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Abstract
Objective. To develop an automated system to classify the severity of hypoxic-ischaemic
encephalopathy injury (HIE) in neonates from the background electroencephalogram (EEG).
Approach. By combining a quadratic time–frequency distribution (TFD) with a convolutional
neural network, we develop a system that classifies 4 EEG grades of HIE. The network learns
directly from the two-dimensional TFD through 3 independent layers with convolution in the
time, frequency, and time–frequency directions. Computationally efficient algorithms make it
feasible to transform each 5 min epoch to the time–frequency domain by controlling for
oversampling to reduce both computation and computer memory. The system is developed on
EEG recordings from 54 neonates. Then the system is validated on a large unseen dataset of 338 h
of EEG recordings from 91 neonates obtained across multiple international centres.Main results.
The proposed EEG HIE-grading system achieves a leave-one-subject-out testing accuracy of 88.9%
and kappa of 0.84 on the development dataset. Accuracy for the large unseen test dataset is 69.5%
(95% confidence interval, CI: 65.3%–73.6%) and kappa of 0.54, which is a significant (P< 0.001)
improvement over a state-of-the-art feature-based method with an accuracy of 56.8% (95% CI:
51.4%–61.7%) and kappa of 0.39. Performance of the proposed system was unaffected when the
number of channels in testing was reduced from 8 to 2—accuracy for the large validation dataset
remained at 69.5% (95% CI: 65.5%–74.0%). Significance. The proposed system outperforms the
state-of-the-art machine learning algorithms for EEG grade classification on a large multi-centre
unseen dataset, indicating the potential to assist clinical decision making for neonates with HIE.

1. Introduction

Hypoxic-ischaemic encephalopathy (HIE) is a major
cause of neonatal mortality and morbidity with an
incidence of 3–5 per 1000 births in high income coun-
tries [1]. HIE occurs around time of birth due to
lack of oxygen (hypoxia) and impaired blood supply
(ischemia) in the brain [2]. HIE continues to evolve
over time after the primary hypoxic-ischemic (HI)
insult [2]. Therapeutic hypothermia has become the
standard treatment for neonates with moderate to
severe HIE [3, 4]. To be effective however, it should

be initiated within 6 h of birth, offering a small time
window for treatment.

It is sometimes difficult to recognise which babies
would benefit most from therapeutic hypothermia.
Current neonatal practice relies on the initial assess-
ment of the infant’s clinical state and other clinical
markers to grade the severity of encephalopathy fol-
lowing birth. Murray et al [5] have shown that these
markers can be unreliable and that early informa-
tion about brain function would be extremely help-
ful. Also, sedative drugs can confound clinical assess-
ment [5]. And lastly, the severity of the neonatal EEG
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grade can provide useful information about long-
term outcome which helps the clinical team guide
critical management [6].

Electroencephalography (EEG) provides an
effective non-invasive tool for monitoring neonatal
cortical activity after a HI injury. Neonates with HIE
are also at high risk of seizures and the EEG is essential
to detect and quantify the seizure burden. Depending
on the severity of the insult, the amplitude, frequency,
sleep cycling, and continuity can be affected in vari-
ous ways; in addition, abnormal transient waveforms
and seizures may be present [6]. Nonetheless, con-
tinuous EEG monitoring and interpretation is dif-
ficult, time consuming, and must be assessed by an
experienced neurophysiologist. This capability is not
always available in most NICUs on a 24/7 basis. Auto-
mated grading of the EEG, using computer-based
algorithms, has the potential to overcome the prac-
tical limitations of reviewing extensive, continuous
EEG monitoring in the NICU for all neonates with
suspected HIE, giving the attending neonatologist a
simple instantaneous evaluation of brain function.
This information could help inform not only ini-
tial decisions regarding the initiation of hypothermia
therapy, but also ongoing care during the period of
critical illness and indeed issues concerning outcome.

A number of algorithms have been proposed to
grade the EEG for HIE. Stevenson et al [7] proposed
a method which extracted non-stationary features
of the time–frequency distribution (TFD). The TFD
was generated on short-duration epochs (64 s with
50% overlap) and features of the instantaneous amp-
litude and instantaneous frequency were extracted.
These features were combined with more standard
quantitative EEG features using a multi-class lin-
ear discriminant classifier. Matíc et al [8] proposed
a tensor-based approach in which continuous EEG
was first adaptively segmented and three features
extracted from each segment to build a tensor. This
tensor was reduced using multi-dimensional decom-
position methods and then combined using a least-
squares support vector machine (SVM). Another
study by Matíc et al [9] proposed a dynamic inter-
burst intervals (dIBIs) detection approach com-
bined with multi-class SVM classifier to quantify
background EEG dynamics in term neonates
with HIE.

Further, Ahmed et al [10] used a larger feature set
of 55 values from the time, frequency, and inform-
ation theory domains extracted from an 8 s win-
dow (with 50% overlap) of EEG. A Gaussian mixture
model (GMM) supervector was constructed from a
sequence of these features extracted over 80 s of EEG.
An SVM combined these supervectors and the grade
was determined across multiple channels and across
one hour of EEG recording. Rather than using a large
number of generic EEG features, we previously pro-
posed [11] the use of two features of the temporal
distribution of inter-burst activity extracted from a

burst–interburst detector; these features have clinical
relevance as inter-burst interval (IBI) increases with
severity of HIE, and is therefore closer to the ana-
lysis carried out by the neurophysiologist. A multi-
layer perceptron was then used to classify EEG grades.
In a recent study, Guo et al [12] used multiple time
and frequency domain features from long- and short-
term segments coupled with an SVM. More recently,
we proposed a one-dimensional convolutional neural
network (CNN) approach to automate feature extrac-
tion from the raw EEG segment to classify EEG
grades [13].

These existing automated grading systems employ
complex feature sets to extract information from
the raw EEG [7, 9, 10, 12], before combining with
machine learning methods. These sophisticated and
sometimes physiologically meaningful features are
needed to capture the wide range of signal character-
istics associated with the different grades. Bypassing
the feature-based approach and building on our
existing work [13], here we apply a deep-learning
approach which uses all the information from the
EEG signal without the need to design and select fea-
tures [13–15].Within the field of deep-learning, CNN
have demonstrated state-of-the-art results in many
medical image processing tasks [16, 17].

