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ABSTRACT
Quantitative methods for assessing differentiative potency of adipose-derived stem/stromal cells 
may lead to improved clinical application of this multipotent stem cell, by advancing our under-
standing of specific processes such as adipogenic differentiation. Conventional cell staining 
methods are used to determine the formation of adipose areas during adipogenesis as a 
qualitative representation of adipogenic potency. Staining methods such as oil-red-O are quantifi-
able using absorbance measurements, but these assays are time and material consuming. 
Detection methods for cell characteristics using advanced image analysis by machine learning 
are emerging. Here, live-cell imaging was combined with a deep learning-based detection tool to 
quantify the presence of adipose areas and lipid droplet formation during adipogenic differentia-
tion of adipose-derived stem/stromal cells. Different detection masks quantified adipose area and 
lipid droplet formation at different time points indicating kinetics of adipogenesis and showed 
differences between individual donors. Whereas CEBPA and PPARG expression seems to precede 
the increase in adipose area and lipid droplets, it might be able to predict expression of ADIPOQ. 
The applied method is a proof of concept, demonstrating that deep learning methods can be 
used to investigate adipogenic differentiation and kinetics in vitro using specific detection masks 
based on algorithm produced from annotation of image data.
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Introduction

Human adipose-derived stem/stromal cells (ASCs) are 
a mesodermally derived multipotent stem cell type with 
the ability to differentiate into mesenchymal derived 
cell types, i.e. adipocytes, chondrocytes and osteocytes, 
and can also differentiate into cells from other germinal 
layers[1,2]. ASCs are currently used in various clinical 
trials [clinicaltrials.gov] owing to their regenerative 
ability, immune and inflammatory process modulation, 
and other properties such as neovascularization and 
apoptosis reduction [3,4]. Understanding the properties 
of ASC adipogenic differentiation among individuals 
could help to improve clinical treatments, where fat 
grafts are applied e.g. for soft tissue reconstruction 
surgery after injury, chronic wounds or after cancer 
surgery/treatment. Preclinical and clinical trials have 
demonstrated that enriching fat grafts with ASCs or 
ASC-derived exosomes/extracellular vesicles can 
improve the survival and quality of the implanted fat 
grafts as a therapeutically active filler material [5]. In 

this setting, a likely mechanism of action of ASCs, apart 
from the paracrine effect, is that ASCs are more resis-
tant to hypoxia than mature adipocytes and thus better 
survive the grafting procedure [6].

ASCs can be isolated from adipose tissue by enzy-
matic digestion and subsequent culture expansion of 
the released stromal vascular fraction (SVF), to enrich 
the ASCs [7]. Different culture conditions, especially 
the supplemented growth factors, can affect post-cul-
ture cell characteristics [8], including the ability of 
ASCs to differentiate into adipocytes [9,10]. Thus, 
there is a general need for proper potency assays that 
can accurately assess the differentiative capabilities of 
cultured cells. A better understanding of the differen-
tiation kinetics of ASC adipogenesis through improved 
monitoring of lipid formation may eventually lead to 
better clinical products. Lipid droplet formation occurs 
during lipogenesis and fat generation, where they bud 
from the endoplasmic reticulum and contain a core of 
neutral lipids such as triacylglycerol (TAG) and 
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cholesterol [11]. Lipid droplets can combine to form 
larger droplets, and adipocytes and hepatocytes can 
contain giant lipid droplets [12]. Lipid droplet forma-
tion and accumulation are processes that can be mon-
itored using morphological data obtained through 
conventional microscopy [13]. The generation of lipids 
during adipogenesis is a complex process regulated by 
the gene expression of peroxisome proliferator-acti-
vated receptor γ (PPARG), CEBPA/CEBPB [14] and 
ADIPOQ, which leads to the production of adiponectin, 
an adipokine involved in adipocyte differentiation [15].

