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Abstract: Hirschsprung disease is a congenital malformation where ganglia of the neural crest-
derived enteric nervous system are missing over varying lengths of the distal gastrointestinal tract.
This complex genetic condition involves both rare and common variants in dozens of genes, many
of which have been functionally validated in animal models. Modifier loci present in the genetic
background are also believed to influence disease penetrance and severity, but this has not been
frequently tested in animal models. Here, we addressed this question using Holstein mice in which
aganglionosis is due to excessive deposition of collagen VI around the developing enteric nervous
system, thereby allowing us to model trisomy 21-associated Hirschsprung disease. We also asked
whether the genetic background might influence the response of Holstein mice to GDNF enemas,
which we recently showed to have regenerative properties for the missing enteric nervous system.
Compared to Holstein mice in their original FVB/N genetic background, Holstein mice maintained
in a C57BL/6N background were found to have a less severe enteric nervous system defect and to
be more responsive to GDNF enemas. This change of genetic background had a positive impact on
the enteric nervous system only, leaving the neural crest-related pigmentation phenotype of Holstein
mice unaffected. Taken together with other similar studies, these results are thus consistent with the
notion that the enteric nervous system is more sensitive to genetic background changes than other
neural crest derivatives.

Keywords: enteric nervous system; GDNF; genetic background; Hirschsprung disease; melanocytes;
mouse model; neural crest; pigmentation; regenerative medicine; tissue-resident stem cells

1. Introduction

Hirschsprung disease (HSCR) is a birth defect of the neurocristopathy class char-
acterized by the lack of enteric neural ganglia (aganglionosis) in the distal bowel [1,2].
This occurs because neural crest-derived progenitors of the enteric nervous system (ENS)
have failed to complete their colonization of the gastrointestinal tract during prenatal
development [3]. In absence of ENS innervation, smooth muscles from the affected distal
bowel segment remain tonically contracted, causing a functional intestinal obstruction
(megacolon). Because the ENS influences epithelial barrier function as well, children with
HSCR also have a high risk of enterocolitis leading to sepsis and premature death [4,5].

HSCR is a complex genetic condition characterized by non-Mendelian inheritance [1,6,7],
as best exemplified by variation in disease penetrance and severity between family mem-
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bers carrying a similar set of mutations [8–10]. Current knowledge suggests that most cases
are due to different combinations of rare coding variants, common regulatory variants,
and/or copy-number variants in many genes important for proper colonization of the
developing gastrointestinal tract by ENS progenitors [11,12]. Dozens of such genes have
been identified so far [11–19]. The major HSCR-associated gene is RET (REarranged during
Transfection) [20,21], which codes for a transmembrane tyrosine kinase that is activated
by GDNF (Glial cell line-derived Neurotrophic Factor) upon binding to the co-receptor
GFRα1 (GDNF family receptor alpha-1). Other genes that influence HSCR risk include
transcription factors (SOX10, ZFHX1B, PHOX2B), EDNRB signaling pathway molecules
(EDNRB, EDN3, ECE1), cell adhesion proteins (L1CAM), guidance molecules (SEMA3D),
molecules needed for cell-extracellular matrix interactions (ITGB1 and COL6), and diverse
additional genes (BACE2, NRG1, ERBB2, ADAMTS17, ACSS2) [11,12]. Male sex and tri-
somy 21 are other contributing factors, increasing HSCR risk ~4-fold [7] and ~130-fold [22],
respectively.

Influence of the genetic background on the expressivity of ENS defects has been
reported not only for mouse models of HSCR (with loss-of-function mutation of Sox10,
Ednrb, or Ret) [23–25] but also for other ENS disorders like intestinal neuronal dysplasia
(with loss-of-function mutation of Tlx2 or Kif26a) [26,27]. Almost all these studies tested the
C57BL/6 background (either 6N or 6J substrains), which was compared to other strains—
like BALB/c, C3Fe, and 129S—that differed as a function of the study. The consensus
emanating from these studies is that the C57BL/6 background is the most susceptible to
develop ENS defects. Yet, these studies also revealed that this is not the case for all neural
crest derivatives. The opposite was seen for neural crest-derived melanocytes in Sox10-
mutant mice, which presented a more severe pigmentation defect in the C3Fe background
compared to the C57BL/6 background [25]. A similar disconnection between ENS and
melanocyte defects was also reported in a study investigating the impact of the genetic
background on the phenotype of Ednrb-mutant rats [28].