For the one-dimensional EEG data, time–
frequency representations have been used in place
of two-dimensional images. Spectrograms of the raw
EEG have been used as input to CNN models for
effective sleep scoring [14, 18–20] and seizure detec-
tion [15, 21] tasks, for example. Spectrograms are
intuitive time–frequency representations that can be
computed efficiently for long-duration signals. These
TFDs, however, lack the ability to resolve all compon-
ents in the time–frequency plane, resulting in a loss
of signal information [22].

The class of quadratic TFDs, with its selection
of kernels and kernel parameters, are better able to
resolve components and offer a more refined rep-
resentation. Importantly, the quadratic TFDs have
been successfully applied to many biomedical applic-
ations [22] and have been shown to outperform the
spectrogram [23]. A critical roadblock in the more
widespread application of the quadratic TFDs is the
O(N2) computation and computer-memory required
to generate the TFD. Here, we use a separable-
kernel TFD implemented by algorithms that con-
trol the oversampling, reducing the load to a more
manageable O(PN) for computation and O(PQ) for
memory, where P,Q≪ N.

Thus, we propose to design a novel CNN struc-
ture driven by a quadratic TFD of the raw EEG. This
network structure is able to self-extract convolutional
features based on time, frequency and time-frequency
from the 2D quadratic TFD. For the first time, a large
multi-centre EEG dataset of term neonates EEG is
considered for investigating an automated EEG HIE-
grading system.
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Table 1. Visual interpretation of background EEG activity in hypoxic–ischemic encephalopathy defined by Murray et al [6].

Grade Findings Description of EEG

0 Normal EEG findings Continuous background pattern with normal physiologic
features such as anterior slow waves

1 Normal/mild abnormalities Continuous background pattern with slightly abnormal activity
(e.g., mild asymmetry, mild voltage depression, or poorly
defined SWC)

2 Moderate abnormalities Discontinuous activity with IBI of<10 s, no clear SWC, or
clear asynchrony

3 Major abnormalities Discontinuous activity with IBI of 10–60 s, severe attenuation
of background patterns, or no SWC

4 Inactive EEG abnormalities Background activity of<10 µV or severe discontinuity with IBI
of>60 s

Abbreviations: IBI, interburst interval; SWC, sleep–wake cycling.

Figure 1. EEG examples for each of the four EEG HIE-grades.

2. Materials

2.1. EEG
Two datasets were used in this study.

2.1.1. Development dataset
EEG was recorded from 54 term infants using a
NicoletOne (Natus, USA) EEG system within the
neonatal intensive care unit (NICU) of Cork Univer-
sityMaternity Hospital, Cork, Ireland. This study was
approved from the Clinical Ethics Committee of the
Cork Teaching Hospital with written and informed
parental consent obtained before EEG recording.
Detailed inclusion criteria of the cohort can be found
in Korotchikova et al [24].

The EEG recording was initiated within 6 h of
birth and continued for up to 72 h to monitor
the evolution of the developing encephalopathy with
seizure surveillance. The EEG recording used 9 active
electrodes T4, T3, O1, O2, F4, F3, C4, C3, and Cz
as standard protocol in the NICU. Our analysis used

an 8-channel bipolar montage derived from these
electrodes as F4-C4, C4-O2, F3-C3, C3-O1, T4-C4,
C4-Cz, Cz-C3 and C3-T3.

One EEG epoch, approximately 1 h in duration,
was pruned from the continuous EEG for each infant.
Epochs were free of seizures andmajor artefacts when
possible [24]. The EEG epochs were reviewed inde-
pendently by 2 EEG experts and graded according
to the system defined by Murray et al [6], sum-
marised in table 1. Each of the 1 h epochs were
assigned one of four grades corresponding to nor-
mal/mild abnormalities (grade 1), moderate abnor-
malities (grade 2), major abnormalities (grade 3),
and inactive (grade 4). Normal EEGs (grade 0)
were grouped together with normal/mild abnor-
malities (grade 1) during grading. Example EEGs
from each grade are shown in figure 1. In the
case when two different grades were assigned to
the same EEG epoch, the EEGs were subsequently
reviewed by both reviewers and consensus on the EEG
grade was reached. The inter-observer agreement
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between both reviewers was high (Cohen’s kappa
κ= 0.87).

This development dataset consists of 54 EEG
epochs, one per infant. Themean epoch duration was
70 min (interquartile range IQR: 68–72 min). Of the
54 epochs, 22 were classified as grade 1, 14 were clas-
sified as grade 2, 12 were classified as grade 3, and 6
were classified as grade 4.

2.1.2. Validation dataset
EEG was recorded from term infants from 6 NICUs
across 4 European countries (Ireland, The Nether-
lands, Sweden, and The United Kingdom) as part
of the Algorithm for Neonatal Seizure Recogni-
tion (ANSeR) study [25, 26]. All the sites had
obtained approved written and informed consent
before EEG recording. The EEGs were recorded
either using the NicoletOne ICU Monitor (Natus,
WI, USA), Xltek EEG system (Natus), or the Neur-
ofax EEG-1200 (Nihon Kohden, Tokyo, Japan). EEG
monitoring was commenced shortly after birth and
was continued for up to 48 h. The multichan-
nel EEGs were recorded with active electrodes loc-
ated at F3, F4, C3, C4, T3, T4, O1, O2 (or P3
and P4) and Cz as a standard NICU protocol.
We used an 8-channel bipolar montage derived
from these electrodes as F4-C4, C4-O2 (or C4-P4),
F3-C3, C3-O1 (or C3-P3), T4-C4, C4-Cz, Cz-C3 and
C3-T3.

One-hour epochs of EEG were pruned from
each neonate’s EEG recording, at 6, 12, 24, 36
and 48 h post-natal age when possible. The EEG
epochs were reviewed by a clinical physiologist
(S R Mathieson) with expertise in neonatal EEG.
Each 1 h EEG epoch was graded according to the
system proposed in Murray et al [6], and was
assigned one of 5 grades corresponding to normal
EEG findings (grade 0), normal/mild abnormalities
(grade 1), moderate abnormalities (grade 2), major
abnormalities (grade 3) and inactive (grade 4). As
the development dataset used in this study were
graded for only four grades, we combined grade
0 and 1 to compress the 5 grades to 4 for this
validation set.

