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CONTEMPORARY REVIEW

Vascular Smooth Muscle Cells in Aortic 
Aneurysm: From Genetics to Mechanisms
Haocheng Lu , PhD; Wa Du , PhD; Lu Ren , PhD; Milton H. Hamblin, PhD; Richard C. Becker , MD;  
Y. Eugene Chen , MD, PhD; Yanbo Fan , MD, PhD

ABSTRACT: Aortic aneurysm, including thoracic aortic aneurysm and abdominal aortic aneurysm, is the second most prevalent 
aortic disease following atherosclerosis, representing the ninth-leading cause of death globally. Open surgery and endovas-
cular procedures are the major treatments for aortic aneurysm. Typically, thoracic aortic aneurysm has a more robust genetic 
background than abdominal aortic aneurysm. Abdominal aortic aneurysm shares many features with thoracic aortic aneu-
rysm, including loss of vascular smooth muscle cells (VSMCs), extracellular matrix degradation and inflammation. Although 
there are limitations to perfectly recapitulating all features of human aortic aneurysm, experimental models provide valuable 
tools to understand the molecular mechanisms and test novel therapies before human clinical trials. Among the cell types 
involved in aortic aneurysm development, VSMC dysfunction correlates with loss of aortic wall structural integrity. Here, we 
discuss the role of VSMCs in aortic aneurysm development. The loss of VSMCs, VSMC phenotypic switching, secretion of 
inflammatory cytokines, increased matrix metalloproteinase activity, elevated reactive oxygen species, defective autophagy, 
and increased senescence contribute to aortic aneurysm development. Further studies on aortic aneurysm pathogenesis and 
elucidation of the underlying signaling pathways are necessary to identify more novel targets for treating this prevalent and 
clinical impactful disease.
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Aortic aneurysm is characterized by a permanent 
increase in the diameter of the aorta (>50% in-
crease). Aortic aneurysm is the second most 

prevalent aortic disease following atherosclerosis and 
accounts for the ninth-leading cause of death overall.1 
The estimated incidence is 2.79 per 100 000 individ-
uals.2 Although an aortic aneurysm can remain as-
ymptomatic for a long time, sudden rupture leads to 
life-threatening hemorrhage with a high mortality rate.1

The aorta is divided into the thoracic aorta (includ-
ing the aorta root, ascending aorta, aortic arch, and 
descending thoracic aorta) and abdominal aorta (su-
prarenal aorta and infrarenal aorta). Aortic aneurysm 
can occur in the thoracic aorta (thoracic aortic an-
eurysm [TAA]) or abdominal aorta (abdominal aortic 
aneurysm [AAA]). The prevalence of AAA is about 3 
times that of TAA.1 TAA and AAA share many similar-
ities but also have distinct features. In this review, we 

summarize recent advancements in aortic aneurysm 
and mainly focus on the role of vascular smooth mus-
cle cells (VSMCs) in this severe disease.

PATHOGENESIS OF AORTIC 
ANEURYSM
The aorta can be divided into 3 layers: intima, media, 
and adventitia. The intima consists of an endothelium 
that supports the internal elastic lamina. A smooth 
and healthy endothelial layer is critical for the aorta 
to maintain an anti-inflammatory and antithrombosis 
phenotype.3 The media is composed of several layers 
of VSMCs and surrounding elastic and connective tis-
sue. The adventitia is the connective tissue surround-
ing the external elastic lamina to anchor the vessel and 
provide blood supply.4 Aortic aneurysm takes place 
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through progressive weakening of the aortic wall, 
which involves all 3 layers. Aortic dissection is caused 
by tearing of the intima and media, resulting in blood 
entering the space between the media and adventitia.4 
Although the pathogenesis of aortic aneurysm remains 
to be fully elucidated, the development of this vascu-
lar disease is highlighted by prominent inflammation, 
gradual loss of VSMCs, and disruption of the extracel-
lular matrix (ECM)4 (Figure 1). Here, we summarize the 
current well-recognized theories/pathways of aortic 
aneurysm pathogenesis.