The Holstein mouse model of HSCR is issued from a pigmentation-based forward
genetic screen aimed at identifying neurocristopathy-associated loci in FVB/N mice [29].
This screen was based on the transgenic rescue of the albino mutation in the tyrosinase gene
(Tyr) [30–32], an approach that can result in non-uniform patterns of pigmentation when
the rescuing Tyr minigene is inserted in a neural crest-relevant locus [29]. Holstein mice
display a fully penetrant recessive phenotype combining unpigmented fur with aganglionic
megacolon [29,33]. This phenotype is due to insertional mutation of a CTCF insulator
element upstream of Collagen-6 alpha-4 (Col6a4) on Chr.9, leading to neural crest-specific
upregulation of this gene [33]. The resulting increase of total collagen VI protein levels
interferes with ENS progenitor migration in homozygous Holstein embryos (HolTg/Tg) [33].
Our analysis of the most distal ENS-containing colon of patients with short-segment HSCR
further revealed that collagen VI protein levels are especially elevated in children also
having trisomy 21 [33], consistent with the presence of two collagen VI genes (COL6A1 and
COL6A2) in a region of Chr.21 that increases HSCR risk when present in 3 copies [34].

Using this model of trisomy 21-associated HSCR (HolTg/Tg) and other models for
male-biased (TashTTg/Tg) [35,36] and EDNRB mutation-associated (Ednrbs-l/s-l) [37] HSCR,
we recently developed a new therapy for HSCR allowing us to generate a new ENS
from tissue-resident ENS progenitors in the otherwise aganglionic colon [38]. Acute
post-natal administration of the potent neurotrophic factor GDNF via rectal enemas was
found to be sufficient not only for inducing ENS ganglia with both neurons and glia but
also for globally improving colon structure and function, thereby preventing premature
megacolon-associated death of a significant number of treated animals [38]. When exposed
to GDNF in vitro, cultured explants of aganglionic bowel from children with HSCR also
developed new neurons [38]. While the origin of GDNF-induced ENS ganglia is not yet
fully understood, about a third of induced neural cells were found to arise from Schwann
cells in extrinsic nerves [38], which are more abundant than normal in the aganglionic
colon of both mice [24,33,35] and humans [39].
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In the current study, we verified if (1) the C57BL/6N background could specifically
worsen the ENS defect of HolTg/Tg mice as previously reported for other mouse models
of HSCR and if (2) this could also impact response to GDNF enemas. Surprisingly, the
ENS phenotype of HolTg/Tg mice maintained in the C57BL/6N background (hereafter
referred to as HolTg/Tg[BL6]) was found to be less severe than for HolTg/Tg mice maintained
in their original FVB/N background (hereafter referred to as HolTg/Tg[FVB]). Accordingly,
the outcome of GDNF enemas in terms of resulting ENS density appeared better for
HolTg/Tg[BL6] than for HolTg/Tg[FVB] mice. The change of genetic background specifically
impacted the ENS, leaving the melanocyte defect of HolTg/Tg unaffected.