The ANSeR study dataset included a total of 214
neonates with valid EEGs [25]. We only included
neonates with a clinical HIE diagnosis. Within this
set of 141 neonates, 9 infants were excluded because
of a combined diagnosis and 41 were keep out as a
future validation set for further algorithmic develop-
ment. The remaining 91 neonates, providing a total of
338 1 h 8-channel EEG epochs were used as the val-
idation dataset. Of these 338 epochs, 188 were classi-
fied as grade 1, 81 were classified as grade 2, 38 were
classified as grade 3, and 31 were classified as grade 4.
More details about the cohort can be found in Rennie
et al [25].

2.2. Baseline systems
Four algorithms from our group that were pre-
viously developed and tested on the development
dataset in section 2.1 are compared with the pro-
posed algorithm. This helps to have a fair comparison
between these methods and the one proposed in this
paper. The methods are summarised below.

2.2.1. Quadratic TFD features (TFDfeat)
This method uses non-stationary features of a quad-
ratic TFD (separable-kernel TFD), in addition to
generic quantitative EEG features, which were com-
bined with a linear-discriminate classifier [7]. First,
the amplitude modulation (AM) and instantaneous
frequency (IF) are extracted from the TFD. Second,
statistical measures of the distribution of AM and IF
are used to summarise the non-stationary amplitude
and frequency modulation of the EEG. Next, these
features are coupled with spectral power and com-
bined in the classifier on short-term EEG segments
(64 s). Majority voting is then used to convert short-
term decisions into one grade for the 1 h epoch. This
was the first method developed on the developmental
dataset.

2.2.2. IBI features (IBIfeat)
This method uses an IBI detection algorithm to
quantify the duration and persistence of IBIs in the
EEG [11]. Duration of the intervals is an import-
ant component in the grading scheme—see table 1.
Although the inter-burst detection algorithm was
previously trained on preterm infant EEG, we found
it worked well to detect the inter-burst intervals in the
EEG of HIE term infants. Features of IBIs, extracted
from 10min segments, were combined using a multi-
layer perceptron classifier. Majority voting over the
hour determined the grade. Although only 2 features
were used, this method had similar performance to
the TFDfeat method [7].

2.2.3. One-dimensional CNN (CNN1d)
This method uses a 1-dimension CNN on the raw
EEG from each 5 min EEG segment [13]. The fea-
tures, extracted by the convolutional layers, are classi-
fied by two fully connected hidden layers followed by
a softmax layer. The output probabilities across chan-
nels are combined with two-step voting to determ-
ine the grade over each 1 h EEG epoch. This method,
which learns hierarchical representations from the
raw EEG, outperforms the traditional hand-crafted
features approach of the IBIfeat and TFDfeat meth-
ods [7, 11].

2.2.4. GMM supervectors (GSVfeat)
This method combines a generative model with a dis-
criminative classifier [10]. First, a set of 55 short-term
features in frequency, time, and information theory
domains are extracted from 8 s EEG segments with
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50% overlap. Second, the sequence of short-term fea-
ture vectors are compiled over an 80 s segment to
generate a Gaussian mixture model (GMM). All the
data is then used to generate a universal background
model. This background model is then compared to
each 80 s segment under analysis and parameters of
similarity between the 2 are extracted. These model-
distance measures, known as supervectors, are then
classified using a support vector machine (SVM).
This method also employs different post-processing
strategies to combine the decisions over the 1 h epoch
and across the 8 channels. The method has the best
performance to date for the developmental dataset
(section 2.1) and therefore will be compared with the
proposed system on the validation dataset.

2.2.5. Other state-of-the-art methods
Methods developed on different datasets, and there-
fore not included as a direct comparison to the
proposed method, includes a tensor-decomposition
method by Matíc et al [8], an inter-burst interval
detectormethod also byMatíc et al [9], and a features-
based approach by Guo et al [12].

3. Methods

The proposed grading system consists of a CNN
driven by a quadratic TFD of a segment of single-
channel EEG. The CNN has three parallel layers that
first convolves the TFD in the time, frequency, and
time–frequency directions. These independent layers
are followed by multiple convolutional layers (with
a nonlinear operator) and pooling layers as usually
defined in CNNs. Classification is performed by two
final fully-connected layers of neurons.

3.1. EEG time–frequency transformation
All bipolar EEG channels are low-pass filtered to
30 Hz frequency using a finite-impulse response
(FIR) filter with zero-phase. The filter was designed
using a Hamming window of length 4001 samples.
The EEG was then downsampled from the original
sampling frequency to 64 Hz.

A quadratic time–frequency distribution (TFD) is
used to transform the EEG signal x(t) to the time–
frequency domain ρ(t, f ). TheWigner–Ville distribu-
tion (WVD) is the base distribution for the class of
quadratic TFDs [22]. It is defined as,

W(t, f) =

ˆ ∞

−∞
z(t+ τ

2 )z
∗(t− τ

2 )e
−j2τ fdτ, (1)

where z(t) is the analytic associate of x(t) and z∗(t)
represents the complex conjugate of z(t) [27]. A two-
dimensional smoothing kernel γ(t, f ) is convolved in
time and frequency with the WVD,

ρ(t, f) =W(t, f) ∗
t
∗
f
γ(t, f), (2)

to produce the class of quadratic TFDs. We use a sep-
arable kernel of the form γ(t, f )=G(t)H(f ) to inde-
pendently control smoothing in the time- and fre-
quency directions [22, 28, 29].

The kernel function G(t)H(f ) is defined as a
two-dimensional low-pass filter in the Doppler–
lag domain (ambiguity domain) as g(ν)h(τ ) [22].
Although the main purpose of the kernel is to sup-
press cross- and inner-terms from the WVD, it also
creates a level of abstraction for the TFD and there-
fore the signal. The more smoothing in (2), the more
general the TFD becomes which, in turn, represents a
larger class of signals [28].