Genetic Risk Factors in Aortic Aneurysm
Both TAA and AAA have genetic risk factors. Typically, 
TAA has a more robust genetic background than AAA. 
About 20% of patients with TAA inherit risk mutations, 
while patients with AAA typically do not exhibit this 
pattern.5 AAA shares many features with TAA, includ-
ing VSMC death, ECM degradation, and inflammation. 
However, the pathophysiology of AAA development 
is distinct in many respects. The difference in patho-
genesis between TAA and AAA could be attributed to 
their embryological origins.6 VSMCs in the ascending 
aorta are derived from neural crest stem cells and pro-
genitor cells in the second heart field, while VSMCs in 
the descending aorta are derived from somites.7 This 
difference in developmental origin could also lead to 
the distinctive transcriptomic profiles in aortic VSMCs.8 
Linkage analysis and genome-wide association stud-
ies have provided insightful genetic information about 
the etiology of AAA.5 A linkage study performed in 
2004 identified 2 susceptible loci for AAA in the regions 
19q13 and 4q13.9 Large scale genome-wide associa-
tion studies have identified several risk loci including 
rs10985349 (DAB2 interacting protein),10 rs1466535 
(low-density lipoprotein receptor-related protein 1), 
rs6511720 (low-density lipoprotein receptor [LDLR]), 
rs602633 (sortilin-1), rs4129267 (interleukin-6 receptor), 
rs10757274 (CDKN2BAS1/ANRIL [9p21]), rs1795061 

(SET and MYND domain containing 2), rs9316871 
(LINC00540), rs3827066 (PCIF1/MMP9/ZNF335), 
and rs2836411 (ETS Transcription Factor ERG).11 
Intriguingly, AAA risk loci overlap with several athero-
sclerosis risk loci, including 9p21, sortilin-1, and low-
density lipoprotein receptor.5 These findings suggest 
that AAA and atherosclerosis share common path-
ways during disease development.

Transforming growth factor-β (TGF-β) signaling is 
one of the most studied signaling pathways that play 
pivotal roles in vascular development and mainte-
nance. Mutations in TGF-β signaling pathway-related 
genes (TGF-β receptor 1/2, SMAD2/3, or TGFB2/3) are 
associated with TAA formation in heritable connective 
tissue disorders, including Loeys-Dietz and Marfan 
syndromes, highlighting its importance in TAA devel-
opment.5 TGF-β has pleiotropic effects on different cell 
types in the body. Three highly conserved isoforms of 
TGF-β exist in humans: TGF-β1, TGF-β2, and TGF-
β3. They share a common receptor and downstream 
pathway, although they have distinct tissue distribu-
tion.12 TGF-β binds to TGF-βR1 and TGF-βR2 and fa-
cilitates phosphorylation and subsequent activation. 
Downstream TGF-β receptor signaling can be divided 
into 2 different pathways, a SMAD-dependent path-
way and a SMAD-independent noncanonical path-
way.12 The role of the TGF-β pathway in both TAA and 
AAA is still controversial, as the knockout of different 
genes and different intervention methods (knockout or 
neutralizing antibody) give different results.13 It could 
be that TGF-β has multiple downstream pathways (ca-
nonical versus noncanonical pathway) and may play 
different roles in different cell types and at various dis-
ease stages. These controversial results increase the 
difficulty of developing TGF-β–based therapy for aortic 
aneurysm. The recent advancement of genetic studies 
in TAA and AAA has been well summarized in other 
publications.4,5

Inflammation in Aortic Aneurysm
Inflammation is a hallmark of aneurysm development, 
although it has been more extensively studied in AAA. 
Accumulating studies on AAA in both human sam-
ples and mouse models indicate that inflammation is 
a necessary process underlying AAA.4 Samples from 
patients with AAA show massive inflammatory cell in-
filtration.14 Both innate immune cells (mast cells, mac-
rophages, and neutrophils) and adaptive immune cells 
(dendritic cells, B cells, and T cells) have been shown to 
be related to AAA. Neutrophil infiltration occurs in the 
early phase of AAA development, and neutrophils are 
important sources of matrix metalloproteinase (MMP)-2 
and MMP-9. Depleting neutrophils by an antineutrophil 
antibody15 or inhibition of neutrophil recruitment by in-
traperitoneal injection of a neutralizing antibody against 
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family with sequence similarity 3, member D16 reduces 
AAA formation in the elastase mouse model, under-
scoring the importance of neutrophils in AAA develop-
ment. Monocytes are recruited into the aortic wall by 
chemotactic cytokines, including C-C motif chemokine 
ligand 2 and interleukin-617 during AAA development. 
In both human and mouse AAA lesions, macrophages 
produce MMPs, cytokines, and chemokines.18 In ad-
dition, macrophages also exert reparative functions in 
the aortic wall.18 As aortic aneurysms evolve, LY6Clow 
monocytes or segregated-nucleus-containing atypical 
monocytes with reparative potential are recruited to the 
lesions and exhibit anti-inflammatory and pro-resolving 
effects to strengthen aortic wall integrity.18 The role of 
macrophages in AAA has been nicely reviewed18 and 
will not be discussed in detail here.