Adipogenic differentiation has traditionally been 
investigated by histological staining with fat soluble 
dyes such as Oil Red O (ORO), which stain lipids and 
triglycerides, but results are often merely reported as 
qualitative data. The standard method to quantify ASC 
adipogenic potency is photometric absorbance mea-
surements of the ORO-stained lipid content in differ-
entiated adipocytes. However, this method is prone to 
error owing to the many processing steps involved, 
which may lead to imprecise measurements and ORO 
has also been shown to stain non-adipocyte cells and 
preadipocytes [16]. To improve the detection of adipo-
cytes and lipid content, recent studies have shown that 
ORO fluorescence detection can be dispensed with by 
directly analysing the area stained by dyes or antibodies 
that use different approaches for quantitative image 
analysis [17–19]. Other methods for quantifying adipo-
genesis in mesenchymal stem cells involve assays such 
as ELISA [20]. However, all current methods are time 
consuming and prone to human observational 
error [21].

To simplify cell trait quantification, the emergence 
of artificial intelligence-based methods that can recog-
nize cell features has presented the opportunity to 
replace currently used methods. Different applications 
of deep learning (DL), a type of machine learning, seem 
promising for analysis of microscopy images [22]. 
Algorithms have been trained to detect cells of interest 
other than ASCs, either by human observation or 
guided by images of fluorescence-labelled cells [23,24]. 
DL algorithms have been used to accurately detect 
cellular properties during adipogenesis [22,25,26], and 
an approach to quantification of adipose tissue using 
deep learning based detection of ORO stained areas 
during differentiation has recently been described 
[27]. However, quantifiable analysis of the dynamics 
of differentiation has not yet been investigated using 
machine learning tools.

The methods needed to quantify and analyse pro-
cesses by, for example, comparison with other process 
properties such as genetic information and develop-
mental kinetics, are still needed to further validate the 

application of DL tools in cell biology and regenerative 
medicine. This study presents a method for the quanti-
tative analysis of ASC adipogenic differentiation 
potency using a commercial DL tool (Cellari ApS) 
and live-cell imaging.

Results

Selection of adipose area detection mask

After a 14-day adipogenic differentiation protocol using 
ASCs, annotation, training and generation of masks 
was completed (Figure 1) and adipose area was detected 
by Mask 1 (observer only, Figure 2a) or Mask 2 (ORO- 
guided annotations, Figure 2b) on images from Donor 
1 on day 14. An overlay of Mask 1 and Mask 2 illus-
trates the differences in their estimation of adipose cells 
areas (Figure 2d).

The mean adipose area detected by Mask 1 at day 0 
and day 14 was 2.8 × 103 ± 1.6 x 103 µm2 and 
99.8 × 103 ± 20.8 x 103 µm2, respectively (Figure 2e). 
In comparison the mean adipose area detected by Mask 
2 at day 0 and day 14 was 43.4 × 103 ± 7.9 x 103 µm2 

and 146.2 × 103 ± 27.0 × 103 µm2, respectively (Figure 
2e). The detected mean adipose cell area using Mask 2 
was significantly larger for each of the donors com-
pared to Mask 1 for both day 0 (p < 0.05) and day 14 
(p < 0.05). The detection with Mask 2 may be more 
sensitive, but this mask may also detect nonadipocyte 
vesicles at day 0 and give an incorrect high background. 
Mask 1 was preferred over Mask 2 because of the lower 
detection at day 0.

Quantification of adipose areas and lipid droplets

Adipose area and lipid droplet count and size was 
investigated to assess differentiation kinetics (represen-
tative detections by Mask 1 (middle) and Mask 4 (right) 
in Figure 3a).

An increase in adipose area was detectable on days 
3–6 (Figure 3b). The mean adipose areas per well at day 
14 for donor 1, 2 and 3 were 110.5 × 103 µm2 ± 23.0 x 
103 µm2, 104.2 × 103 µm2 ± 11.1 x 103 µm2 and 
84.8 × 103 µm2 ± 28.1 x 103 µm2 respectively. The 
mean areas increased until day 14, except for Donor 
3, where a plateau around day 12 was seen before 
increasing again until day 14.

A comparison of adipose area at day 14 (Mask 1) to 
the total cell area at day 0 (Mask 3) for each image 
taken from the wells for all three donors was performed 
to assess the relationship between seeding density and 
the resulting detected adipose area after differentiation 
(Figure 3c). There was a significant correlation between 
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the cell-covered area at day 0 and the amount of 
detected adipose area at day 14 (p < 0.0001).