2. Results

2.1. Increased Survival of HolTg/Tg[BL6] Mice Compared to HolTg/Tg[FVB] Mice

To determine if changing the genetic background from FVB/N to C57BL/6N could
influence the phenotype of Holstein mice, heterozygous HolTg/+[FVB] mice were back-
crossed with C57BL/6N mice for nine generations. As previously reported for HolTg/+[FVB]
mice [33], the resulting HolTg/+[BL6] presented large areas of unpigmented fur covering
about half of their body (44.2 ± 2.2%; Figure 1a,b). Intercrosses of HolTg/+[BL6] mice yielded
the expected Mendelian ratio of homozygous HolTg/Tg[BL6] mice, which were easily recog-
nizable by their almost entirely unpigmented fur (Figure 1a,b) as previously described for
HolTg/Tg[FVB] mice [33].
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Figure 1. The C57BL/6N genetic background delays megacolon-associated death in HolTg/Tg mice. (a–b) Allele dosage-de-
pendent decrease of pigmentation in P20 HolTg/Tg[BL6] mice. **** p < 0.0001, one-way ANOVA with post-hoc Sidak’s test. 
(c) Comparison of survival rates between HolTg/Tg[BL6] and HolTg/Tg[FVB] mice. **** p < 0.0001, Mantel–Cox test. (d) 
HolTg/Tg[BL6] mice die from complications of megacolon, as evidenced in this euthanized P31 animal by the blockage in the 
distal colon and rectum (arrow) and accumulation of fecal material in more proximal regions (asterisks). 
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Figure 1. The C57BL/6N genetic background delays megacolon-associated death in HolTg/Tg mice. (a,b) Allele dosage-
dependent decrease of pigmentation in P20 HolTg/Tg[BL6] mice. **** p < 0.0001, one-way ANOVA with post-hoc Sidak’s
test. (c) Comparison of survival rates between HolTg/Tg[BL6] and HolTg/Tg[FVB] mice. **** p < 0.0001, Mantel–Cox test.
(d) HolTg/Tg[BL6] mice die from complications of megacolon, as evidenced in this euthanized P31 animal by the blockage in
the distal colon and rectum (arrow) and accumulation of fecal material in more proximal regions (asterisks).
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Yet, HolTg/Tg[BL6] mice markedly differed from HolTg/Tg[FVB] mice in terms of survival
rate. Close monitoring of both colonies during the same period revealed an 8.2-fold increase
in median survival age of HolTg/Tg[BL6] mice (169 days; interval of 28–417 days) compared
to HolTg/Tg[FVB] mice (20.5 days; interval of 14–56 days) (Figure 1c). Regardless of genetic
background, all dying HolTg/Tg mice exhibited typical megacolon-associated symptoms
including abdominal distention, growth delay/weight loss, hunched posture, and ruffled
fur. Accordingly, all of these mice had a narrow distal colon and enlarged mid/proximal
colon (Figure 1d).

The increased survival of HolTg/Tg[BL6] mice further allowed us to test their fertility.
All tested breeding pairs (n = 21) were fertile, producing an average of 6.2 ± 2.1 pups
per litter. However, 43% (9/21) of reproductive HolTg/Tg[BL6] females eventually died of
dystocia. At necropsy, all these females displayed fecal impaction, which appeared to
compress the vagina. Altogether, these observations are consistent with the notion that
the C57BL/6N genetic background specifically decreases the severity of the ENS defect of
HolTg/Tg mice, without influencing their pigmentation defect.

2.2. Short-Segment Aganglionosis and Colonic Dysmotility in HolTg/Tg[BL6] Mice

To confirm that aganglionosis was the underlying cause of megacolon/fecal im-
paction in HolTg/Tg[BL6] mice, we examined their myenteric plexus at P20 via staining for
acetylcholinesterase (AchE) activity (Figure 2a). As previously observed in HolTg/Tg[FVB]
mice [33], the rectum of HolTg/Tg[BL6] mice is completely devoid of myenteric ganglia
which are instead replaced by hypertrophic extrinsic nerve fibers (Figure 2a,b). This agan-
glionic segment is preceded by a transition zone with markedly decreased ENS density
(25.4 ± 3.4% in mutants vs. 38.7 ± 1.1% in controls), while no overt differences are noted
in the proximal colon (Figure 2a,b). In accordance with the increased survival in the
C57BL/6N background (Figure 1c), we further found that the length of ENS-covered
colon is longer for HolTg/Tg[BL6] mice (86.6 ± 1.2%; Figure 2c) than in HolTg/Tg[FVB]
mice (74.2 ± 2.2%, [33]). Interestingly, this analysis also revealed that the majority of
HolTg/Tg[BL6] mice had reached what we previously described as the minimal length
of ENS innervation necessary to avoid blockage in the FVB/N background (between
78–84%, [35,36]; see dashed lines in Figure 1c), suggesting that the same threshold level
applies in the C57BL/6N background.