In TAA development, the role of inflammation is 
less well studied. In a mouse thoracic aortic dissection 
model (β-aminopropionitrile+angiotensin II), neutro-
phil depletion by an anti-Gr-1 antibody decreases the 
dissection incidence, indicating that neutrophils pro-
mote TAA development. Interleukin-6 is also elevated 
in human patients with TAA, and interleukin-6 knock-
out inhibits elastase-induced TAA in C57BL/6 mice.19 
In summary, inflammation representing a critical re-
sponse to vascular injury is an essential component 
for aortic aneurysm development and progression. 
A deeper understanding of this process will help to 

identify novel potential therapeutic targets for aortic 
aneurysm treatment.

ECM Disruption in Aortic Aneurysm
As a critical component of the healthy vascular wall, 
the ECM is synthesized and secreted by different vas-
cular cell types, including VSMCs, endothelial cells 
and fibroblasts.20 The aortic ECM mainly consists of 
collagen, elastin, proteoglycans, and glycoproteins,21 
providing the aorta with the expansion capacity and 
tensile strength. Besides this mechanical function, the 
ECM also modulates VSMC proliferation, adhesion, 
and migration.22 The balance among synthesis, depo-
sition, and degradation maintains ECM homeostasis.4 
The critical role of ECM disruption was revealed by the 
impact of ECM-related protein mutations on TAA de-
velopment.23 ECM degradation is mediated by various 
proteinases, including MMPs, cathepsins, a disintegrin 
and metalloproteinases, and a disintegrin and metal-
loproteinase with thrombospondin motifs.20 In total, 
23 different MMPs have been discovered and can be 
divided into collagenases, matrilysins, gelatinases, 
stromelysins, and membrane-type MMPs. Tissue in-
hibitors of metalloproteinase directly bind to and inhibit 
different groups of MMPs in the vascular wall. In both 
TAA and AAA, MMPs play a pivotal role in ECM remod-
eling.4 In the circumstance of aortic aneurysm, besides 
VSMCs, endothelial cells, and fibroblasts, infiltrated 

Figure 1.  Pathogenesis of aortic aneurysms.
The healthy aorta (left) consists of intimal, medial, and adventitial layers. Vascular smooth muscle cells (VSMCs) and extracellular matrix 
(ECM) maintain integrity of the aortic wall. Aortic aneurysm lesions (right) are characterized by thrombi, infiltration of inflammatory cells 
(neutrophils, macrophages, B and T cells), degradation of the ECM, VSMC phenotypic switching and apoptosis, excessive production 
of cytokines, reactive oxygen species (ROS), and matrix metalloproteinases (MMPs). PVAT indicates perivascular adipose tissue.
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immune cells secrete additional MMPs that further ag-
gravate extracellular matrix degradation.20 Overall, the 
imbalance between ECM proteases and protease in-
hibitors leads to the development of aortic aneurysm.

ANIMAL MODELS FOR MECHANISM 
STUDIES
Animal models provide valuable tools to understand 
disease mechanisms and test novel therapies before 
clinical trials. There have been multiple animal models 
developed to study aortic aneurysm in vivo.24 Although 
animal models cannot perfectly recapitulate all the fea-
tures of human disease, they are still useful in testing 
scientific hypotheses. We have incorporated a com-
parison among different animal models in Figure 2.

Angiotensin II Infusion
Angiotensin II plus hyperlipidemia is the most com-
monly used aneurysm model.25 This model uses a 
combination of continuous infusion of angiotensin II 
by subcutaneous implantation of osmotic pumps and 
hyperlipidemia by Apoe or Ldlr knockout or an adeno-
associated viral vector expressing a gain-of-function 
mutation (D377Y) of mouse proprotein convertase 
subtilisin/kexin type 926 in C57BL/6 mice. This model 
is technically easy to achieve without any sophisticated 
surgery skills. The aortic aneurysm usually appears in 

the suprarenal region, and dissection and hemorrhage 
can also be seen in the aortic root.25 The model shows 
several essential features of human AAA, including ath-
erosclerosis, medial degeneration, intramural throm-
bosis, leukocyte infiltration, and dissection. However, 
the location of AAA in this experimental model is not 
consistent with human AAA, which occurs more often 
in the infrarenal region.