The number of lipid droplets increased at approxi-
mately day 3–5 (Figure 3d). There was a temporary 
plateau at approximately days 11–12 for 2–3 days 
after which the number of lipid droplets increased 
again until day 14. Lipid droplet size shows accumula-
tion of larger size vesicles as differentiation progresses 
(Figure 3e). Results indicate considerable interdonor 
variation in the number and size (Supplemental 
Figure 2). Additionally, the lipid droplet count was 
significantly positively correlated with the adipose area 
size (p < 0.0001, Figure 3f).

Adipogenic gene expression and comparison to 
deep learning detection data

Quantitative PCR was used to evaluate the expression 
of several genes shown to be involved in adipogenic 
differentiation (Figure 4). SLC7A8 expression was 
increased by up to 7-fold showing a similar expression 
pattern among the donors. The highest expression level 
for all donors was observed on day 3, and SLC7A8 

continued to be expressed at relatively low levels 
throughout differentiation. ADIPOQ was expressed 
from day 3, with maximum expression levels of 0.6– 
4.9 x 106-fold. CEBPA expression increased around day 
3, reaching an approximately 600-fold induction for 
Donor 1 and 3 and an approximately 250-fold for 
Donor 2 at days 6–9. PPARG expression was present 
from approximately day 3, with a maximum expression 
increase of 9-fold.

The qPCR data and the adipose area detected by the 
DL tool revealed increasing trends of adipose area and 
ADIPOQ, CEBPA and PPARG expression. However, 
there was no significant correlation between gene 
expression and the adipose area and lipid droplet detec-
tion results.

Quantification of adipocyte differentiation by 
measuring oil red o absorbance

The ORO absorbance was quantified for all donors 
using the 96-well and 12-well plates for image acquisi-
tion (Supplemental Figure 1). No significant difference 
was observed when quantitating the fraction of 

Figure 1. Experimental setup. (a) Adipose-derived stem cells (ASCs) underwent a 14-day adipogenic differentiation in a live-cell 
imaging system. The development of annotation masks was performed using images of cells and the generated masks were used to 
detect adipose area (Mask 1), ORO-guided adipose area (Mask 2), total cell area (Mask 3) and lipid droplets (Mask 4). (b) The 
generated detection masks were used to examine and quantify adipogenic differentiation in images obtained from live-cell imaging 
(day 0 – day 14). qPCR was used to analyse the expression of genes related to adipogenesis (ADIPOQ, PPARG, CEBPA and SCL7A8) at 
days 0, 3, 6, 9, 12 and 14 and possible correlation to adipose area and lipid droplet formation kinetics. The data represents three 
donors.
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adipogenically differentiated and nondifferentiated cells 
in the 96-well plate. The cell seeding density at 1:4 did 
not show a clear difference, but a clear difference was 
seen in the 12-well plate (Supplemental Figure 1).

Discussion

In this study, we combined a live-cell imaging system 
with a DL tool to investigate and quantify the adipose 
area and lipid droplet formation during adipogenic 
differentiation of ASCs as a means of measuring differ-
entiative potency. These data were compared to adipo-
genic gene expression to investigate a possible 
correlation between gene expression and DL-detected 
adipose area and droplet formation. The DL tool was 
able to successfully detect adipose areas either through 
annotation by human observation alone or guided by 
images from conventional ORO staining of differen-
tiated adipocytes. The number of donors included is 

relatively small, and while the study has shown that the 
method is applicable, this limits the study’s predictive 
assessment of adipogenic differentiation dynamics and 
studies including more donors are warranted.

Quantifying the increase in adipose area enabled us 
to investigate differentiative kinetics of ASC adipogenic 
differentiation. There was a lag phase before the adi-
pose area was detectable, which could correspond to 
the initial proliferative lag phase described for adipo-
genic differentiation as ASCs proliferate [28,29]. 
Interestingly, the differentiation kinetics throughout 
the differentiation period were close to similar for all 
three donors, until day 12–13 where a temporary pla-
teau phase is observed. A closer look at the data showed 
that the number of detected objects (adipose areas) and 
their mean size decreased between day 12–13 for 
Donor 3 leading to a 30% drop in mean adipose area 
for 1 of 7 wells. This seems to arise from a combination 
of cell migration, that can lead to cells wandering from 
the image frame, as well as an observed visible minor 

