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SUMMARY

Filoviruses, including Ebola andMarburg, cause fatal
hemorrhagic fever in humans and primates. Under-
standing how these viruses enter host cells could
help to develop effective therapeutics. An endoso-
mal protein, Niemann-Pick C1 (NPC1), has been
identified as a necessary entry receptor for this pro-
cess, and priming of the viral glycoprotein (GP) to a
fusion-competent state is a prerequisite for NPC1
binding. Here, we have determined the crystal struc-
ture of the primed GP (GPcl) of Ebola virus bound to
domain C of NPC1 (NPC1-C) at a resolution of 2.3 Å.
NPC1-C utilizes two protruding loops to engage
a hydrophobic cavity on head of GPcl. Upon enzy-
matic cleavage and NPC1-C binding, conformational
change in the GPcl further affects the state of the in-
ternal fusion loop, triggering membrane fusion. Our
data therefore provide structural insights into filovi-
rus entry in the late endosome and the molecular ba-
sis for design of therapeutic inhibitors of viral entry.
INTRODUCTION

The filovirus family Filoviradae, including the genera Ebolavirus

and Marburgvirus, can cause a rapidly lethal hemorrhagic fever

in humans, and at present, no clinically approved antiviral thera-

peutics are available. Since 1967, Marburg virus has emerged

multiple times, with modern strains showing greater mortality

(Geisbert et al., 2007; Malherbe and Strickland-Cholmley,

1968; Siegert et al., 1968; Towner et al., 2006). The Ebolavirus

consists of five recognized species, including Zaire, Sudan,
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Reston, Bundibugyo and Tai Forest viruses, four of which

(except the Reston virus) can infect humans (Kuhn et al., 2013;

Kuhn and Jahrling, 2010). Among these filoviruses, Ebola virus

(EBOV) and the Marburgvirus (MARV) Angola variant cause the

most severe diseases, with case fatality rates reaching �90%

(Feldmann and Geisbert, 2011; Sullivan et al., 2009). Recently,

since December 2013, a historically unprecedented EBOV

outbreak has occurred in the West Africa, causing more than

25,000 human infections and over 10,000 related deaths as of

May 18th, 2015. Under this urgent situation, we are called for

great efforts to develop the vaccines and antiviral therapeutics,

which needs a comprehensive and decent understanding of

the pathogenesis and molecular basis of EBOV infection.

Regarding the infection by filoviruses, including EBOV, the pri-

marily infected cells are macrophages and dendritic cells. But

the viruses exhibit a much broader cell tropism and can infect,

upon primary infection, most of the cell types, including epithelial

and non-epithelial cells, with the exception of lymphocytes and

other non-adherent cells (Dube et al., 2010). Host cell attach-

ment factors such as C-type lectins, including DC-SIGN (den-

dritic-cell-specific ICAM3-grabbing non-integrin; also known

as CD209) and L-SIGN (liver and lymph node SIGN; also known

as CLEC4M) and several cell-surface proteins such as integrins,

T cell immunoglobulin and mucin domain-containing (TIM) pro-

teins, and tyrosine protein kinase receptor 3 (TYRO3) family

members have been shown to mediate the entry of filoviruses

on the cell surface (Alvarez et al., 2002; Jemielity et al., 2013;

Kondratowicz et al., 2011; Shimojima et al., 2007; Simmons

et al., 2003; Takada et al., 2000, 2004; Wang et al., 2015). These

attachment factors, however, do not function as authentic entry

receptors (Brindley et al., 2011; Schornberg et al., 2009).

Following binding to the cell surface, filoviruses are internalized

by a macropinocytosis-like process and subsequently trafficked

through early and late endosomes (Mulherkar et al., 2011; Nanbo
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Figure 1. Model of NPC1 Bound to the Primed EBOV GP and Overall

Structure of NPC1-C

(A) The full-length EBOV GP was primed by cathepsin L and B in the late en-

dosome, and the highly glycosylated 130 kDa GP1 subunit was cleaved into a

19 kDa GP1, generating a primed form of GP (GPcl). Then, the GPcl binds to

the domain C of NPC1 molecule (NPC1-C), which is an endosomal 13-trans-

membrane protein with three large luminal domains (domains A, C, and I).

(B) Crystal structure of NPC1-C. The helices (a and h) are colored in cyan, the b

strands are colored in magenta, and the loops are colored in light pink. The

disulfide bonds are colored in yellow. NPC1-C displays a helical core structure

surrounded by several b strands with two extended loops.

(C) Topological secondary structure of NPC1-C. Secondary elements are

shown as cylinders and arrows for helices and b strands.

