x. Note that
this is just the instantiation of Eq.1 to the MPM framework.
The change vector b, p € 7|2 is defined element-wise as:

1 if z.s =89, P =2.P
b, plz]=< -1 ifzs=s,P=2P
0 otherwise

Note that sq, sy refer to the current rule and z.s to the entry of b, p.

5.2 Edge-Based Counting Abstraction

We start by defining a species neighborhood. The species neighborhood of a node
n is a vector v € Z‘fol, where v[z] denotes the number of neighbors of species

z. We define V,, to be the set of possible species neighborhoods for a node n,

given a fixed contact network and partitioning. Note that we still assume that a

dummy node is used to encode the number of states in each partition.
Assuming an arbitrary ordering of pairs of states and partitions, we define

Z= {(Ssource7 Psource; Starget7 Ptarget) |SSOUTC€7 Starget € 87 Psource7 Ptarget € 7);
(Ssource7 Psource) S (Stargeta Ptarget)} .
Let us define Vp to be the set of partition neighborhoods all nodes in P can
have:
Ve=J Vn.
nepP

For each rule r = s ER s2, and each partition P € P, and each v € Vp, we
define a propensity function o, p. with:

ar pv Y — Rx

1
arpv(y) :/JT(y) Z Zf(mm,n)ﬂw(n):sl,v(n):v-

zeL-1(y)neP
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Note that the propensity does not actually depend on v, it is simply indi-
vidually defined for each v. The reason for this is that the change vector
depends on the a node’s species neighborhood. To see this, consider a species
2 = (Ssource, Psources Stargets Prarget), corresponding to edges connecting a node
in state ssource and partition Psoyrce to a node in state siqrger and partition
Piarget- There are two scenarios in which the corresponding counting variable
has to change: (a) when the node changing state due to an application of rule
r is the source node, and (b) when it is the target node. Consider case (a); we
need to know how many edges are connecting the updated node (which was in
state s; and partition P) to a node in state Starget and partition Pjiurget. This
information is stored in the vector v, specifically in position v(siarget, Prarget]-
The case in which the updated node is the target one is treated symmetrically.
This gives rise to the following definition:

V[Z'Sttu”geta Z~Ptarget] if §2 = Z.Ssource; P = 2. Psource
*V[Z-Stargeta Z-Ptarget] if 81 = Z.Ssource; P= Z-Psource
br,P,v[Z] = V[Z'SSO’ILTC67 z~Psource] if 59 = Z.Starget, P = Z-Ptm“get
_V[Z'SSOUTC€7 Z-Psource} if S1 = Z.Starget; P = Z-Ptarget

0 otherwise

The first two lines of the definition handle cases in which the node changing
state is the source node, while the following two lines deal with the case in which
the node changing state appears as target.

Figure 4 illustrates how a lumped network state is influenced by the applica-
tion of an infection rule.

5.3 Direct Construction of the MPM

Approximating the solution of an SIS-type process on a contact network by
lumping the CTMC first, already reduces the computational costs by many
orders of magnitude. However, this scheme is still only applicable when it is
possible to construct the full CTMC in the first place. Recall that the number
of network states is exponential in the number of nodes of the contact network,
that is, |X| = |S|VI.

However, in recent years, substantial effort was dedicated to the analysis of
very small networks [25,32,35,37,48]. One reason is that when the size of a net-
work increases, the (macro-scale) dynamics becomes more deterministic because
stochastic effects tend to cancel out. For small contact networks, however, meth-
ods which capture the full stochastic dynamics of the system, and not only the
mean behavior, are of particular importance.