The TFD is evaluated on a 5 min segment of
an EEG epoch. This duration was based on previ-
ous analysis using the same training data set [13].
For the discrete implementation of (2) we use a
fast and memory-efficient algorithm that avoids
oversampling in the time- and frequency-directions
[28, 30]. We select short-duration Hann windows for
both the Doppler g(ν) and lag h(τ ) kernels. Shorter-
duration windows provide sufficient abstraction of
the EEG signal with the added benefit of faster com-
putation and reduced memory requirements. The
generated TFD is a 256× 128 matrix, which requires
a small fraction (<0.01%) of memory comparat-
ive to the full (over-sampled) TFD of dimension
38 400× 19 200. The length of the Doppler window
is set to 127-samples and the lag window is set to 63-
samples as approximately half of the kernel window
size (256× 128) used for training on the development
dataset. For testing validation dataset performance, a
grid search is performed in a nested 5-fold cross val-
idation on first training iteration of the development
dataset to evaluate the best length of the Doppler and
lag windows (details in section 4.2).

Before generating the TFD, a simple pre-
whitening filter is used to flatten the spectrum and
emphasise the higher-frequency components of the
TFD. This is implemented using the derivative of
signal, estimated using the forward-finite difference
method [28]. The low frequency components at 0–
2Hz and high frequency components at 30–32Hz are
removed from the TFD to reduce the wrap-around
effects, thus producing a final 256× 112 matrix.
Lastly, the log of the absolute TFD matrix is used
as input to the CNN. Figure 2 shows TFD examples
of 5 min EEG segments with different HIE grades.

3.2. CNNmodel
The proposed CNN architecture comprises of convo-
lutional, rectifying, pooling, and normalisation layers
for feature extraction; with classification carried out
by two fully-connected layers with a softmax layer.
The convolution layer performs a two-dimensional
filter-bank operation using finite-impulse response
filters Yk = Fk ∗t ∗fX for the kth filter with X as
the input matrix and ∗as the convolution operation
without padding. The matrix Fk, which contains the
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Figure 2. Examples of the time–frequency distributions for 1 channel of a 5 min EEG segment for each of the 4 HIE grades.

filter coefficients including a bias term, are learnt dur-
ing training. This layer is followed by a rectified linear
unit (ReLu) non-linearity, which maintains the input
positive values and replaces the negative values by
zero asmax(0,x). Next, a pooling layer after each suc-
cessive convolutional–ReLu layers is used to extract
features. Also, it reduces the amount of parameters to
train and helps to limit overfitting. The pooling layer
takes the maximum value over a prescribed window
for downsampling the volume of the previous layer.
Batch-normalisation layers are used to normalise the
extracted feature maps. For classification, two fully
connected hidden layers, equivalent to themulti-layer
perceptron, are included. Finally, a softmax layer is
used to exponentially normalise the network outputs
and represent them as probabilities corresponding to
the target classes. The detailed layer structure for pro-
posed CNN architecture is illustrated in figure 3.

The TFD (256 × 112) of a 5 min EEG segment is
input to a structure with three parallel convolutional
layers. The first convolutional layer evaluates a feature
map in the time domain by convolving 10 different
(8× 1) filters, ρ(t, f) ∗t Fk. The output of the convo-
lutional layer is passed through the ReLu layer. Next,
a max-pooling layer is included, which takes themax-
imum value from a sliding window segment (size 4
× 4), with [2× 2]-stride downsampling. This results

in a dimension reduction from (256× 112) to (128
× 56) sample-points across 10-feature maps. Further,
the batch normalisation layer is included to normal-
ise the evaluated feature map across each of the 10-
filters. The second convolution layer evaluates a fea-
ture map in the frequency domain by convolving 10
(1 × 8) filters, ρ(t, f) ∗f Fk without padding. Finally,
in the third convolution layer structure, the feature
map is evaluated in time–frequency by convolving
10 (8× 8) filters, ρ(t, f) ∗t ∗fFk with no padding.
Both convolution structures are followed by rectific-
ation, pooling and normalisation process with sim-
ilar configuration as described in the first convolution
structure.

The evaluated time, frequency, time–frequency
feature maps from the convolution structures are
integrated using a concatenation layer of dimension
(128× 56× 30) . Further, a convolution layer is used
to evaluate a feature map by convolving in (4 ×
4) dimension across 60-filters with [2 × 2]-stride
downsampling resulting in a (64 × 28 × 60) fea-
ture map. This layer is followed by another ReLu
layer. Next, the maxpooling layer is used with a (2
× 2) sliding window across 60-filters, using a [2 ×
2]-stride downsampling. It is followed by a batch-
normalisation layer across 60-channels resulting in a
(32× 14× 60) feature map. At the final convolution

6
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Figure 3. Structure of the proposed CNN model. The input is a 2-dimensional TFD matrix of a 5 min EEG segment from one
channel and the output is 4 probabilities corresponding to the target classes. Abbreviations: Conv, convolutional layer; ReLu,
rectified linear unit; MPool, pooling by maximum operator; BNorm, batch normalisation; GAverage, global averaging; FC, fully
connected layer; s, stride; n, neuron.

stage, a (2× 2) convolution evaluates a feature map
across 60-filters, followed by a Relu layer. The max-
imum pooling operation is evaluated on a (2 × 2)
sliding window, downsampling at [2× 2]-stride. The
final layer of this process is a global-average layer
which produces only 1 sample point for all 60 fea-
turemaps. The classification is then performedby two
fully connected hidden layers with 60 and 4 neurons
in each layer. Finally, the softmax layer provides the
output class probabilities of size (1× 4).

The integrated regularisation within the CNN
shared weights and sparse connectivity results in
fewer trainable parameters and therefore limits over-
fitting. Hence, no early stopping criteria was found
necessary in this study. The loss function used was
categorical cross-entropy. Stochastic gradient descent
was used with an initial learning rate of 0.01, this
was reduced by 20% every 5 iterations. Nesterov
momentum was set to 0.9. A batch size of 128 was
used for training and validation.

3.3. Post-processing
The CNN generates an output class label for each
processed 5 min EEG segment from each channel.
We evaluate 2 different post-processing strategies
to estimate the EEG HIE-grade for the 1 h epoch.
Figure 4 illustrates the process for the 2 strategies.