See also Figures S1, S2, and S3 and Table S1.
et al., 2010; Saeed et al., 2010). The viral genome then pene-

trates into the cytoplasm after fusion of the viral envelope with

the membrane of the late endosome. In the cytoplasm, the viral

genome is replicated and transcribed, and new viral proteins are

synthesized to assemble progeny virions, which bud from the

cell surface (Bharat et al., 2011; Feldmann et al., 2013). Given

its place at the initial step of virus infection, the entry process
represents an ideal target for antiviral intervention: stopping

the virus before it enters the cell.

The trimeric glycoprotein (GP) spike on the envelope of filovi-

ruses mediates all stages of virus entry, including attachment,

entry, and fusion (Lee and Saphire, 2009). Like all the other

Class I viral fusion proteins, the EBOV GP is synthesized as a

single polypeptide that is subsequently cleaved by furin-like

proteases into GP1 and GP2 subunits, which remain together

through an inter-subunit disulfide bond and non-covalent inter-

actions. In contrast to other Class I viral fusion proteins, how-

ever, the simple furin cleavage event is not sufficient to prime

EBOV GP (Neumann et al., 2007; Wool-Lewis and Bates,

1999). After entering into the cell, the virus is eventually traf-

ficked to late endosomes, where GP is further primed to remove

some ‘‘cap’’ components, thereby triggering the induction of the

crucial membrane fusion event, which leads to viral penetration.

The functional EBOV GP priming is mediated by the cysteine

proteases cathepsin B and cathepsin L (Chandran et al.,

2005; Schornberg et al., 2006), which cleave GP1 within the

b13-b14 loop (Dube et al., 2009; Hood et al., 2010; Lee et al.,

2008). Cathepsin cleavage removes �60% of the amino acids

from GP1, including the mucin-like domain, the glycan cap,

and the outmost b strand of the proposed receptor binding re-

gion (Dube et al., 2009; Lee et al., 2008), resulting in a primed

form of GP (named GPcl, the 19 kDa GP1 plus GP2) (Figure 1A).

Unlike the full-length GP, the primed GPcl could bind to an en-

dosomal membrane protein Niemann-Pick C1 (NPC1) (Miller

et al., 2012), which is an indispensable host entry factor for

EBOV infection (Carette et al., 2011; Côté et al., 2011). NPC1

is a ubiquitously expressed protein with multiple transmem-

brane domains and resides primarily in the limiting membranes

of late endosomes and lysosomes (Carstea et al., 1997; Davies

and Ioannou, 2000). It functions to aid cholesterol egress out

of late endosomes for re-distribution to cellular membranes

(including endoplasmic reticulum and plasma membrane) in

the assistance of a soluble NPC2 protein (Sleat et al., 2004).

Further studies have revealed that the second luminal domain

(Domain C) of NPC1 (NPC1-C) is responsible for the binding

to GPcl (Figure 1A) (Miller et al., 2012). However, how GPcl

binds to NPC1 remains elusive, and structural study should be

carried out to investigate the molecular features of the binding

interface, which will guide further development of small antiviral

molecules and antibodies for prevention and/or treatment of

EBOV infection.

Here, we have determined the crystal structures of free

NPC1-C and its complex with GPcl. The results revealed that

NPC1-C displays a helical structure core surrounded by several

b strands and contains two extended loops protruding outward

for ligand interactions. Further GPcl/NPC1-C complex structure

indeed shows that NPC1-C utilizes the two protruding loops to

engage a hydrophobic cavity on the head of GPcl. Despite a

low affinity between NPC1-C and GPcl as revealed by the bio-

physical analyses, upon enzymatic cleavage and NPC1-C bind-

ing, several conformational changes are shown to be induced in

GPcl. After conformational changes, the uplift of the short 310 he-

lix in the b3-a1 loop likely helps to release the N-terminal portion

of the internal fusion loop (IFL), thereby triggering the membrane

fusion. The mutagenesis work in NPC1-C further confirmed that
Cell 164, 258–268, January 14, 2016 ª2016 Elsevier Inc. 259



the protruding loop 2 plays amore important role in the binding of

NPC1-C to GPcl.

RESULTS

Structure of NPC1-C
The 1,278 residue human NPC1 contains 13 predicted trans-

membrane-spanning helices and 3 large luminal domains, do-

mains A, C, and I (Figure 1A), the overall structural features of

which remain to be illustrated. The crystal structure of the first

luminal domain (domain A, also called N-terminal domain,

NTD) is previously reported, showing a helical structural fold

that contains a deep pocket for binding of sterols (Kwon et al.,

2009). The structure information of the second and third luminal

domains (domains C and I, respectively) of NPC1, however, are

uncharacterized. Here, we used the pET21a expression vector

to produce human NPC1-C (residues 374 to 620) in E. coli

BL21 (DE3), and the protein exists as insoluble inclusion bodies.

Then the inclusion bodies were refolded to obtain soluble

NPC1-C, which behaves as a single monomeric peak in gel filtra-

tion (Figure S1A). Some droplet-like crystals were obtained using

the sitting drop vapor diffusion crystallization method, and the

best crystal diffracted to a high resolution of 2.0 Å. As there is

no homology structural model, the crystal structure of NPC1-C

was determined by using single wavelength anomalous disper-

sion (SAD) phasing method with the help of a gold derivative.