A substantial advantage of the reduction to MPM is the possibility of con-
structing the lumped CTMC without building the full CTMC first. In particular,
this can be done exactly for the node counting abstraction. On the other hand, for
the edge counting we need to introduce an extra approximation in the definition
of the rate function, roughly speaking introducing an approximate probability
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v =[3,2,1] -
X B'S X X3
y=0[433 y—O[1 42
o 12 e 33

Fig. 4. Example of how the neighborhood v influences the update in the edge-based
counting abstraction on an example graph. Here, all nodes belong to the same parti-
tion (thus, nodes states and species are conceptually the same) and the node states
are ordered [8,I,%]. The population vector y is given in matrix form for the ease of
presentation.

distribution over neighboring vectors, as knowing how many nodes have a spe-
cific neighboring vector requires us full knowledge of the original CTMC. We
present full details of such direct construction in the Appendix of [20].

5.4 Complexity of the MPM

The size of the lumped MPM is critical for our method, as it determines which
solution techniques are computationally tractable and provides guidelines on
how many partitions to choose. There are two notions of size to consider: (a) the
number of population variables and (b) the number of states of the underlying
CTMC. While the latter governs the applicability of numerical solutions for
CTMCs, the former controls the complexity of a large number of approximate
techniques for MPMs, like mean field or moment closure.

Node-Based Abstraction. In this abstraction, the population vector is of length
|S] - |P|, i.e. there is a variable for each node state and each partition.

Note that the sum of the population variables for each partition P is |P|,
the number of nodes in the partition. This allows us to count easily the number
of states of the CTMC of the population model: for each partition, we need

to subdivide |P| different nodes into |S| different classes, which can be done in
|P|+|S|-1
(s

of node states and |P| of partitions, but polynomial in the number of nodes:

=TS0

pPeP

)Ways7 giving a number of CTMC states exponential in the number |S|

Edge-Based Abstraction. The number of population variables, in this case, is one
for each edge connecting two different partitions, plus those counting the number
of nodes in each partition and each node state, due to the presence of the dummy
state. In total, we have Q(qz_l) + ¢ population variables, with ¢ = |S| - |P|.

In order to count the number of states of the CTMC in this abstraction, we
start by observing that the sum of all variables for a given pair of partitions

P’ P"” is the number of edges connecting such partitions in the graph. We use
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e(P', P") to denote the number of edges between P’ P” (resp.the number of
edges inside P’ if P’ = P”). Thus,

ye 1 (E(P',Z;)jf‘? - 1> I <|P||;rllfl1 1> .

P, P"ep? PeP
P/ <P//

This is an over-approximation, because not all combinations are consistent with
the graph topology. For example, a high number of infected nodes in a partition
might not be consistent with a small number of I — I-edges inside the partition.
Note that also this upper bound is exponential in |S| and |P| but still polynomial
in the number of nodes N, differently from the original network model, whose
state space is exponential in V.

The exponential dependency on the number of species (i.e., dimensions of
the population vector) makes the explicit construction of the lumped state space
viable only for very small networks with a small number of node states. However,
this is typically the case for spreading models like SIS or SIR. Yet, also the
number of partitions has to be kept small, particularly in realistic models. We
expect that the partitioning is especially useful for networks showing a small
number of large-scale homogeneous structures, as happens in many real-world
networks [12].

An alternative strategy for analysis is to derive mean-field [5] or moment clo-
sure equations [41] for MPMs, which can be done without explicitly constructing
the lumped (and the original) state space. These are sets of ordinary differential
equation (ODE) describing the evolution of (moments of) the population vari-
ables. We refer the reader to [10] for a similar approach regarding the node-based
abstraction.