The majority grade from 7 EEG segments (5 min
segments with 50% overlap) is evaluated over each 20
min period, resulting in 3 predictions per channel for
the 1 h epoch. This is repeated for all eight channels,
resulting in a 8× 3 matrix Mcn. The overall grade is
calculated by either the majority vote of this matrix

Mcn (one-step voting) or by first taking the major-
ity votes across channels, each column c of the mat-
rix Mcn for n= 1, 2, 3, and then across the summar-
ised row (two-step voting). The overall structure of
the proposed system is shown in figure 5.

For training and testing, a leave-one-subject-out
(LOSO) cross-validationmethod is used on the devel-
opment dataset (section 2.1.1). In training, for a 1 h
epoch, a TFD matrix is generated for each 5 min
epoch (with 50% overlap) for each channel. All seg-
ments within this hour are assigned the same label.
There will therefore be 21 separate training instances
within each hour-long epoch, each with a different
TFD as input. Based on the 54 infants in the devel-
opment dataset, system performance was calculated
by training the CNN model with the EEG epochs
from 53 infants and testing on the one left out. This
was repeated until all 54 infant’s EEG epochs were
tested to determine the overall classification accur-
acy of system. Next, the trained model of the 1st
LOSO iteration from development dataset is tested
on the unseen 338 EEG epochs from the valida-
tion set (section 2.1.2). The GSVfeat system from
section 2.2.4 is also tested on the validation dataset
using the trained model from 1st the LOSO iteration.

3.4. High-amplitude artefacts
High-amplitude artefacts in the EEG are often pro-
duced by physical movement of the electrode leads.
Movement or handling of the infant can cause the
wires connected to the electrodes to move. Those
infants receiving hypothermia therapy will be sedated
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Figure 4. Post-processing strategies of assigning an overall grade for a 1 h EEG epoch. Gm represents the grade from the CNN
output for each 5 min segment. Mcn represent majority vote of Gm overm= 1, 2,…, 7 for channel c. SMn is the majority vote of
Mcn over channels c= 1, 2,…, 8. GM is the global majority vote evaluated from either matrix Mcn or vector SMn over n= 1, 2, 3.

Figure 5. Proposed EEG HIE-grading system for term infant. Multi-epoch majority evaluates a majority grade from 20 min.
Abbreviations: TFD, time–frequency distribution; CNN, convolutional neural network.

and thus less likely to move or to be moved for feed-
ing, burping, or parental holding, though an ini-
tial period where IV lines and monitoring sensors
are attached may involve frequent handling. Infants
with moderate or severe grades of HIE will be act-
ively cooled and therefore likely to have less high-
amplitude artefact overall compared to those infants
with normal or mild EEG grades. To test this hypo-
thesis, we quantify the percentage of high-amplitude
artefact and compare with the EEG grades and
with the algorithm’s estimated grades. The proposed
algorithm was trained on raw EEG, without an arte-
fact removal stage. However the presence of high-
amplitude artefacts in each 5 min epoch is quantified
and related to classification performance.

We modify an existing approach to detect the
high-amplitude artefact in neonatal EEG [31]. Each
channel of EEG is bandpass filtered from 0.5 to
10 Hz using a 5th order Butterworth infinite-impulse
response (IIR) filter. The system has 2 parts. First,
the system detects very high-amplitude activity. If any
point of the envelope of the signal, estimated from
the analytic signal, exceeds a threshold of 300 µV,
this peak with a time-collar of 10 s before and 10
s after this peak is labelled as artefact [31]. As this
is very high-amplitude activity, it is likely to be

present on more than one channel. Therefore all EEG
channels within this hemisphere and at this time
point are also labelled as artefact. The process iter-
ates for all channels on the both the left and then
right hemispheres. (There are no mid-line channels
in our analysis.) Second, a channel-by-channel pro-
cess detects remaining high-amplitude activity with
an EEG envelope greater than 100 µV (and ≤300 µV
as this is applied after the first part). This time a 3 s
time-collar is applied to the peak and then labelled
artefact for that channel only.

The total percentage of artefact (%artefact) per
epoch is estimated. To test the difference in %arte-
fact for the 4 EEG grades, an omnibus test (Kruskal–
Wallis) is applied and, if significant (P< 0.05), is fol-
lowed by pair-wise comparisons using Tukey’s honest
significant difference test. In addition, the%artefact is
correlated with the grades using the Spearman correl-
ation coefficient with a 95% confidence interval (CI).
This CI is generated using a bootstrap process. Next,
the %artefact is averaged for each entry in the confu-
sion matrix between the proposed algorithm and the
EEG grades. The average %artefact for correct clas-
sifications (diagonal entries of the confusion matrix)
is compared with the average %artefact for the incor-
rect classifications (the off-diagonals of the confusion
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Figure 6. CNN training–validation accuracy and loss over
training iterations. Dark blue and orange shade represents
training results, light blue and yellow shade represent
validation results.

Table 2. Comparison of system performance on development
dataset based on different post processing techniques.

CNN
output

One-step
voting

Two-step
voting

Accuracy 83.3% 87.0% 88.9%
kappa 0.77 0.81 0.84

matrix). To determine if the difference between the
%artefact for correct and incorrect classifications is
significant, the CI of the paired difference is gen-
erated using a bootstrap procedure with random
sampling of the infant EEGs, not the epochs. All boot-
strap processes use 1000 iterations to generate the
distributions.

4. Results

To evaluate the CNN training–validation perform-
ance, the first LOSO training iteration of develop-
ment dataset is split randomly in 90:10 as training–
validation set. The network is trained based on the 1st
LOSO iteration and training–validation results over
learning iterations are shown in the training curve in
figure 6. It converges to a stable validation accuracy
after approximately 2000 learning iterations.

4.1. Training results
Within the LOSO cross-validation on the devel-
opment dataset, the effect of the different post-
processing techniques on system performance using
the 5 min EEG segments is illustrated in table 2. The
CNN output in table 2 is evaluated based on major-
ity vote from a total of 184 segments (23 per chan-
nel) from all 8 channels within an 1 h EEG epoch.
The one-step voting summarises over time (20 min)
and channels simultaneously; the two-step voting first
summaries over channels and then over time. The
two-step voting shows highest system performance
and thuswas used to analyse the proposed systemper-
formance in the final system pipeline.