After several rounds of refinement, the final Rfree and Rwork

reached 21.9 and 18.2, respectively (Table S1).

Overall, NPC1-C is mainly composed of seven a helices in the

center as a core and seven b strands surrounding the core, with

two protruding loops (Figure 1B). The first protruding loop (loop

1) is localized between b2 and b3 strands, while the second pro-

truding loop (loop 2) is between a4 and a5 helices (Figure 1B).

NPC1-C contains four cysteine residues, all of which were

involved in forming disulfide bonds (C468-C479, C516-C533)

(Figure 1C). Through analysis of primary protein sequence,

NPC1-C has seven potential N-linked glycosylation sites, six of

which locate in the loops, while one locates at the tip of a4 helix

(Figure S1B). No glycans are observed in the crystal structure

because the NPC1-C protein is expressed in bacterial cells

that lack post-translational glycosylation modifications. How-

ever, the surface exposure of the seven sites indicates their

accessibility for N-glyco-transferases.

The intact luminal NPC1-C consists of residues 372 to 640. In

our crystal structure, only residues 384 to 624 are visible (Fig-

ure S2). We cannot see the electron density for the N-terminal

12 amino acids and C-terminal 16 amino acids (Figure S2), indi-

cating that these regions might be flexible loops. It is assumed

that, with these flexible N-terminal and C-terminal loops, the

domain C can protrude from the endosomal membrane (Fig-

ure S3) and be easily bound by the primed GP molecule.

NPC1-C Bound to the GPcl with a Low Affinity
The mucin-deleted ectodomain of EBOV GP (GP-ectoDmucin)

was expressed in insect cells using baculovirus expression sys-

tem and purified as a single homotrimeric peak by gel filtration

(Figure S4A) following the previously reported method (Lee

et al., 2008). Subsequently, thermolysin was used to cleave the
260 Cell 164, 258–268, January 14, 2016 ª2016 Elsevier Inc.
GP-ecto protein to obtain GPcl, which also exists as a similar

homotrimeric peak with relatively smaller size in the gel filtration

(Figure S4A), following the previously developed method (Hashi-

guchi et al., 2015). The thermolysin, a protease that functions at

neutral pH, can substitute for the cathepsin enzymes in priming

GP (Schornberg et al., 2006). As expected, GP1 is cleaved into a

19 kDa protein moiety after thermolysin digestion (Figure S4A),

resembling the version of GP component responsible for recep-

tor binding in the endosome.

In order to test the active interactions between purified

NPC1-C and GPcl proteins, we performed surface plasmon

resonance (SPR) experiments to explore the binding affinity of

these two proteins using a BIAcore 3000 instrument. The GP-

ectoDmucin or GPcl protein was immobilized on a CM5 chip,

which was then flown through with the NPC1-C protein. Before

we tested the NPC1-C protein, we first used 2G4 antibody

(a member of the ZMapp cocktail (Qiu et al., 2014), which shows

active binding capacity to the stem region of EBOV GP protein)

as a positive control, confirming that the GP-ectoDmucin and

GPcl protein on the chip remain in the native prefusion state (Fig-

ure S4B). We found that 2G4 binds to GP-ectoDmucin and GPcl

protein with similar binding affinities (8.2 nM versus 3.8 nM)

(Figure S4B). As expected, GP-ectoDmucin does not bind to

NPC1-C (Figure 2A), while GPcl binds to NPC1-C with a low af-

finity of 158 micromolar (mM) (Figures 2B and 2C). This binding

affinity is much lower than that of some other highly pathogenic

viruses such as MERS-CoV and SARS-CoV, which is among the

nanomolar (nM) range (Lu et al., 2013).

In order to evaluate effect of the glycosylations in NPC1-C pro-

tein on binding of GPcl, we expressed glycosylated NPC1-C pro-

tein in 293T mammalian cells. This glycosylated NPC1-C protein

exists as a dispersing band in the SDS-PAGE with an average

molecular weight of about 55 kDa (Figure S5). Further SPR ex-

periments revealed that the glycosylated NPC1-C does not

bind to GP-ectoDmucin (Figure 2D) but binds to GPcl with a

comparable low affinity of 140 mM (Figures 2E and 2F) to the re-

folded NPC1-C protein (158 mM). It indicates that the glycosyla-

tions in NPC1-C have no effect on the binding of GPcl.

Complex Structure of NPC1-C and GPcl
The NPC1-C and GPcl were incubated together at a molar ratio

of 1:1, and then crystallization screen was performed with the

mixed protein complex. Initially, low-resolution-diffractive crys-

tals were obtained, and after optimization of crystallization con-

dition, a high-resolution-diffractive dataset was finally collected

at the synchrotron facility. The complex structure was deter-

mined by molecular replacement at a resolution of 2.3 Å.