Mineralocorticoid Receptor Agonists Plus 
Salt
In this mouse model, the combination of deoxycor-
ticosterone acetate and salt or aldosterone and salt 
can induce a high incidence of aortic aneurysm and 
an aortic aneurysm may occur in both thoracic and 
abdominal aortas.27 Pathological changes are similar 
to the angiotensin II model, except that atherosclerosis 
is not present in this mouse model.27

Elastase Model
The elastase-induced AAA model consists of ap-
plication of porcine pancreatic elastase either in the 
lumen28 or outside adventitia.29 This model does not 
require a specific genetic background and can be 
used in both mice and rats. Unlike the angiotensin 
II model, aortic dissection is not seen in this model 
and rupture is also uncommon. This model is pri-
marily driven by ECM degeneration and massive 

Figure 2.  Comparison of animal models used for aortic aneurysm studies.
Animal models have been developed to recapitulate features of human aortic aneurysms. Aortic 
aneurysms in rodent species can be induced by several methods, including surgical procedures, 
pharmacological treatments, and genetic manipulations. Each model has its advantages and drawbacks 
when comparing with human aortic aneurysm pathology. AAA indicates abdominal aortic aneurysm; 
AngII, angiotensin II; BAPN, β-aminopropionitrile; ILT, intraluminal thrombus; IMT, intramural thrombus; 
MCR, mineralocorticoid receptor; and TAA, thoracic aortic aneurysm.
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leukocyte infiltration.29 The limitation of this model is 
that atherosclerosis and intramural thrombus are not 
present. In addition, the severity of the aneurysm is 
highly dependent on the porcine pancreatic elastase 
batch.24 The elastase model has recently been em-
ployed in TAA studies by the placement of elastase 
on the thoracic aortic wall,30 further expanding this 
model’s usage.

CaCl2 Model
This procedure is performed by applying cotton gauze 
soaked with CaCl2 to the aortic wall, then adding 
phosphate-buffered saline on the aorta.31,32 CaPO4 
precipitation in the aortic wall was considered the 
driver for AAA formation. The pathology of this model 
shows calcification, elastin breakdown, VSMC loss and 
leukocyte infiltration, but rupture, intramural thrombus, 
or atherosclerosis does not occur.32

β-Aminopropionitrile Model
Lysyl-oxidase (LOX) is an enzyme secreted by VSMCs 
and performs the crosslinking between collagens. 
Loss-of-function mutation of LOX leads to TAA and 
dissection in humans.33 β-Aminopropionitrile, a potent 
inhibitor of LOX, combined with angiotensin II or de-
oxycorticosterone acetate, induces a high incidence of 
both TAA and AAA.34 In this model, aneurysm incidence 
can reach 100%, and rupture is frequent. Histological 
studies indicate elastic fiber breaks, thrombus forma-
tion, and leukocyte infiltration.35

Large-Animal Models
Large animals are more expensive than small animals 
(mice or rats), but they are useful to test endovascu-
lar devices or surgical procedures. There are several 
different ways to generate aneurysm models in large 
animals: (1) aortic patch36 and artificial aneurysm 
graft37; (2) intra-aortic porcine pancreatic elastase in-
fusion38; and (3) aortic dissection with endovascular 
procedures.39 Many drugs effectively preventing aortic 
aneurysm in animal models did not show protective ef-
fects in clinical trials. This inconsistency could partially 
attribute to the limitations of animal models in reca-
pitulating human disease. Better understanding of the 
pathogenesis of aortic aneurysm is the key to lead to 
effective therapies.

ROLE OF VSMCS IN AORTIC 
ANEURYSM
The loss of organized structure of the aorta leads to 
a weakened vessel and subsequent dilatation of the 
aorta. Although other cell types, including endothelial 
cells, neutrophils, macrophages, and lymphocytes, are 

involved in aortic aneurysm development, VSMC dys-
function is crucial for the loss of structural integrity in 
the aortic wall.20 VSMC apoptosis and ECM degenera-
tion are the hallmarks of aortic aneurysm.20 Here, we 
mainly focus on discussing the role of VSMCs in aortic 
aneurysm (Figure 3).