To verify the functional impact of short-segment aganglionosis in HolTg/Tg[BL6] mice,
we analyzed colonic motility at P20 via the bead latency test (Figure 2d). Although most
HolTg/Tg[BL6] mice were able to expel a rectally inserted glass bead, it took them much
longer than for control C57BL/6N mice (17.1 ± 2.8 min vs. 5.5 ± 1.0 min, respectively).
HolTg/Tg[BL6] mice that have not expelled the bead during the 60-min test were only rarely
observed, whereas this was the norm for HolTg/Tg[FVB] mice [38]. Direct comparison with
the length of the ENS-covered colon revealed a robust inverse correlation between time to
expel the bead and the extent of aganglionosis (Figure 2e). All these data confirm that the
ENS defect is less severe in HolTg/Tg[BL6] than in HolTg/Tg[FVB] mice.
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and aganglionosis combined to an overabundance of extrinsic nerve fibers in the rectum of 
HolTg/Tg[BL6]. Scale bar, 1 mm. (b) Quantitative analysis of the area occupied by the myenteric plexus 
(expressed in % of the image area), using images such as those displayed in (a). Each value is a field 
a view, for a minimum of 3 fields of view per region (n = 3–5 animals per group). Values for the 
aganglionic rectum of HolTg/Tg[BL6] mice were set at 0% by default, to avoid the confounder extrinsic 
nerves. **** p < 0.0001, one-way ANOVA with post-hoc Sidak’s test. (c) Quantitative analysis of the 
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bead. Colored symbols were attributed to all HolTg/Tg[BL6] mice with latency time above average in 
panel d and used to highlight the same mice in panels c and e. r, Pearson’s correlation coefficient. 

Figure 2. HolTg/Tg[BL6] mice display short-segment aganglionosis and colonic dysmotility. (a) Stain-
ing of AChE activity in muscle strips from P20 mice, evidencing hypoganglionosis in the distal
colon and aganglionosis combined to an overabundance of extrinsic nerve fibers in the rectum of
HolTg/Tg[BL6]. Scale bar, 1 mm. (b) Quantitative analysis of the area occupied by the myenteric plexus
(expressed in % of the image area), using images such as those displayed in (a). Each value is a field
a view, for a minimum of 3 fields of view per region (n = 3–5 animals per group). Values for the
aganglionic rectum of HolTg/Tg[BL6] mice were set at 0% by default, to avoid the confounder extrinsic
nerves. **** p < 0.0001, one-way ANOVA with post-hoc Sidak’s test. (c) Quantitative analysis of
the length of ENS-covered colon (in % of total colon length) in P20 mice. The dashed lines refer to
the previously described threshold level interval beyond which megacolon is less likely to occur in
FVB/N mice [35,36]. **** p < 0.0001, two-tailed Student’s t-test. (d) In vivo analysis of colonic motility
in P20 mice using the bead latency test. Time to expel the glass bead after rectal insertion was capped
at 60 min to simplify the analysis without impacting statistical significance. * p < 0.05, two-tailed
Mann–Whitney U test. (e) Correlation between length of ENS-covered colon and time to expel the
bead. Colored symbols were attributed to all HolTg/Tg[BL6] mice with latency time above average in
panel d and used to highlight the same mice in panels c and e. r, Pearson’s correlation coefficient.
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2.3. Col6a4 Overexpression Is Less Extensive in HolTg/Tg[BL6] than in HolTg/Tg[FVB] Mice