Structural analysis of the bound GPcl demonstrates that the

cathepsin enzymes indeed cleave the GP protein within the

b13-b14 loop (Figure 3A), and only residues 31 to 188 of GP1

subunit and residues 509 to 598 of GP2 subunit are visible in

the crystal structure. After cathepsin cleavage, the glycan cap

and mucin domain components would be removed (Figure 3A).

The solved complex structure reveals that NPC1-C binds the

membrane-distal head of GPcl with a perpendicular angle (Fig-

ure 3B). NPC1-C mainly uses its two protruding loops to engage

a hydrophobic cavity in the head of primed GP1 (Figure 3B). The

hydrophobic cavity was formed by residues from the a1 helix, the



Figure 2. Binding Affinity of GPcl Bound to NPC1-C

(A) BIAcore diagram of refolded E. coli-expressed NPC1-C protein bound to the GP-ectoDmucin protein. The refolded NPC1-C shows no binding to the

GP-ectoDmucin.

(B and C) BIAcore diagram and saturation curve of refolded NPC1-C protein bound to the GPcl protein. The refolded NPC1-C binds to the GPcl with a low affinity

and a fast kinetics.

(D) BIAcore diagram of glycosylated 293T-expressed NPC1-C protein bound to the GP-ectoDmucin protein. The glycosylated NPC1-C also shows no binding to

the GP-ectoDmucin.

(E and F) BIAcore diagram and saturation curve of glycosylated NPC1-C protein bound to the GPcl protein. The glycosylated NPC1-C binds to the GPcl with a

similar low affinity and a fast kinetics. Response units were plotted against protein concentrations. The KD values were calculated by the BIAcore 3000 analysis

software (BIAevaluation Version 4.1).

See also Figures S4 and S5.
b4, b7, b9, and b10 strands, and the b9-b10 and b12-b13 loops

(Figure 3B). The protruding loop 1 of NPC1-C contacts one side

of the cavity, while the protruding loop 2 inserts into the cavity

(Figure 3B). In the protruding loop 1, seven residues (Y420,

Q421, Y423, P424, S425, G426, and D428) are involved in the

interaction (Figure 3C, top), among which residues Y423 and

P424 contribute most of the atom-to-atom contacts (Table 1).

In the protruding loop 2, six residues (D501, D502, F503, F504,

V505, and Y506) participate in the binding process (Figure 3C,

top), and residues F503, F504, and Y506 play the major role by

contributing the majority of the tight hydrophobic interactions

with the head cavity of GPcl (Table 1). Moreover, residue D501

of NPC1-C forms a hydrogen bond with residue T83 of GPcl in

the cavity (Figure 3C and Table 1). Reciprocally, the hydrophobic

cavity of GPcl consists of residues V79, P80, T83, W86, G87,

F88, L111, E112, I113, V141, G145, P146, C147, A152, and

I170, while the other residues of K114, G118, S142, G143, and

T144 form a hydrophilic patch contacting the protruding loop 1

with polar interactions (Figure 3C, bottom). Of these polar con-

tacts, the NPC1-C residue Q421 forms a hydrogen bond with

the GPcl residue T144, and the NPC1-C residue D428 could

form a potential salt bridge with GPcl residue K114 in the hydro-

philic patch (Figure 3C and Table 1).
Structural Comparison between GP and GPcl
Before GP is cleaved by the cathepsin enzymes, the binding site

for NPC1-C is shielded by the glycan cap (Figure 4A). The b14

strand forms a hydrogen bond network with the b9 strand, and

two aromatic residues F225 and Y232 insert into the hydropho-

bic cavity in the head of GPcl. By contrast, NPC1-C takes advan-

tage of four aromatic residues (Y423, F503, F504, and Y506) and

one hydrophobic residue P424 to interact with the hydrophobic

cavity. Of special importance, residue F503 inserts into the cavity

at a deeper position (Figure 4B). Thus, the binding of NPC1-C

mimics the interaction between the glycan cap and the cavity

but likely with a better binding capacity by providing more aro-

matic residues. Interestingly, a recent study revealed that a

similar hydrophobic cavity is found in the primed Marburg virus

GP protein, and the cavity can be targeted by a neutralizing anti-

body MR78 (Hashiguchi et al., 2015). MR78 binds to the cavity

mainly through two aromatic residues F111.2 and Y112.2 (Fig-

ure 4C), with a similar hydrophobic interaction in the binding of

NPC1-C to GPcl.

Through comparison between the unboundGP and the NPC1-

C-bound GPcl, several conformational changes are observed.