Figure 2. Adipose area mask results. (a) Phase-contrast image of adipocytes without masks. (b) Mask 1 – annotation of adipose areas 
by human observations alone. (c) Mask 2 annotation of by comparison to bright field images of ORO-stained areas found in the same 
96-well after staining. (d) Overlay of Mask 1 and Mask 2, showing additional areas detected when using Mask 2. (e) Quantification of 
adipose area detected by Mask 1 and Mask 2 at day 0 and day 14 of differentiation. The data represents three donors. A significant 
difference between the means of Mask 1 and Mask 2 for both day 0 (p < 0.05) and day 14 (p < 0.05) was observed.
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frameshift, that happened in the IncuCyte system 
between day 12–13. If many cells with adipose content 
are located along the periphery it may have a measur-
able effect on the data outcome.

A continuous increase in the adipose cell area and 
lipid droplet count (Figure 3b, d) indicated that differ-
entiation was not a synchronous event for all cells, 
which was supported by video imaging of the 14-day 

Figure 3. Adipogenic differentiation kinetics. (a) Example of adipose area (Mask 1) and lipid droplet (Mask 4) detection. (b) Detection 
of adipose cell area during the 14 days of differentiation. (c) Correlation between seeding density at day 3 and adipose cell area at 
day 14, r = 0.85, p < 0.001. (d) Lipid droplet formation during the 14 days of differentiation. (e) Distribution of lipid droplet size 
during differentiation. (f) Correlation between lipid droplet formation and adipose area, r = 0.98, p < 0.001.

Figure 4. Adipose area per donor and adipogenic gene expression during the 14-day adipogenic differentiation.
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differentiation (Supplemental Figure 4). This could 
indicate that the nonsynchronous event of adipogenesis 
in ASCs could be further stratified by assessing the 
presence of ASC subtypes at different time points 
when using the heterogenic primary ASC population 
from the SVF. Whether the observed differences among 
donors regarding the adipose area and lipid droplets 
are caused by the presence of preadipocytes in the 
seeded ASC population or by intercell differences in 
the differentiation kinetics needs to be determined. 
This could be investigated by e.g. flow cytometry ana-
lysis for the presence of pre-adipocytes markers in the 
seeded cell population. The presence of granular/vesi-
cular ASCs detected by the ORO-guided mask (Mask 2) 
at day 0 might indicate committed preadipocytes 
(Figure 2e). Future studies should investigate whether 
this is the case by combining DL with cell tracking 
software and single-cell characterization and 
quantification.

Variation in the ASC potential for adipogenic differ-
entiation has previously been assessed by measuring the 
expression of genes involved in adipogenesis [30]. 
Donor variation in adipogenic potency is multifactorial, 
involving multiple effectors of adipogenic gene expres-
sion and phenotypical factors such as autocrine and 
paracrine molecules [31]. However, we only observed 
a minor difference in the day 14 adipogenic potential, 
quantified as the amount of detectable adipose area and 
lipid droplet content between the examined donor cells.

The data from day 14 of differentiation illustrate 
significant inter- and intra-well variation in the 
detected adipose area, which is emphasized by the 
positive correlation between the seeding density and 
the total cell area at day 0 (Mask 3) and the detected 
adipose area at day 14 (Mask 1). This demonstrates the 
importance of uniform seeding in the wells if the pre-
cision of this method is to be fully harnessed to detect 
small differences between donors or between individual 
wells. The use of conditioned media and the concentra-
tion of local paracrine factors may also play a role, as 
previously shown [32]. The inclusion of more donors 
might lead to demonstrable variation in adipogenic 
potency between individuals when using the applied 
experimental setup.

Regarding adipogenic gene expression, ADIPOQ has 
previously been shown to be induced between day 1 
and day 7 [33]. We observed a similar result, with 
increased expression beginning between day 3 and 
day 6. We also found a similar expression profile for 
CEBPA and PPARG, both showing increased expres-
sion with an earlier onset than that of ADIPOQ. We 
observed a higher induction of ADIPOQ and CEBPA 
compared to what has been reported [33], which could 

reflect the fact that later passage cells (passage 6–15) 
were used in the study by Ambele et al.