Phenotypical Switching and 
Reprogramming of VSMCs
Healthy VSMCs maintain a quiescent and contractile 
phenotype, but they switch to a proliferative, syn-
thetic, and migratory phenotype in response to vari-
ous pathological stimuli.40 The phenotypic switching 
of VSMCs has been studied extensively in atheroscle-
rosis.41,42 Transcription of contractile genes (transge-
lin, Calponin 1 and actin alpha 2 smooth muscle) is 
mainly controlled by myocardin along with serum re-
sponse factor.43 On the contrary, Krüppel-like factor 
4 is a critical transcription factor promoting VSMC 
phenotypic switching from a contractile to synthetic 
phenotype through several mechanisms, including 
by directly binding to G/C repressor elements and 
by inhibiting serum response factor binding to CArG-
boxes in the target gene promoter.44,45 In addition, 
epigenetic regulation and chromatin remodeling also 
participate in the VSMC phenotypic switching.46,47 
For example, H3K4 dimethylation, H4 acetylation, 
H3K79 dimethylation, and H3K9 acetylation are re-
quired for the myocardin- serum response factor 
complex to access the promoter of VSMC-specific 
markers and contractile genes.48 Treating VSMCs 
with dedifferentiating stimuli (platelet-derived growth 
factor-BB, injury, oxidized phospholipids) removes 
these histone modifications, leading to transcrip-
tional suppression of these VSMC-specific genes.46 
The phenotypic switching of VSMCs has also been 
documented in both TAA and AAA development. 
Phenotypic modulation takes place in early aneurysm 
development in both human aneurysm samples and 
mouse models.47,49 Recently, VSMC clonal expan-
sion was observed in angiotensin II–induced aortic 
aneurysm by using Myh11-CreERt2/Rosa26 Confetti 
mice. Proliferative VSMCs showed a decreased ex-
pression of smooth muscle cell (SMC) markers and 
increased expression of phagocytic markers.50 In 
summary, VSMC phenotypic switching leads to vas-
cular dysfunction and contributes to the pathogen-
esis of aneurysm formation.

In recent years, single-cell RNA sequencing has 
expanded the toolbox to understand cell hetero-
geneity in complex tissues. In a Marfan syndrome 
mouse model (Fbn1C1039G/+), single-cell RNA se-
quencing combined with an SMC lineage tracing 
study has shown a specific SMC population in the 
diseased aorta marked by decreased expression 
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of SMC markers (myosin heavy chain 11 and actin 
alpha 2 smooth muscle), increased ECM synthesis 
(collagen type I alpha 1 chain and lumican), elevated 
dedifferentiation (Krüppel-like factor 4, and increased 
proliferation.51 In a different aortic aneurysm mouse 
model (hypercholesterolemia+Tgfbr2 ablation), a sim-
ilar strategy was used, and the results demonstrated 
that in aortic aneurysm formation, a subset of VSMCs 
transform to mesenchymal-like stem cells and then 
give rise to various types of cells, including adipo-
cytes, chondrocytes, osteoblasts, and macrophage-
like cells.52 This process is dependent on Krüppel-like 
factor 4, as Klf4 knockout largely abrogates aortic an-
eurysm development in mice.52 Maintaining the con-
tractile force of VSMCs is essential for aortic function 
and structure. The implication of force generation in 

the development of TAA is evidenced by genome-
wide association studies showing that mutations of 
genes encoding filaments (actin alpha 2 smooth mus-
cle and myosin heavy chain 11), kinases (myosin light 
chain kinase and protein kinase cGMP-dependent 1), 
ECM glycoproteins (LOX, fibrillin 1, or microfibril as-
sociated protein 5) are associated with TAA.5 Thus, 
disruption of VSMC force generation would lead to 
TAA and aortic dissection.

Inflammation and MMPs in VSMCs
Similar to atherosclerosis, inflammation is always 
present in the aneurysmal lesion as an immune re-
sponse to vascular injury.18 VSMCs can secrete 
multiple cytokines (interleukin-6, monocyte chemoat-
tractant protein-1, interleukin-1β, and tumor necrosis 