Two most dominant changes occur in the binding site of

NPC1-C, including the b7-b8 loop and the a1 helix. In reference
Cell 164, 258–268, January 14, 2016 ª2016 Elsevier Inc. 261



Figure 3. Complex Structure of NPC1-C Bound to GPcl

(A) The bound GPcl structure. The visible portions of GP1 and GP2 subunits are colored in green and yellow, respectively, and the other invisible or cleavage-

removed portions are colored in gray.

(B) Overall complex structure. The NPC1-C uses its two protruding loops to bind to the head of GPcl at a perpendicular angle.

(C) Surface representations of interacting residues in the NPC1-C and GPcl. The residues responsible for the binding in the NPC1-C (top) are colored in blue, and

the interacting residues in the GPcl (bottom) are colored in orange. The NPC1-C mainly utilizes aromatic residues to engage the cavity of the GPcl, which mainly

consists of hydrophobic residues.

See also Table S1.
to that in the unbound GP, the b7-b8 loop moves downward,

whereas the a1 helix goes upward upon engagement with

NPC1-C (Figure 5A). With themovement of the a1 helix, the short

310 helix in the b3-a1 loop raises upward correspondingly (Fig-

ure 5A). In the unbound GP, residue N73 in the beta turn forms

a hydrogen bondwith themain-chain carboxyl oxygen of residue

K510, which is in the N-terminal portion of the internal fusion loop

(IFL) (Figure 5B). The interaction can compromise the electric

repulsion between K510 and R559 (in the HR1 helix of GP2) (Fig-

ure 5B). In the bound GPcl, due to the uplift of the short 310 helix,

residue N73 does not interact with residue K510, and the side

chain of K510 points inward and easily generates an electric

repulsion with residue R559 (Figure 5C). The unfavorable interac-

tion likely helps to release the IFL and therefore make ready to

trigger the membrane fusion in the late endosomes.

Mutagenesis Confirms the Key Interaction Residues
In order to clarify the interactions between the NPC1-C and

GPcl, we performed mutagenesis work with NPC1-C and used

the SPR experiment to test the binding. The structural analyses

in the above section revealed that residues Y423, P424, F503,

F504, and Y506 play the major role by contributing most of the

interactions. Thus, we substituted these five sites with alanine

(A) or glycine (G) residues, including quintuple substitution, dou-

ble substitution (Y423&P424 or F503&F504), and single substitu-
262 Cell 164, 258–268, January 14, 2016 ª2016 Elsevier Inc.
tion. Unfortunately, the quintuple-A mutant (Y423A&P424A&

F503A&F504A&Y506A), double mutant (Y423A&P424A), and

two of the singlemutants (Y423G and Y506G) cannot be refolded

(Figures S6 and S7). As expected, the quintuple-G substitution

(Y423G&P424G&F503G&F504G&Y506G) in NPC1-C abolishes

its binding to GPcl (Figure 6A). The double mutant in loop 1

(Y423G&P424G) dramatically reduces the binding affinity, and

the double mutants (both F503A&F504A and F503G&F504G)

abolish the binding (Figures 6B–6D). The single mutants in loop

2 (F503G, F504G, F503A, F504A, and Y506A) similarly abolish

the binding to GPcl, as observed for the quintuple mutant (Fig-

ures 6E–6I). However, the single mutants in loop 1 (P424G,

Y423A and P424A) can keep the binding capacity to GPcl but

with slightly lower affinities (Figures 6J–6L), compared with the

wild-type NPC1-C. Taken together, themutagenesis work points

out that the protruding loop 2 contributes more to the GPcl

binding.

DISCUSSION

Virus-cell membrane fusion is the means by which all enveloped

viruses, including devastating human pathogens such as filovi-

rus, influenza virus, and human immunodeficiency virus (HIV),

enter cells and initiate the life cycle of virus infection (Backovic

and Rey, 2012). This membrane fusion process is executed by



Table 1. Interaction between GPcl and NPC1-C

GPcl Contactsa NPC1-C

V79 3, 2, 4 Y423, F504, Y506

P80 2, 19, 1 D501, Y506, L528

T83 7, 9, 3 D501, F503, Y506

W86 11 F503

G87 4 F503

F88 3, 14 D502, F503

L111 2, 3 F503, F504

E112 3 F504

I113 6, 6 F503, F504

K114 8, 1 Q421, D428

G118 1 Q421

V141 10, 5, 4 Y423, P424, F504

S142 6, 16, 8, 12, 3 Y423, P424, S425, G426, F504

G143 6, 1, 2, 4 Q421, Y423, G426, F504

T144 4, 13, 2, 5, 6 Y420, Q421, F503, F504, V505

G145 4, 2, 1 F503, F504, V505

P146 3, 5, 4 D501, D502, F503

C147 1 D502

A152 2 F503

I170 1 F503
aNumbers represent the number of atom-to-atom contacts between the

GPcl residues and the NPC1-C residues, which were analyzed by the

Contact program in CCP4 suite (the distance cutoff is 4.5 Å).
one or more viral envelope glycoproteins, including one that is

generally defined as the fusion protein. As viral fusion proteins

can mediate virus entry and genome release, leading to infec-

tion, they are increasingly exploited as targets for antiviral inter-

ventions (Harrison, 2015). The fusion can occur either on the cell

plasma membrane or endosomal membrane (Harrison, 2015).