Aganglionosis in HolTg/Tg[FVB] mice is due to transgene insertion-induced upreg-
ulation of Col6a4 and accompanying excessive, anti-migratory, secretion of collagen VI
microfibrils by neural crest-derived ENS progenitors [33]. To determine the impact of
the C57BL/6N background on this pathological mechanism, we first analyzed the extent
of colonization by ENS progenitors via whole-mount immunofluorescence staining of
βIII-tubulin. As previously reported for the HolTg/Tg[FVB] line [33], colonization by ENS
progenitors was found to be less extensive in the colon of HolTg/Tg[BL6] embryos in com-
parison to WT controls (Figure 3). However, at both analyzed stages (e12.5 and e15.5), this
phenotype again appears less severe in the C57BL/6N background (83% and 77% of WT
levels at e12.5 and e15.5, respectively; Figure 3) compared to the FVB/N background (52%
and 62% of WT levels at e12.5 and e15.5, respectively [33]).
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Figure 3. Colonization by ENS progenitors has delayed in the colon of HolTg/Tg[BL6] embryos. (a,c) Immunofluorescence
staining of βIII-Tubulin (Tuj1) in whole-mount preparations of embryonic guts at e12.5 (a) and e15.5 (c), with migratory
front indicated by arrowheads. Scale bar, 400 µm (a) and 700 µm (c). (b,d) Quantification of extent of colonization by ENS
progenitors (expressed in % of total colon length) at e12.5 (b) and e15.5 (d), using images such as those displayed in panels a
and c. ** p < 0.01, two-tailed Student’s t-test.

We next sought to analyze Col6a4 expression levels by RT-qPCR, specifically in ENS
progenitors. For this analysis, we thus introduced the Gata4p[5kb]-RFP (G4-RFP) trans-
gene [40] in the HolTg/Tg[BL6] background by breeding—this transgene allowing to recover
of RFP-positive ENS progenitors by fluorescence-activated cell sorting (FACS) [33,41]. Then,
using e12.5 ENS progenitors recovered from these HolTg/Tg[BL6]; G4-RFP embryos as well
as from HolTg/Tg[FVB]; G4-RFP embryos [33], we measured mRNA levels of Col6a4 and
both of the collagen VI gene isoforms required for the production of collagen VI microfibrils
(Col6a1 and Col6a2) [42]. In line with all other phenotypic data, our comparative analysis
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revealed a specific 2-fold decrease of Col6a4 expression levels in the C57BL/6N background
compared to the FVB/N background, without any impact on Col6a1 and Col6a2 levels
(Figure 4a). Using immunofluorescence, we further confirmed that this specific variation
of Col6a4 expression levels similarly impacted the overall production of collagen VI mi-
crofibrils in e12.5 guts. Compared to respective WT controls, the immunofluorescence
signal of collagen VI was found to be either doubled or unaffected in small intestines and
cecum from HolTg/Tg[BL6] embryos (Figure 4b–e), whereas it was previously found to be
tripled in all corresponding regions from HolTg/Tg[FVB] embryos [33]. These results strongly
suggest that the Holstein ENS defect differs in FVB/N and C57BL/6N backgrounds because
associated genetic differences are modulating the impact of the insertional mutation on
Col6a4 gene expression.

2.4. GDNF Enemas Restore Nearly Normal ENS Density and Function in HolTg/Tg[BL6] Mice

Having recently discovered that GDNF enemas can induce a new ENS in the other-
wise aganglionic colon of several mouse models of HSCR (including HolTg/Tg[FVB]) [38],
we wondered if the genetic background might influence the response to this treatment.
To address this question, we used the exact same experimental approach as before and
administered GDNF enemas (10 µL at 1 µg/µL) to HolTg/Tg[BL6] pups once daily between
P4 and P8. Then, we analyzed the response to GDNF treatment via whole-mount im-
munofluorescence staining of HuC/D+ myenteric neurons at P20. As previously observed
in HolTg/Tg[FVB] animals [38], GDNF treatment markedly increased the number of HuC/D+
myenteric neurons in HolTg/Tg[BL6] mice, reaching WT-like levels in ENS-containing colon
(both proximal and distal) and about two-thirds of WT levels in the otherwise aganglionic
rectum (Figure 5a and Figure S1). The magnitude of the response to GDNF enemas thus
appears greater in HolTg/Tg[BL6] mice than in HolTg/Tg[FVB] mice, in which density of
GDNF-induced ENS only reached about a third of WT levels in otherwise aganglionic
distal colon [38].