Table 3. Confusion matrix based on the convolutional neural
network output with two-step voting.

Table 4. Comparison of the proposed with existing methods
developed on the same database.

TFDfeat
[7]

GSVfeat
[10]

IBIfeat
[11]

CNN1d
[13]

Proposed
method

Accuracy 77.8% 87.0% 77.8% 81.5% 88.9%
kappa 0.68 0.81 0.68 0.73 0.84

The confusion matrix of the testing results for
the proposed system using two-step voting is presen-
ted in table 3. The green shaded cells along the main
diagonal show the correctly classified segments and
the pink shaded cells indicate the groups with highest
number of falsely classified EEG epochs. It shows that
48/54 (88.9%) EEG epochs were correctly classified.
In addition, no incorrect classifications were more
than 1 grade away from the correct class.

The performance of existing systems, which were
developed on the same EEG dataset, are compared
with our proposed system in table 4.Of all the feature-
basedmethods, the best performancewas obtained by
GSVfeat method with an accuracy of 87% and level of
agreementκ= 0.81. TheCNN1dmethod shows com-
parable accuracy of 81.5% and level of agreement κ=
0.73. Our proposed system, with an accuracy of 89%
and κ= 0.84 and which operates the need for a fea-
ture extraction strategy, also has comparable accuracy
to the GSVfeat method and outperforms the CNN1d
approach.

And lastly, performance for the proposed system
is compared with the 2 EEG graders in the context of
inter-grader agreement. System performance is κ =
0.76 when using grader-1 annotations and κ = 0.84
when using grader-2 annotations (grader-2 annota-
tions were similar to final consensus annotations used
for training and testing). Both these measures were
below inter-rater agreement between grades 1 and 2,
which was κ= 0.87.

4.2. Validation results
The best kernel parameters for the quadratic TFD
parameters (length of the Doppler and lag windows)
are evaluated from a grid search in a nested 5-fold
cross validation on the first LOSO iteration of the
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Figure 7. Proposed system performance as function of TFD
parameters: Doppler and lag window length. Testing results
using a nested 5-fold cross-validation within the 1st
leave-one-subject-out iteration of the development dataset.

development dataset. Based on this grid search (see
figure 7), we set the length of Doppler and lag win-
dows to 123- and 59-samples for the quadratic TFD.
The proposed CNN model, re-trained on the first
LOSO iteration of development dataset with the selec-
ted kernel quadratic TFD parameters, is tested on the
unseen validation dataset.

The confusion matrix for the proposed system is
presented in table 5(a) for testing on the 338 EEG
epochs from 91 infants from the validation dataset.
Additionally, the leading baseline system (GSVfeat) is
also tested on the validation dataset, performance of
which is illustrated in table 5(b).

The proposed system output correctly classified
235/338 (69.5%) EEG epochs, with κ= 0.54. The
state-of-the-art GSVfeat method correctly classified
192/338 (56.8%) EEG epochs, with κ= 0.39. From
the 146 incorrect classifications, 17 were void because
the systemwas unable to produce an estimate because
of artefact. Table 6 compares accuracy for the 2 meth-
ods. The distribution of difference in accuracy is gen-
erated by a bootstrap procedure with resampling on
the subjects (not the epochs). We find a clear separa-
tion in results: the proposed method has an increase
in accuracy of 12.6% (95% CI: 7.4%–18.2%; P<
0.001) over the state-of-the-art method.

The validation dataset contains EEG epochs
extracted at specific time points, from 6 up to 48 h
after birth (see section 2.1.2). The EEG grade can
change over time, a consequence of clinical inter-
vention or because of the evolving nature HIE. To
model the transition of the EEG grades with time
after birth (postnatal age), we apply a Markov ana-
lysis to determine transition probabilities. Postnatal
age is considered as a categorical variable and there-
fore relative time between EEG epochs is not con-
sidered here. Figure 8 shows the 4-state transition
graphs evaluated for the expert labels and the pro-
posed system. The transition graphs have 4 nodes rep-
resenting each EEG HIE-grade. Each node has 3–4

Table 5. Confusion matrix for validation dataset.

Table 6. Difference in classification performance (accuracy, with
95% confidence intervals) between the proposed and the
state-of-the-art GSVfeat system for the validation dataset.

GSVfeat system Proposed system Difference P-value

56.8% 69.5% 12.6%
(51.8–62.1) (65.3–73.6) (7.4–18.2)

<0.001

outward links, one of which represent the self-loop
edges defining the probability of remaining in the
same state.

The transition probability for the proposed sys-
tem (figure 8(b)) was calculated from the evaluated
two-step voting output for each one-hour EEG epoch.
It showsweaker transition probability between grades
3 and 2 (with P= 0.29) compared to the experts’
transition probability (figure 8(a)) of P= 0.60 and
an increase from 0.40 to 0.48 in probability to main-
tain as grade 3. Whereas, the transition probabil-
ity between grade 4 and 2 shows reasonable trans-
ition as compared to experts’ label in figure 8(a).
The 2-step grade transitions shows weaker probabil-
ity for the proposed system versus the experts labels.
Also, the proposed system has 1 non-zero probabil-
ity (P= 0.04) for 3-step transition; the expert’s labels
have none.

The proposed system performance is also evalu-
ated separately at the different time-points, as shown
in figure 9. The system shows a slight decrease in
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Figure 8. Graphs shows the transition probabilities
between the EEG HIE-grades based on the experts’
labels and automated proposed systems. The values
shown on each graph illustrates the probability of
shifting to the state/grade.

accuracy over time. This could be a consequence of
the unequal distribution of grades at the different
time points in figure 9(b).

In many clinical settings amplitude-integrated
EEG (aEEG) monitors are used which provide a
highly processed and condensed representation of the
EEG. Such monitors use a limited number of elec-
trodes, and typically display two channels of aEEG.
Our system was trained with eight channels of EEG
using a channel independent training strategy. To
show the potential application of this method for use
in an aEEG machine, the trained system was tested
over the validation dataset using only two channels
(F3-C3 and F4-C4). One-step majority voting (over
the 1 h epoch) was used. Performance comparing the
8- versus 2-channels testing is summarised in table 7.