With major breakthroughs in our understanding of the proteins

or protein complexes that mediate membrane fusion between

enveloped viruses and their host cells, the fusion trigger can

be classified into four major types: (1) interaction of the fusion

protein with a cell-surface receptor; (2) sequential interactions

with a cell-surface receptor and co-receptor/s; (3) exposure to

low pH environment in endosomes after entering the cell by a

general ‘‘swallow’’ process (e.g., endocytosis); and (4) sequential

interactions with a cell-surface receptor followed by exposure

to low pH environment in endosomes (White et al., 2008). After

fusion trigger, the fusion protein would undergo a series of

marked conformational changes (White et al., 2008). A key early

event is the exposure of the fusion loop (or fusion peptide), which

is otherwise either buried or fastened in the native fusion protein

(Harrison, 2015; White et al., 2008). When the fusion loop or

fusion peptide is released, it binds to the target membrane, form-

ing a rod-shaped intermediate, which connects the viral and

targetmembranes. Next, the fusion protein bends approximately

in half by conformational changes and draws the viral and

target membranes into close proximity, finally resulting in the

two membranes to merge (Harrison, 2015; Wang et al., 2005;

White et al., 2008).
It seems that EBOV fusion does not follow the above-

mentioned four types of fusion-trigger manners, and the viral

GP needs first to be primed inside the endosome, after entering

the cell by cell-surface receptor or co-factor induction, to expose

its endosome-receptor binding domain for its fusion trigger

(White et al., 2008). There is an EBOV receptor residing in the

endosome, and therefore a low pH environment is needed to

facilitate conformational changes in the primed GP after its en-

dosomal receptor binding (Brecher et al., 2012; Gregory et al.,

2011; Schornberg et al., 2006). It has been identified that the

endosome-residing NPC1 is the endosome-receptor to bind to

the primed GP (Carette et al., 2011; Côté et al., 2011). It has

been shown that GP is processed by cathepsin L and B to yield

a primed GP (GPcl) for its full function to trigger the membrane

fusion (Chandran et al., 2005; Schornberg et al., 2006).

NPC1-C domain has been proposed to be the binding partner

of the primed GP (Miller et al., 2012).

In this study, we present the structural evidence that NPC1-C

indeed binds to the primed EBOV GP, and SPR experiments

reveal that the binding affinity is low. Since the binding affinity

between individual NPC1-C and the primed GP is low, an

obvious question raised here would be how the primed GP can

efficiently bind to the endosomal receptor NPC. We can see

that there are two possibilities: either the confinement in the

late endosomes makes the local concentration of NPC1 to be

very high, in which case a dissociation constant in the order of

100 mM would be sufficient, or that additional domains of

NPC1 also contribute to the binding affinity. These possibilities

or beyond should be pursued in the future.

The receptor binding region for NPC1-C is mainly a hydropho-

bic cavity in the head of the primed GP and is contacted by the

two protruding loops of NPC1-C. Upon enzymatic cleavage and

NPC1-C binding, we have observed several conformational

changes in the GPcl, of which the upward movement of a short

310 helix in the b3-a1 loop likely helps to release the N-terminal

portion of the IFL in the GP2 subunit, which is probably triggering

the membrane fusion. As the crystal structure of free GPcl is not

resolved yet, we do not know if it is cathepsin cleavage that in-

duces a membrane-fusion-priming conformational change in

GPcl or the binding of GPcl by NPC1-C. However, our data sup-

port the notion that there should be a fifth fusion triggering type,

i.e., exposure to a low pH environment in the late endosome and

interaction with an endosomal receptor. The Marburgvirus has a

similar hydrophobic cavity in its head of the primed GP (Hashigu-

chi et al., 2015) and also needs NPC1 for viral fusion (Carette

et al., 2011; Côté et al., 2011). This fusion-triggering mechanism

likely represents a unique feature for all the filoviruses.

The structural data of the GPcl/NPC1-C complex have imme-

diately pointed toward the development of therapeutic agents

that target their binding interface as the strategies to treat infec-

tions by EBOV and other filoviruses. Previously, compounds

have been found to potentially inhibit EBOV entry by targeting

the NPC1 molecule (Côté et al., 2011). There are two classes

of NPC1-interacting compounds that can hamper the filovirus

entry and infection, typified by compound 3.47 and compound

U18666A (Côté et al., 2011). The former compound was shown

to competitively block the primed GP binding to the membrane

(Côté et al., 2011), and according to our structural information,
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Figure 4. NPC1-C Mimics Similar but Stronger Interactions like the Glycan Cap in the Unprimed GP

(A) In the unprimed GP structure, the glycan cap utilizes two aromatic residues, F225 and Y232, to insert into the hydrophobic receptor binding cavity in the head

of GPcl.