The expression of ADIPOQ, CEBPA and PPARG 
increased at approximately the same time at which 
DL was able to detect the formation of adipose areas 
and lipid droplets. The lipid droplet detection tended to 
be more sensitive, as single droplets could be detected, 
whereas clusters of droplets were used to train the 
adipose area recognition.

Whereas ADIPOQ, CEBPA and PPARG are induced 
during adipogenesis, SLC7A8 is expressed early in adi-
pogenesis and has been found to decrease as ASCs start 
to differentiate [33]. We observed an initial induction 
of SLC7A8 between day 0 and day 3, followed by a 
subsequent decline, which is different from that pre-
viously reported [33].

To verify that the masks were indeed able to recog-
nize areas of interest, Mask 2 was trained with bright 
field microscopy and live cell images of ORO-stained 
differentiated adipocytes. When comparing Mask 1 and 
Mask 2 we found a difference between the detected 
adipose areas at day 14. As ORO staining simplifies 
the discrimination of cells with or without lipids, it 
should lead to a more sensitive mask. Although a simi-
lar increase in adipose detection from day 0 to day 14 
was found for the two masks, a substantially higher 
fraction of adipose area was quantified with Mask 2 
(ORO-guided) at day 0. Even with the ORO control to 
assist training, it may still be difficult to differentiate 
between small lipid droplets, background noise, and 
other cell structures at day 0. Mask sensitivity may 
therefore vary according to the person annotating and 
training the software and the staining methods applied 
as a control for areas of interest. A more consistent 
result might be achieved with more conservative train-
ing, yielding results based on clearly defined lipid dro-
plets formed during differentiation. Detection masks 
might be improved by combining ORO staining and 
immunohistochemistry for automated verification of 
adipose droplets or other cellular components.

The use of conventional quantitative methods to 
assess adipogenic potency is often demanding and tire-
some work if image data has to be annotated by an 
observer, where data acquired by observation using 
staining methods are prone to observer variation and 
bias [34]. The use of machine learning to quantify the 
adipose cell area has the potential to be much more 
sensitive than traditional absorbance measurements of 
ORO-stained cells and the loss of information in the 
acquired images due to sample processing 
(Supplemental Figure 3) can be bypassed. Our results 
show that 96-well plates, and potentially any setup that 
allows images to be obtained, are suitable for DL 
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analysis, whereas absorbance quantification of conven-
tional ORO-stained cells is not feasible in 96-well 
plates.

Microscopy images can now be compared and cor-
related with morphological changes and genetic expres-
sion profiles during differentiative processes. This 
could lead to new insights into the kinetics of these 
processes without the need for staining to verify cellular 
changes and to help generate new methods for improv-
ing cellular treatments in which ASCs are applied.

Conclusion

We demonstrated that this approach was able to inves-
tigate and quantify the adipose area and lipid droplet 
kinetics during adipogenic differentiation. We also 
observed that the seeding density is important for 
improving the sensitivity. The large amount of cellular 
data on adipogenic properties that can be acquired by 
combining live-cell image acquisition and deep learn-
ing-based recognition could potentially lead to better 
methods for image-based quantification and eventually 
better cellular therapies.

Future studies are needed to validate this approach 
to quantify adipogenic potency. The method presented 
here forms the basis of a relatively easy to use setup for 
the mass evaluation of donor cell variation, for example 
in drug-screening experiments, and is a proof of con-
cept for the use of deep learning methods to monitor 
adipogenic differentiation kinetics.

Materials and methods

Experimental setup

ASCs underwent a 14-day differentiation protocol in 
order to quantify and assess adipogenic differentiation 
and kinetics (Figure 1). Images obtained during adipo-
genesis were used to annotate regions or objects of 
interest in the DL tool, and algorithms were trained 
to detect the adipose area in cells (Mask 1 and Mask 2), 
total cell area (Mask 3) and lipid droplets (Mask 4) in 
live-cell images. These were compared with adipogenic 
gene expression of ASCs at different time points during 
differentiation to look for possible correlation to differ-
entiation kinetics.