The reduced 2-channel EEG system correctly clas-
sified 235/338 (69.5%) EEG epochs, κ= 0.54 for
the validation dataset, similar to the standard 8-
channel EEG system. Although these summarymeas-
ures (accuracy and kappa) are exactly equal, their
confusion matrices differ.

The impact of artefact on different grades within
the validation dataset is evaluated based on high
amplitude artefact detection strategy described in
section 3.4. The artefact detection procedure labelled
a median of 2.5% (IQR: 0.7%–7.6%; range: 0.0%–
71.3%) of the EEG as high-amplitude artefact in
the validation data set. There was significantly more

artefact (P< 0.001; Tukey’s honesty difference test)
in grade 1 compared with grades 2–4; see figure 10.
There was a significant correlation between %arte-
fact and grades, with r=−0.40 (95% CI: −0.49 to
−0.31; P< 0.001). The average %artefact for the cor-
rect classifications was 6.24% versus 4.68% for incor-
rect classifications. This difference was not signific-
ant: the paired difference was 0.48% (95% CI: −3.67
to 3.18%; P= 0.784).

5. Discussion

The main contribution of this study is a novel
approach of employing quadratic TFDs with a deep
CNN that inherently extracts and optimises features
to classify four EEGHIE-grades. The use of the quad-
ratic TFD provides a layer of signal abstraction to bet-
ter represent the multiple and complex waveforms
associated with different grades of EEG.We show that
the TFD–CNN outperforms that of a CNN operating
on the raw one-dimensional signal [13]. This method
shows significant improvement in both development
and validation datasets compared to the current
state-of-the-art hand-crafted feature based systems
[7, 10, 11].

Other state-of-the-art methods, developed and
tested on different datasets, reported strong perform-
ance metrics. The system developed by Matíc et al
[8] reported an accuracy of 89% for classifying three
EEG-HIE grades on a dataset of 34 neonates. The time
and frequency-based feature system by Guo et al [12]
reported an accuracy of 79.5% for classifying 3 EEG-
HIE grades from 64 neonates. The IBI feature-based
approach by Matíc et al [9], achieved a 4 EEG-HIE
grades classification accuracy of 95% on a dataset of
38 neonates. It is difficult to directly compare these
methods with our proposed method, however, as
the testing datasets and classification grades differed
(3 instead of 4 grades for some methods). The inab-
ility of direct and fair comparison impedes scientific
progress. This limitation underscores the need for
a publicly available data set or a competition-based
platform to compare and rank methods using the
same validation data and grading scheme.

The proposed system was trained and tested on
the development dataset of 54 1 h epochs from
54 neonates. This enabled a fair comparison with
our group’s existing methods: TFDfeat [7], IBIfeat
[11], CNN1d [13], and GSVfeat [10]. The larger
data set, of 338 1 h epochs from 91 neonates, was
left for validation only. This unseen data set allows
for a better estimate of the generalisation error as
there is a natural tendency, even unconsciously, to
tune algorithms even within the theoretical unbiased
leave-one-out cross-validation process. The leading
GSVfeat system [10] for 4-EEG HIE-grades classific-
ation was considered as state-of-the-art system and
tested on the same dataset for direct comparison. The
baseline GSVfeat system reported in table 5(b) shows
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Figure 9. Performance for the proposed system over the different time points. (a) Accuracy with 95% confidence interval (CI) and
(b) distribution of grades in the data set vary for the different time points; n is the total number of epochs and therefore neonates
at each time point.

Table 7. Testing performance for the reduced versus full montage
(accuracy, with 95% confidence intervals) over the validation
dataset.

2-Channel
system

8-Channel
system Difference P-value

69.5% 69.5% 0.0%
(65.5%–70.0%) (65.3%–73.6%) (−3.4%–4.0%)

0.880

an overall accuracy of 56.8% for classifying 4-EEG
HIE-grades compared to our proposed system with
69.5% accuracy.

As illustrated in table 5(a), the misclassification
is usually only 1 grade away, with limited exceptions;
one such exception is a grade 4 classified as a grade 1.
On inspection, we found that there was considerable
noise activity in the form of spikes and sharp waves,
particularly over the left hemisphere (figure 11). Dur-
ing the initial EEG review, the neurophysiologist
ignored these artefacts and based the grading decision
on the extensive low-amplitude background present
throughout the recording.

Since our proposed system determines the grade
based on majority output instances over 5 min dur-
ation segments across all channels, the algorithm’s
decision was likely influenced by the artefact rather
than the low-amplitude activity. Our system did not
include an artefact detection or rejection module.
This suited our development process, which included
a relatively artefact-free data set. The validation data-
set however does contain more artefacts than the

Figure 10. Presence of high-amplitude artefact for the 4
EEG grades in validation dataset. Tukey’s honest
significance tests shows differences between grade 1 and
grades 2 to 4 (∗∗∗ represents P < 0.001).

development set. These could explain, in part, the
drop in performance from the development to the
validation dataset.

The proposed system shows gradual decline in
performance for the validation dataset after the 6 h
time-points, as shown in figure 9. HIE being an
evolving injury, the transition of grade can improve
in some cases and worsen in others. As per the expert-
labels transition shown in figure 8, the strongest grade
transitions are self transitions (i.e. no transition),
particularly with grade 1. The 2nd strongest are with
a decrease in grade and only very weak transitions
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Figure 11. Representation of a period of artefact presence in grade 4 EEG misclassified as grade 1 in validation dataset.

Figure 12. Example of EEG grade transition with
progressed post-natal age (time after birth) for one
newborn.

up a grade (P< 0.1), and no transitions (other than
4 to 2 with P= 0.04) between 2 grades. Thus, such
transition could results in misclassification when an
hour-long EEG epoch is close to the border between
two grades. An example of grade transition in pro-
gressive time-points and evaluated by proposed and
baseline system (GSVfeat) is shown in figure 12.