(B) NPC1-C takes advantage of four aromatic residues (Y423, F503, F504, and Y506) and one hydrophobic residue P424 to interact with the hydrophobic cavity.

In particular, the residue F503 inserts into the cavity at a deeper position. Thus, the binding of NPC1-C mimics the interaction like the glycan cap but likely with a

better binding capacity by providing more aromatic residues.

(C) An MARV-neutralizing antibody MR79 targets the hydrophobic binding cavity of MARV GP through aromatic residues (F111.2 and Y112.2).
this compound probably binds to the two protruding loops of

NPC1-C, which should be explored in the future. By contrast,

the latter compound cannot block the binding of primed GP to

the NPC1-C but rather binding to a different site on NPC1 and

causing endosomal calcium depletion, similar to other calcium

channel inhibitors targeting the two-pore channels (TPCs) (Sa-
264 Cell 164, 258–268, January 14, 2016 ª2016 Elsevier Inc.
kurai et al., 2015). A full-length structure of NPC1 molecule is

ideal to illuminate the true nature of the molecular basis of these

inhibitors’ effect, which should be pursued in the future, though

we solved the NPC1-C domain structure in this study. In addition

to designing inhibitors targeting NPC1, our data also provide

another important direction for inhibitor design. By targeting
Figure 5. Conformational Changes in

the GPcl upon Enzymatic Cleavage and

NPC1-C Engagement

(A) Comparison of bound GPcl (GP1 in green and

GP2 in yellow) and unbound GP-ectoDmucin (gray

glycan cap is not shown here). Three conforma-

tional changes are observed in the bound GPcl,

including sites I, II, and III. At site I, the b7-b8 loop

moves downward; at site II, the a1 helix raises

upward. Accompanied with the raising a1 helix, an

upward movement of the 310 helix in the b3-a1

loop occurs at site III.

(B) Zoomed view of the site III in the unbound GP-

ectoDmucin. The residue N73 in the 310 helix could

form a hydrogen bond with the residue K510 in the

N-terminal portion of the IFL. This interaction

could separate the electric repulsion between

K510 and R559 (in the HR1 helix of GP2).

(C) Zoomed view of the site III in the bound GPcl.

The upward-moved residue N73 does not form a

hydrogen bond with the residue K510, and the

electric repulsion between the K510 and R539

may help to release the IFL and trigger the mem-

brane fusion.



Figure 6. Alanine/Glycine-Scanning Mutagenesis Experiments on NPC1-C

(A–I) BIAcore diagrams of quintuple-G, Y423G&P424G, F503G&F504G, F503A&F504A, F503G, F504G, F503A, F504A, and Y506Amutants of NPC1-C binding to

the GPcl. These nine mutants abolish the binding to the GPcl.

(J) BIAcore diagram and saturation curve of P424G mutant of NPC1-C binding to the GPcl. The P424G mutant can keep binding to the GPcl with an affinity of

213 mM, which is slightly lower than that of wild-type NPC1-C.

(K) BIAcore diagram and saturation curve of Y423A mutant of NPC1-C binding to the GPcl. The Y423A mutant can keep binding to the GPcl with an affinity of

166 mM, which is slightly lower than that of wild-type NPC1-C.

(L) BIAcore diagram and saturation curve of P424A mutant of NPC1-C binding to the GPcl. The P424A mutant can keep binding to the GPcl with an affinity of

281 mM, which is slightly lower than that of wild-type NPC1-C. Response units were plotted against protein concentrations. The KD values were calculated by the

BIAcore 3000 analysis software (BIAevaluation Version 4.1).

See also Figures S6 and S7.
the hydrophobic binding cavity in the head of the primed GP,

some therapeutic agents, such as peptide inhibitors or small

molecules, which can easily penetrate the cell membrane and

reach the primed GP in the late endosomes, can be developed.

Recently, a cross-reactive human antibody MR78 was identified

to target this hydrophobic binding cavity of both MARV and

EBOV (Hashiguchi et al., 2015). MR78 can neutralize the MARV

but cannot neutralize the EBOV (Flyak et al., 2015), which might

result from the fact that the hydrophobic binding cavity of MARV

GP is partially exposed, whereas the cavity of EBOV GP is fully
shielded by glycan cap before cathepsin cleavage in the endo-

some. The antibody cannot easily penetrate the cell membrane

and reach the primed GP in the late endosomes, whereas the

peptide inhibitors and small molecules can execute it. These pre-

vious studies, together with our study, provide a map by which

therapy with cross-reactive antibodies and small inhibitors of en-

try could be developed. Otherwise, recent research advances in

the nucleoprotein and its chaperoned VP35 protein also provide

key targets for therapeutic intervention (Dong et al., 2015; Kirch-

doerfer et al., 2015; Leung et al., 2015).
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In conclusion, our results presented in this study for the

structural basis of primed EBOV GP bound to its endosome-

residing receptor NPC1 expand our understanding in the fusion

trigger mechanism of enveloped viruses and provide valuable

information for the design of therapeutics against infections by

filoviruses.