Figure 3.  The role of VSMCs in aortic aneurysms.
VSMCs play a critical role in the development of an aortic aneurysm. In pathological conditions, VSMCs 
undergo phenotypic switching, cell death (apoptosis and necroptosis), oxidative stress, inflammation, 
senescence, and insufficient autophagy, contributing to aortic aneurysm development. Critical signaling 
pathways have been identified to mediate VSMC dysfunction in aortic aneurysms. The schematic 
illustration also shows the genes/pathways either decreased/inactivated (blue) or increased/activated 
(red) in aortic aneurysm development. ARHGAP18 indicates Rho GTPase activating protein 18; AT1R, 
angiotensin II receptor type 1; AT2R, angiotensin II receptor type 2; ATG5, autophagy related 5; ATG7, 
autophagy related 7; BCL2, B-cell lymphoma 2; CCN3, cellular communication network factor 3; ERK1/2, 
extracellular signal-regulated kinases 1/2; iNOS, inducible nitric oxide synthase; JAK, Janus kinase; KLF4, 
Krüppel like factor 4; mTOR, mammalian target of rapamycin; MYOCD, myocardin; NAMPT, nicotinamide 
phosphoribosyltransferase; NF-κB, nuclear factor kappa B; NOX4, nicotinamide adenine dinucleotide 
phosphate oxidase 4; NRF2, nuclear factor erythroid 2-related factor 2; PPARγ, peroxisome proliferator-
activated receptor-gamma; RIP1/3, receptor interacting serine/threonine kinase 1/3; SIRT1, sirtuin1; SRF, 
serum response factor; STAT, signal transducer and activator of transcription; and TFEB, transcription 
factor EB.
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factor-α)53 and chemotactic factors to recruit inflam-
matory cells to the aortic wall.4 Multiple signaling path-
ways, including Janus kinase-signal transducer and 
activator of transcription,54 mammalian target of ra-
pamycin,55 nicotinamide adenine dinucleotide phos-
phate oxidase 4,56 nuclear factor kappa B,57 switch/
sucrose nonfermentable–related, matrix-associated, 
actin-dependent regulator of chromatin, subfamily d, 
member 1,58 extracellular signal-regulated kinases 
1/259 and Rho kinase60 promote VSMC inflammation 
and aortic aneurysm progression. By contrast, several 
signaling pathways, including Rho GTPase activating 
protein 18,61 nuclear factor erythroid 2-related factor 
2,62 cellular communication network factor 363 and 
peroxisome proliferator-activated receptor-gamma,64 
attenuate VSMC inflammation and AAA progression. 
Inflammatory VSMCs further aggravate local inflamma-
tion, forming a vicious cycle.20

Several MMPs from VSMCs are implicated in the 
development of aortic aneurysm. MMP-2 and MMP-9 
are the most studied MMPs produced by VSMCs.20 
MMP-2 is constitutively expressed in VSMCs, while 
MMP-9 expression is inflammation inducible.65 
Transcriptome analysis of VSMCs isolated from human 
AAA samples shows increased MMP-2 and MMP-9, 
which can further be augmented by recruited macro-
phages.66 The increases in MMP-2 and MMP-9 con-
tribute to ECM degeneration in the aortic wall. Besides 
MMP-2 and MMP-9, VSMC-derived MMP-3 can be 
activated by macrophage-derived netrin-1 and pro-
motes AAA formation in mice.67 Thus, it is critical to 
restore the balance between ECM proteases and pro-
tease inhibitors in VSMCs to inhibit aortic aneurysm 
formation and progression.

Oxidative Stress in VSMCs
Oxidative stress is high in plasma and aneurysmal 
segments from subjects with AAA.68 Reactive oxygen 
species (ROS) contribute to AAA development by in-
fluencing VSMC inflammation, MMP activation, and 
apoptosis. Antioxidants including vitamin E, edara-
vone, ursodeoxycholic acid, lipoic acid, apocynin, and 
folic acid inhibit aortic aneurysm in mice.69 Consistent 
with pharmacological inhibition, genetically engineered 
transgenic mouse models demonstrated that exces-
sive oxidative stress promotes AAA development. 
Nicotinamide adenine dinucleotide phosphate oxi-
dases produce ROS in cells.56 Deletion of the nicotina-
mide adenine dinucleotide phosphate oxidase subunit, 
p47phox attenuates angiotensin II–induced AAA in 
Apoe-/- mice.70 Inducible nitric oxide synthase dele-
tion reduces ROS and inhibits CaCl2-induced AAA.71 
On the other hand, catalase (a critical H2O2 scaven-
ger) overexpression in VSMCs protects against AAA 
induced by either angiotensin II72 or CaCl2

73 in mice. 