Here, the grade progresses from 4 to 1 over the
transition from 6 to 48 h. Our proposed system fol-
lows this trend with 3/5 correct classifications. The
baseline system similarly follows this trend but only
with 1/5 correct classifications. The misclassifications
for the proposed system is incorrectly holding the pre-
vious time-point grade. These grades may be more
difficult to classify as the injury and matching EEG
is evolving continuously, even within the 1 h epochs.
The post-processing component of our proposed sys-
tem produces a discrete label only without any form
of certainty in this decision. There may be clinical
value in including a certainty metric in addition to
the decisive labelled output. This could be construc-
ted in a similar fashion to that described in Ahmed
et al [10], by first averaging the probabilities from
the CNN of the four individual grades across the
channels and then combining them to form a single
likelihood measure. A confidence interval on this

measure could be constructed from the proportion of
classified grades for all the 5 min segments across the
1 h epoch.

The channel independent nature of our proposed
system allows for the use of a reduced number of
channels, as would be required in the widely used
aEEG monitors. From table 7, it is clear that the
performance using only two channels (F3-C3 and
F4-C4) over the validation dataset is very similar to
that obtained using all eight bipolar channels. This is
not unexpected as HIE is a global injury. There may
be advantages to a reduced montage, in particular
for use with the common 2-channel aEEG machines.
Nonetheless, other factors should also be considered.
Although our proposedmethod is channel independ-
ent, future methods may incorporate spatial inform-
ation such as connectivity measures. Visual assess-
ment of the EEG may be more reliable when using
a full montage, rather than just two channels. EEG
is mostly used for seizure surveillance of neonates
in the NICU. Multiple studies have demonstrated
that full-montage EEG is superior to a reduced chan-
nel montage when detecting seizures, for example
see [32, 33].

The proposed system uses a bandpass (derivat-
ive) filter and the log of the TFD, which is some-
what similar to the construction of the aEEG in
that lower and higher frequencies are suppressed and
amplitude is compressed by the log function. Similar
in conception to the aEEG, the TFD transformation
provides a level of abstraction—the aEEG by time-
compression and the TFD by suppressing phase-
differences between signal components [22, 28]. As
much as there are similarities however, there are also
many differences: the nonlinear filter of the aEEG dif-
fers to the forward-finite difference which approxim-
ates a derivative function; the aEEG has a log-linear
scale, whereas the TFD uses the log of the absolute
value; and probably most significant, the aEEG is
a compressed time-domain signal whereas the TFD
represents components in the time–frequency plane.

Within the validation dataset, we find a larger per-
centage of high-amplitude artefacts in the normal–
mild epochs comparative to the %artefact in the
other 3 grades (P< 0.001), which may be associated
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with increased movement. This is likely due to the
fact that these infants are firstly less encephalopathic
and therefore more alert, and secondly less likely
to be cooled with associated sedative medication.
The potential danger with this finding is that an
algorithm could use the very distinct characterist-
ics of high-amplitude to help determine the grade.
Movement artefacts are not generated by cortical
activity and therefore should not aid classification
of EEG grades. This is a similar problem to the
issue of correctly classifying images based on text,
such as copyright or watermarks, rather than the
image itself. The proposed algorithm does not seem
to suffer this same fate, as we found no difference
(P= 0.784) in the%artefact between the correct- and
incorrect-classification epochs. This could be because
the algorithm was trained on clean data, with min-
imal artefacts. It will be important for the next itera-
tion of algorithms to develop a system to remove arte-
facts from EEG, and for the algorithm to cope with
missing data segments, before training on a less cur-
ated data set.

The CNNs were developed specifically for two-
dimensional (2D) image data. EEG is a time-domain
signal that has important information present in both
time and frequency domains. Representing EEG in
the joint time–frequency domain is an appropriate
transformation for the highly non-stationary signal,
revealing the time-varying structure in a low signal-
to-noise environment. Quadratic TFDs have being
used in a variety of neonatal EEG applications [22, 28,
29], including EEG HIE-grading [7]. The 2D nature
of the TFDs are a perfect fit for the 2D network struc-
ture of CNNs. We find better performance using the
2D CNNwith the TFD compared to the performance
of the 1D CNN using raw EEG data [13]. The flex-
ibility of the 2D network allows for the extraction of
features along the time-, frequency-, and joint time–
frequency directions of the TFD, thus representing a
more diverse feature set compared to time-domain
alone.

Our first CNN approach [13] extracted feature
maps from the raw EEG signal in the time domain.
This approach improved on both the TFDfeat [7]
and IBIfeat [11] methods, but was not as accurate
as the GSVfeat [10] system. However, we found that
transforming the EEG to the time–frequency domain
and using 3 independent CNN structures to evalu-
ate important convolutional features in the time, fre-
quency, and time–frequency domain improved per-
formance. This increase in accuracy may be due to
the following: (1) the time–frequency representation
will increase the signal-to-noise ratio as noise is typic-
ally spread across time and frequency whereas the sig-
nal is often localised [22], (2) although CNNs can be
adjusted for 1-dimensional signals, they were original
designed for 2-dimensional signals and thereforemay
bemore suited to this domain, (3) the time–frequency

distribution adds a level of abstraction to the sig-
nal representation, thus increasing generalization
[28, 29], and (4) our proposed CNN can extract fea-
tures associated with changes in the time, frequency,
and time–frequency direction which adds an extra
dimension to the network compared with just time-
convolution only.

A CNN approach for neonatal EEG analysis
has been shown to outperform feature-based meth-
ods in seizure detection [34, 35] and sleep staging
[14]. Although requiring significant computational
resources during training, once trained, the networks
are computationally efficient [36] and can be eas-
ily implemented in hardware platforms with limited
resources [36]. In comparison to feature-basedmeth-
ods, CNNs have been shown to be robust to noisy
labels and increase in performance with increasing
data, unlike feature-based methods [37]. CNNs can
learn high-level features of the EEG, which in turn
can provide greater robustness to intra-class variab-
ility compared to feature-based methods [34, 35].

6. Conclusion

We present a novel deep-learning approach for
grading EEG HIE-abnormalities based on quad-
ratic TFDs of newborn EEG. The CNN architec-
ture can learn relevant time, frequency, and time–
frequency features to classify the 4 EEG HIE-grades.
The developed system achieved greater accuracy com-
pared with the state-of-the-art EEGHIE-grading sys-
tems, without the need to create complex feature
sets. The method is channel independent and works
well with a 2-channel montage. Such an automated
system could help assist around the clock clinical
decisionmaking for neonates with hypoxic-ischaemic
encephalopathy.
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