EXPERIMENTAL PROCEDURES

Protein Production and Crystallization

The cDNAs encoding domain C residues 374–620 of NPC1 were cloned into

pET21a vector with a C-terminal His6-tag. The NPC1-C mutants were con-

structed by site-directed mutagenesis kit. The NPC1 domain C proteins

(NPC1-C) were expressed in Escherichia coli strain BL21 (DE3) as inclusion

bodies and then refolded in vitro using the method as previously described

(Shi et al., 2011). The refolded NPC1-C proteins were then concentrated and

purified by gel filtration on a HiLoad 16/60 Superdex 75 PG column (GEHealth-

care). The fully glycosylated NPC1-C protein was expressed in 293T cells

using the pCDNA4.0 vector and purified by metal affinity chromatography us-

ing a HisTrap HP 5 ml column (GE Healthcare) and then further purified by gel

filtration on a HiLoad 16/60 Superdex 200 PG column (GE Healthcare). The

EBOV transmembrane-and-mucin-domains-removed GP (GP-ectoDmucin)

protein was constructed as previously described (Lee et al., 2008) and

expressed in baculovirus expression system using Sf9 cells (Shi et al., 2013;

Stevens et al., 2004; Zhang et al., 2010). Soluble GP-ectoDmucin protein

was harvested from the culture supernatants bymetal affinity chromatography

and purified by gel filtration on a HiLoad 16/60 Superdex 200 PG column (GE

Healthcare). To mimic endosomal protease cleavage and produce primed

EBOV GP (GPcl), which was capable of NPC1 binding, 1 mg of EBOV GP-

ectoDmucin protein was incubated with 5 mg thermolysin overnight and puri-

fied on a Superdex 200 column.

All the crystals were obtained by using the sitting drop vapor diffusion

method with 1 ml protein mixing with 1 ml reservoir solution. Diffractive crystals

of free NPC1-C protein were obtained in a condition consisting of 0.07 M

sodium acetate trihydrate (pH 4.6), 5.6% (w/v) polyethylene glycol 4,000,

and 30% (v/v) glycerol at the protein concentration of 5 mg/ml. Derivative

crystals were obtained by soaking NPC1-C crystals overnight in mother liquor

containing 1 mM KAuCl4.

To obtain the complex crystals of NPC1-C bound to GPcl, the individual pro-

teins were in vitro mixed at a molar ratio of 1:1 and incubated at 4�C for about

2 hr before concentrating and being used for crystallization. The high-quality

complex crystals were obtained in a reservoir solution of 15% (v/v) pentaery-

thritolpropoxylate, 0.2 M sodium chloride (pH 5.5), and 0.1 MMES-NaOH with

a protein concentration of 10 mg/ml.

Data Collection and Structure Determination

For data collection, all crystals were cryo-protected by briefly soaking in reser-

voir solution supplemented with 20% (v/v) glycerol before flash-cooling in

liquid nitrogen. All the datasets were processed with HKL2000 software (Otwi-

nowski andMinor, 1997). The structure of NPC1-Cwas determined by the SAD

methodwith anomalous signal method using Au derivative with SHELXD (Usón

and Sheldrick, 1999) and Phaser (Read, 2001). The complex structure was

solved by molecular replacement method using Phaser with the solved

NPC1-C structure and previously reported GP structure (PDB code, 3CSY)

as the search models. The atomic models were completed with Coot (Emsley

and Cowtan, 2004) and refined with phenix.refine in Phenix (Adams et al.,

2010), and the stereochemical qualities of the final models were assessed

with PROCHECK (Laskowski et al., 1993). Data collection, processing, and

refinement statistics are summarized in Table S1.

SPR Analysis

The SPR analysis was performed using a BIAcore 3000 machine with CM5

chips (GE Healthcare) at room temperature (25�C). All the proteins using in

SPR analysis were exchanged to BIAcore buffer, consisting of 10 mM HEPES

(pH 7.5), 150 mM NaCl, and 0.005% (v/v) Tween-20, via gel filtration. The WT

andmutant NPC1-C proteins or antibody 2G4were serially diluted to a serial of
266 Cell 164, 258–268, January 14, 2016 ª2016 Elsevier Inc.
concentrations. The analytes were then used to flow over the chip surface

with the response units measured. The binding kinetics was analyzed with

the software BIAevaluation Version 4.1 using 1:1 Langmuir binding model.
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mitted to Protein Data Bank with accession numbers PDB: 5F18 and PDB:
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