ROS is also elevated during TAA development.74 
VSMCs from Loeys-Dietz or Marfan syndrome mice 
exhibited reduced mitochondrial respiration and an 
increased ROS level.75 Nox4 deletion ameliorates aor-
tic root dilatation in Marfan syndrome (Fbn1C1039G/+) 
mice.74 Although the actual mechanisms of how ROS 
is generated and how ROS affects VSMC biology are 
not fully clear, it is well recognized that excessive ROS 
leads to VSMC dysfunction and subsequent aortic wall 
disruption in aortic aneurysm development.4

VSMC Loss in Aortic Aneurysm
The loss of VSMCs is a common phenomenon in an-
eurysmal lesions,20 where VSMC death may occur 
through multiple signaling pathways. The elucidation 
of these pathways can help us develop drugs target-
ing VSMCs to maintain normal VSMC population and 
function in the diseased aorta.

Apoptosis

Apoptosis is mediated by 2 distinct pathways, the in-
trinsic pathway (mitochondria mediated) and extrinsic 
pathway (death receptor mediated).76 Apoptosis is 
critical for body homeostasis by removing dysfunc-
tional or senescent cells. However, excessive VSMC 
apoptosis during human and mouse aortic aneurysm 
development results in weakening of the aortic wall.20 
VSMC apoptosis could be induced by excessive ROS, 
cytokines, or modified lipoproteins.77 In Marfan syn-
drome, angiotensin II can induce VSMC apoptosis 
via angiotensin II receptor types 1 and 2.78 Using an 
in vitro Marfan syndrome vascular cell model derived 
from human induced pluripotent stem cells, inhibition 
of the p38 pathway and Krüppel-like factor 4 knock-
down were found to reduce SMC apoptosis.79

Based on these findings, inhibition of VSMC 
apoptosis has been shown to be effective in pre-
venting aortic aneurysm in murine models.60,80–84 
2-Hydroxypropyl-beta-cyclodextrin inhibits AAA 
development in both β-aminopropionitrile and an-
giotensin II–induced AAA80 via upregulation of 
B-cell lymphoma 2 in a transcription factor EB–
dependent manner. KMUP-3, a xanthine derivative, 
suppresses VSMC apoptosis in the angiotensin II–
induced AAA model.81 A recent study revealed that 
APLN-NMeLeu9-A2, an apelin analog, prevented 
angiotensin II–induced AAA formation via reducing 
VSMC apoptosis in Ldlr knockout mice on a high-
fat diet.83 Moreover, deletion of cyclin-dependent 
kinase inhibitor 2B (Cdkn2b), a tumor suppressor 
gene, promotes p53-dependent VSMC apoptosis 
and induces larger aortic aneurysms in the AAA 
elastase mouse model.82 The pan-caspase inhibitor 
Q-VD-OPh diminished VSMC apoptosis, inflamma-
tion, and AAA formation in the angiotensin II mouse 
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model.84 Although apoptosis is the cause of VSMC 
loss in aortic aneurysm, it is still challenging to target 
apoptosis as a potential treatment because apopto-
sis itself has important homeostatic functions that 
are necessary to maintain proper function and vas-
cular health. The unwanted adverse effects of inhib-
iting apoptosis need to be carefully considered when 
pursuing novel targets and approaches for aortic an-
eurysm treatment.

Necroptosis

Necroptosis is another kind of programmed cell 
death. Unlike apoptosis, necroptosis does not involve 
caspases and usually induces local inflammation.85 
Necroptosis has been implicated in atherosclerosis, 
ischemia-reperfusion injury and myocardial infarc-
tion.85 Receptor interacting serine/threonine kinase 
1 (RIP1), RIP3, and mixed lineage kinase domain-like 
pseudokinase are the primary effectors of necropto-
sis.85 Increased necroptosis was found in both human 
and murine AAA.86 RIP1 inhibition with necrostatin-1s 
or Rip3 genetic deficiency protects mice from elastase-
induced AAA.86,87 Consistently, the dual inhibitor of 
RIP1/RIP3, GSK2593074A, inhibits angiotensin II– and 
calcium-induced AAA in mice.88,89 These studies re-
veal the potential application of necroptosis inhibitors 
in treating aortic aneurysm.