To confirm the functionality of GDNF-induced myenteric ganglia, we analyzed colonic
motility using the bead latency test. In contrast to untreated HolTg/Tg[BL6] mice for which
one third (2/6) did not expel the bead before the end of the assay (average of 25.6 ± 2.4 min
for the entire group), all GDNF-treated HolTg/Tg[BL6] mice did expel the bead (average
of 13.2 ± 3.0 min) although not as quick as for control C57BL/6N mice (average of
3.2 ± 0.6 min) (Figure 5b). Strikingly, the time needed for GDNF-treated HolTg/Tg[BL6]
mice to expel the bead was also found to be inversely correlated with the percentage of
ENS density in the rectum (Figure 5c). This set of data suggests that GDNF-based correction
of Holstein-associated ENS defect is more efficient in the C57BL/6N background than in
the FVB/N background.
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covered by FACS from HolTg/Tg[BL6]; G4-RFP and HolTg/Tg[FVB]; G4-RFP embryos. ** p < 0.01, two-way ANOVA with post-
hoc Sidak’s test. (b) Double immunofluorescence staining of collagen VI microfibrils (Col6, red) and βIII-tubulin+ neuronal 
progenitors (Tuj1, green) in e12.5 embryonic guts from control C57BL/6 and mutant HolTg/Tg[BL6] embryos. SI, small intes-
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e12.5 C57BL/6 and HolTg/Tg[BL6] guts, using images such as those displayed in panel b. *** p < 0.001, **** p < 0.0001, two-
way ANOVA with post-hoc Sidak’s test. 

Figure 4. The increased gene expression of Col6a4 and secretion of collagen VI microfibrils are both lower in HolTg/Tg[BL6]
embryos than in HolTg/Tg[FVB] embryos. (a) RT-qPCR analysis of Col6a1, Col6a2, and Col6a4 in e12.5 ENS progenitors
recovered by FACS from HolTg/Tg[BL6]; G4-RFP and HolTg/Tg[FVB]; G4-RFP embryos. ** p < 0.01, two-way ANOVA with
post-hoc Sidak’s test. (b) Double immunofluorescence staining of collagen VI microfibrils (Col6, red) and βIII-tubulin+
neuronal progenitors (Tuj1, green) in e12.5 embryonic guts from control C57BL/6 and mutant HolTg/Tg[BL6] embryos. SI,
small intestine. Scale bar, 20 µm. (c–e) Quantitative analysis of collagen VI immunofluorescence signal (in candella [cd] per
µm2) in e12.5 C57BL/6 and HolTg/Tg[BL6] guts, using images such as those displayed in panel b. *** p < 0.001, **** p < 0.0001,
two-way ANOVA with post-hoc Sidak’s test.
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corresponding region (n = 3–5 mice per group, as detailed in Figure S1). Scale bar, 100 µm. (b) In vivo analysis of colonic 
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Figure 5. GDNF-induced neurogenesis in the colon of HolTg/Tg[BL6] pups. (a) Immunofluorescence
staining of HuC/D+ neurons in the myenteric plexus of P20 C57BL/6 controls and HolTg/Tg[BL6] mu-
tants treated or not with GDNF between P4–P8. Insets refer to the average percentage of surface area
occupied by HuC/D+ myenteric ganglia in 3–4 fields of view per corresponding region (n = 3–5 mice
per group, as detailed in Figure S1). Scale bar, 100 µm. (b) In vivo analysis of colonic motility in P20
mice using the bead latency test. Time to expel the glass bead after rectal insertion was capped at
30 min to simplify the analysis without impacting statistical significance. ** p < 0.01, **** p < 0.0001,
two-way ANOVA with post-hoc Sidak’s test. (c) Correlation between myenteric ganglia density and
time to expel the bead for P20 HolTg/Tg[BL6] mice treated with GDNF between P4–P8.
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3. Discussion