Degree Partitioning Spectral Partitioning Random Partitioning

0.5 0.5 0.5
v Node max v Node max v Node max
04 . A Node avg 04 . »  Node avg 04 , 4 Node avg
N Edge max C Edge max L 03 % Edge max
503 503 503| ,Vov
= v Edge avg £ % Edge avg £ n Edge avg
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AN A A A v X LN Z v X
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. L x . = = 0.0
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Fig. 5. Trade of between accuracy and state space size for the node-based (blue) and
edge-based (magenta, filled) counting abstraction. Results are shown for node partitions
based on the degree (l.), spectral embedding (c.), and random partitioning (r.). The
accuracy is measured as the mean (A) and maximal (57) difference between the original
and lumped solution over all timepoints. (Color figure online)
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6 Numerical Results

In this section, we compare the numerical solution of the original model—referred
to as baseline model—with different lumped MPMs. The goal of this compari-
son is to provide evidence supporting the claim that the lumping preserves the
dynamics of the original system, with an accuracy increasing with the resolu-
tion of the MPM. We will perform the comparison by solving numerically the
ground and the lumped system, thus comparing the probability of each state in
each point in time. In practical applications of our method, exact transient or
steady state solutions may not be feasible, but in this case we can still rely to
approximation methods for MPM [5,41]. Determining which of those techniques
performs best in this context is a direction of future exploration.

A limit of the comparison based on numerical solution of the CTMC is that
the state space of the original model has \S|W| states, which limits the size of
the contact network strongly*.

Let P(X(t) = z) denote the probability that the baseline CTMC occupies
network state x € X at time ¢t > 0. Furthermore, let P(Y(t) = y) for t > 0
and y € Y denote the same probability for a lumped MPM (corresponding to
a specific partitioning and counting abstraction). To measure their difference,
we first approximate the probability distribution of the original model using the
lumped solution, invoking the lumping assumption which states that all network
states which are lumped together have the same probability mass. We use Pp,
to denote the lifted probability distribution over the original state space given a
lumped solution. Formally,

PL(Y(t)=2) = —————> whereyisst. L(z) =y.

We measure the difference between the baseline and a lumped solution at
a specific time point by summing up the difference in probability mass of each
state, then take the maximum error in time:

d(P, Pp) = max 3 ‘pL (Y(t) =) — P(X(t) = 3:)‘ .
reX

In our experiments, we used a small toy network with 13 nodes and 2 states
(213 = 8192 network states). We generated a synthetic contact network following
the Erd6s—Rényi graph model with a connection probability of 0.5. We use a SIS
model with an infection rate of A = 1.0 and a recovery rate of u = 1.3. Initially,
we assign an equal amount of probability mass to all network states.

Figure 5 shows the relationship between the error of the lumped MPM, the
type of counting abstraction and the method used for node partitioning. We also
report the mean difference together with the maximal difference over time.

From our results, we conclude that the edge-based counting abstraction yields
a significantly better trade-off between state space size and accuracy. However,

4 Code is available at github.com/gerritgr/Reducing-Spreading-Processes.
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it generates larger MPM models than the node-based abstraction when adding
a new partition. We also find that spectral and degree-based partitioning yield
similar results for the same number of CTMC states and that random partition-
ing performed noticeably worse, for both edge-based and node-based counting
abstractions.

7 Conclusions and Future Work

This work developed first steps in a unification of the analysis of stochastic
spreading processes on networks and Markov population models. Since the so
obtained MPM can become very large in terms of species, it is important to be
able to control the trade-off between state space size and accuracy.

However, there are still many open research problems ahead. Most evidently,
it remains to be determined which of the many techniques developed for the
analysis of MPMs (e.g. linear noise, moment closure) work best on our proposed
epidemic-type MPMs and how they scale with increasing size of the contact
network. We expect also that these reduction methods can provide a good start-
ing point for deriving advanced mean-field equations, similar to ones in [10].
Moreover, literature is very rich in proposed moment-closure-based approxima-
tion techniques for MPMs, which can now be utilized [19,44]. We also plan to
investigate the relationship between lumped mean-field equations [21,30] and
coarse-grained counting abstractions further.

Future work can additionally explore counting abstraction of different types,
for instance, a neighborhood-based abstraction like the one proposed by Gleeson
in [13,14].

Finally, we expect that there are many more possibilities of partitioning
the contact network that remain to be investigated and which might have a
significant impact on the final accuracy of the abstraction.
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