VSMC Senescence
AAA incidence increases dramatically with advanc-
ing age, indicating AAA to be an aging-related path-
ological process.1 On the cellular level, features of 
VSMC senescence include DNA damage, telomere 
shortening, epigenetic changes, loss of proteostasis, 
abnormal nutrient sensing, and mitochondrial dys-
function.90 Current evidence shows that VSMC senes-
cence is involved in aortic aneurysm development.91 
The mammalian sirtuins (sirtuins1–7) are highly con-
served deacetylases and promising targets for an-
tiaging therapy.92 Age-related sirtuin1 was observed 
to be decreased in human AAA samples. VSMC-
specific Sirt1 knockout and transgenic mice consist-
ently show that sirtuin 1 significantly attenuates AAA 
formation via inhibition of the p21 and nuclear factor 
kappa B pathways in angiotensin II and CaCl2 aor-
tic aneurysm mouse models.91 Nicotinamide phos-
phoribosyltransferase and the nicotinamide adenine 
dinucleotide fueling system replenish the substrates 
used by sirtuin proteins. This system is impaired in 
the aorta from patients with dilated aortopathy, and 
VSMC-Nampt knockout mice show premature vas-
cular senescence and disection.93 These studies 
indicate that aged VSMCs are more susceptible to 
pathological stimuli, leading to an increased risk of 
aortic aneurysm in aging individuals.

VSMC Autophagy
Autophagy is an evolutionarily conserved process 
for cells to remove unwanted protein and organelles. 
Impaired autophagy in cells may lead to endoplasmic 
reticulum stress, inflammation, and even cell death.94 
Enhanced autophagy in VSMCs shows protective ef-
fects on various vascular diseases, including vascular 
calcification,95 neointimal formation,96 and atheroscle-
rosis.96 In response to increased ROS, cytokines, 
metabolic stress, or growth factors,95 autophagy is 
activated in VSMCs in aortic aneurysm.50 The impor-
tance of autophagy in maintaining VSMC homeostasis 
is further demonstrated by VSMC-specific knockout of 
autophagy machinery proteins. Deletion of autophagy 
related 5 (Atg5) in VSMCs increases the incidence of 
abdominal aortic dissection and promotes vascular 
inflammation in the angiotensin II aneurysm mouse 
model.50 Autophagy related 7 (Atg7) knockout in 
VSMCs exacerbates adverse cardiac remodeling and 
dissecting abdominal aortic aneurysm in mice after an-
giotensin II treatment.97

Dysfunction and loss of VSMCs are common fea-
tures in aortic aneurysm development.20 This section 
briefly summarizes our knowledge about VSMC phe-
notypical switching, inflammation, oxidative stress, 
death, senescence, and autophagy, and their roles in 
aneurysm development. Importantly, these different 
pathways are not separate from each other, or rather, 
there is often crosstalk and cell signal convergence of 
these pathways. For example, autophagy is closely re-
lated to senescence, as aging cells usually show im-
paired autophagy and defective autophagy results in 
accelerated senescence.98 Defective autophagy leads 
to enhanced VSMC phenotypic switching50 and cell 
death.94 A deeper understanding of these complex 
pathways and their interactions is key to finding safe 
and efficient therapies for treating aortic aneurysm.

CONCLUSIONS AND PERSPECTIVES
The development of aortic aneurysm is a complex 
process involving multiple cell types. Beyond this, 
previously defined cell types such as VSMCs or mac-
rophages also consist of several distinct subtypes.52 
They may exert different roles in the initiation and 
progression of the disease. The recent application of 
single-cell RNA sequencing technology largely ex-
panded our understanding of cellular heterogeneity. 
In aortas from elastase-induced AAA mice, at least 4 
VSMC clusters and 5 monocyte/macrophage clusters 
were identified.99 Furthermore, human aortic aneurysm 
samples also show heterogeneity with different VSMC 
clusters (contractile, stressed, and proliferating).100 This 
heterogeneity must be taken into consideration when 
developing new drugs and approaches to avoid non-
specific adverse effects.
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Aortic aneurysm remains a significant cause of death 
because of its high mortality once rupture takes place. 
Open surgery and endovascular repair remain the major 
treatments for aortic aneurysm. These procedures have 
specific limitations, including the feasibility of aortic an-
eurysm surgery for each patient and surgery-related 
complications. Unfortunately, no drugs to date have 
been shown to be effective in clinical trials, although 
novel diagnostic and therapeutic strategies are still 
under development. In both human and animal aortic 
aneurysms, VSMC phenotypic switching, inflammation, 
oxidative stress, cell death, autophagy, and senescence 
are involved in the development and progression of dis-
ease. Currently, many of the detailed mechanisms un-
derlying aortic aneurysm still come from animal models. 
Each animal model has its advantages and pitfalls, and 
therefore it is always important to consider its relevance 
to human conditions and pathophysiology. Further 
studies are necessary to overcome these limitations for 
improved research translation and subsequent clinical 
application for treating aortic aneurysm.
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