In the current study, we first wanted to determine if the genetic background could
influence the expressivity of aganglionic megacolon in mice bearing the Holstein inser-
tional mutation, as observed for human HSCR. Transfer of the Holstein mutation from the
FVB/N to the C57BL/6N background specifically decreased the severity of the collagen
VI-dependent ENS defect of HolTg/Tg mice, without influencing its associated pigmentation
defect. On one hand, this finding thus rules out the possibility that the C57BL/6 back-
ground is a general sensitized background for ENS defects, as previously suggested by
similar analyses of mice mutated for Sox10, Ednrb, Tlx2, or Kif26a [23,25–27]. On the other
hand, the observed genetic background-induced disconnection in severity between these
two neural crest-related phenotypes replicates prior findings made in rodents bearing
mutation of Sox10 or Ednrb [25,28]. These observations are consistent with the notion
that the formation of the ENS is more sensitive to genetic variations than the melanocyte
lineage. This most likely has something to do with the much greater number of genes
required for building a complex structure like the ENS as opposed to the generation of
a single cell lineage (melanocyte in this case). The corollary of this is that the greater
genetic complexity associated with ENS formation obviously provides a richer source of
phenotypically impactful variations.

Our Col6a4 RT-qPCR and collagen VI immunofluorescence data suggest that local
genomic changes around the Holstein transgene insertion site might be one reason for the
observed genetic background effect. The Holstein transgenic insertion is believed to perturb
the insulation activity of a region enriched in CTCF binding motifs separating Col6a4 from
a neighbor region highly transcribed in neural crest cells [33]. In agreement with this
possibility, close examination of this CTCF-enriched region using the Ensembl Genome
Browser revealed the presence of an indel variant immediately downstream of a CTCF
ChIP-seq peak (Figure S2a). As confirmed by Sanger sequencing of DNA amplicons from
our Holstein mouse colonies, the corresponding 12-bp sequence is present in the FVB/N
background but absent in the C57BL/6N background (Figure S2b). The functional impact
of this particular indel variant is currently unknown. However, previous studies in other
pathological contexts suggest that variations flanking CTCF binding sites can influence the
binding of CTCF proteins and thereby insulation activity of corresponding regions [43,44].

Variation in the pathological secretion of collagen VI also provides a plausible expla-
nation as to why GDNF treatments appear more efficient in HolTg/Tg[BL6] mice compared
to HolTg/Tg[FVB] mice. Indeed, the extracellular matrix is a major determinant of GDNF
diffusion and activity [45,46]. Accordingly, levels of collagen VI in the diseased segment
might affect both the distribution of rectally administered GDNF and the subsequent re-
sponse of targeted ENS progenitors. Although the impact on GDNF diffusion in the colon
is currently unknown, we do know that GDNF-induced migration of ENS progenitors
from gut explants is more efficient when collagen VI levels are reduced [33]. Our data thus
add credence to the growing belief that modulation of the extracellular matrix around ENS
progenitors might have therapeutic value for enteric neuropathies [2,47].

4. Materials and Methods
4.1. Animals

Holstein (HolTg/Tg[FVB]) and Gata4p[5kb]-RFP (G4-RFP) single and double transgenics
in the FVB/N background were as previously described [33,40]. Both transgenic alleles
were transferred on the C57BL/6N background via consecutive backcrossing over 5 (for
G4-RFP) to 9 (for Holstein) generations and resulting single transgenic lines were then
intercrossed to generate double transgenics. Genotyping of adult HolTg/Tg[BL6] animals
was made by visual inspection of coat color whereas genotyping of Holstein and G4-RFP
alleles in embryonic tissues was performed by standard PCR using primers listed in
Table S1. For embryo analyses, mice were mated during the night and noon on the day of
vaginal plug detection was designated as e0.5. Euthanasia of pregnant dams or mice used
for postnatal analyses was performed by CO2 inhalation following isoflurane-mediated
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anesthesia. Clinical-grade GDNF (Medgenesis Therapeutix Inc, Victoria, BC, Canada) was
administered to some HolTg/Tg[BL6] pups via rectal enemas (10 µL of a 1 µg/µL solution in
phosphate-buffered saline) once a day for 5 consecutive days from P4 to P8, as previously
described [38].

4.2. Tissue Staining and Imaging

For postnatal tissues, whole colons were dissected from P20 mice, cut longitudinally
along the mesentery, and fixed in 4% paraformaldehyde (PFA) overnight at 4 ◦C. Muscle
layers and associated myenteric plexus were then microdissected from mucosa/submucosa
and subsequently stained for acetylcholinesterase activity [33,48] or via immunofluores-
cence [38], as previously described. For embryonic tissues, whole intestines were dissected
from e12.5 and e15.5 embryos, fixed in 4% PFA for 1 h at room temperature, and then
processed for immunofluorescence staining, as previously described [33]. Details about all
antibodies used in this study are listed in Table S2. All immunofluorescence images were
acquired with 20×/60× objectives on a Nikon A1R confocal unit. To quantify immunoflu-
orescence signal, relevant images were acquired using the exact same settings, and mean
fluorescence intensity in candela/µm2 was determined within 20× fields of view using
the Image J software, as previously described [33]. Images of acetylcholinesterase staining
were acquired with a Leica DFC 495 camera mounted on a Leica M205 FA stereomicroscope
(Leica Microsystems Canada, Vaughan, ON, Canada).

4.3. Bead Latency Test

Distal colonic motility was analyzed using an in vivo bead expulsion assay, as previ-
ously described [38,49]. Briefly, a 2-mm glass bead (Sigma-Aldrich, St. Louis, MO, USA)
was inserted using a probe over a distance of 0.5 cm from the anus of overnight-fasted mice,
under isoflurane anesthesia. Mice were then individually isolated in their cage without
access to food and water, and colonic transit was determined by monitoring the time
required for bead expulsion after insertion. The maximum time allowed for bead expulsion
was set at either 30 or 60 min.

4.4. Fluorescence-Activated Cell Sorting (FACS) and RT-qPCR

Whole intestines were dissected from e12.5 embryos obtained from HolTg/+[FVB];
G4-RFP or HolTg/+[BL6]; G4-RFP intercrosses and individually dissociated at 37 ◦C using a
cocktail of collagenase (0.4 mg/mL; Sigma C2674), dispase II (1.3 mg/mL; Life Technologies
17105-041, Carlsbad, CA, USA) and DNAse I (0.5 mg/mL; Sigma DN25), as previously
described [33]. Single RFP-positive cells (~10,000 per intestine) were recovered from each
preparation using a FACSJazz cell sorter (BD Biosciences, San Jose, CA, USA) and then kept
frozen at −80 ◦C. Following PCR-based genotyping of embryo heads, relevant samples
were individually processed for RNA extraction using the RNAeasy Plus purification
mini kit (Qiagen, Germantown, MD, USA) and reverse transcription (with 50 ng of total
RNA) using the Superscript III kit (Invitrogen, St. Louis, MO, USA), in accordance with
manufacturers’ instructions. RT-qPCR analyses were performed with the Ssofast EvaGreen
Supermix and C1000 Touch thermal cycler (BioRad, Hercules, CA, USA), in accordance
with the manufacturer’s protocol. PCR consisted of 35 cycles of 20 s at 95 ◦C, 40 s at 60 ◦C,
and 60 s at 72 ◦C. Quantitative gene expression relative to Gapdh was calculated by the
2−∆∆Ct method [50]. All primers used for RT-qPCR are described in Table S1.

4.5. Statistical Analysis

For all quantitative analyses, data are expressed as the mean ± standard error of the
mean (SEM). The number of independent biological replicates (n) is indicated either in
the figure or accompanying legend. The significance of differences was determined using
relevant tests in GraphPad Prism, as indicated in figure legends. p values below 0.05 were
considered statistically significant.
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