SVF isolation and cell culture

Lipoaspirate was obtained from 3 healthy donors dur-
ing cosmetic surgery. All donors were female 
Caucasians and were between the ages of 18 to 
60 years. The surgical procedure was primarily focused 

on abdominal fat tissue where the Coleman technique 
was applied. The aspirated adipose tissue was removed 
using Klein’s solution (1 L NaCl; 400 mg xylocaine; 1 
mg adrenalin) in volumes equivalent to the aspirated 
volume of adipose tissue, and at least 50 mL was aspi-
rated in order to produce a viable stromal vascular 
fraction.

The stromal vascular fraction was harvested as pre-
viously described [35]. Briefly, lipoaspirate tissue was 
digested with collagenase (Nordmark, N0002880) at 37° 
C for 45–60 min under constant stirring. The collage-
nase was neutralized by adding cell culture media con-
sisting of DMEM (Gibco™, 22,320,030) supplemented 
with 10% pHPL (produced at the Department of 
Clinical Immunology, Rigshospitalet [36]), 1% penicil-
lin/streptomycin (Gibco™, 15,140–122), and 2 IE/mL 
heparin (Amgros I/S, Rigshospitalet, 741,827). The 
digest was filtered to remove undigested components 
and centrifuged for 10 min at 1200 x g. The cell pellet 
was resuspended in cell culture media, and the cells 
were counted using a NucleoCounter® NC-3000™ 
(Chemometec) and Via-1 cassettes (Chemometec, 
941–0012). SVF was seeded in cell culture media and 
expanded for 1–2 passages before use in the differentia-
tion assay. Cell culture medium was changed every 1– 
2 days.

Adipogenic differentiation

ASCs (passages 1–2) were seeded in 24-well or 96-well 
plates at two concentrations of 1 × 104 and 2.5 × 103 

cells/cm2. Twenty-four hours after seeding, cell culture 
media was exchanged for differentiation media 
(StemPro™ Adipogenesis Differentiation Kit (Gibco™, 
A1007001)). The adipogenic differentiation medium 
replaced every 3 days throughout the 14-day differen-
tiation period. Images were captured at days 0 and 14 
with the IncuCyte® (Sartorius) at 20x magnification. 8 
wells were seeded per donor including a negative con-
trol well were the cells received culture media without 
differentiation supplements.

Oil red O staining and absorbance measurements

Lipid droplets in differentiating adipocytes were stained 
with Oil Red O (Sigma Aldrich, O0625).

Briefly, the differentiation medium was removed, 
and the cells were washed once with PBS (Gibco™, 
14,190–0949) before fixing in 4% paraformaldehyde 
for 30 min. The cells were then incubated in 60% 
isopropanol for 5 min. The cells were subsequently 
washed with distilled water and incubated for 5 min 
with an Oil Red O staining solution (1:3 dilution of 
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0.3% Oil Red O in isopropanol and distilled water), 
followed by three washes with distilled water. All steps 
performed at room temperature. Images of Oil Red O- 
stained cells were taken with an inverted microscope 
(Carl Zeiss).

Oil Red O was extracted from the cells by removing 
the distilled water and adding 99% isopropanol. 
Following thorough mixing, the isopropanol containing 
the extracted Oil Red O was transferred to a 96-well 
plate. The absorbance was measured at 492 nm, sub-
tracting the absorbance from the pure isopropanol used 
for extraction.

Gene expression by qPCR

Four genes related to adipogenesis were selected to 
elucidate a possible relationship with the adipose areas 
detected by the DL tool. A gene expressed in early 
adipogenesis (SLC7A8) was assessed using qPCR, 
along with three genes (ADIPOQ, CEBPA, and 
PPARG) that are expressed during the mid-to-late dif-
ferentiation of fat cells.

Primers and probes were designed using 
Primer3web version 4.1.0. (Supplementary Table 1). 
The primers and probes were obtained from Eurofins 
Genomics. All primers were designed with a Tm of 60° 
C (± 1°C); probes were designed with a Tm of 69°C (± 
1°C). The probes were labelled with FAM and TAMRA.

The gene targets were B2M, PPARG, CEBPA, 
ADIPOQ and SLC7A8. B2M was used as a calibrator 
for differential gene expression. The CEBPA gene did 
not contain any introns; for the remaining targets, the 
primers were designed to span an intron.

Total RNA was isolated from cells at days 0, 3, 6, 9, 
12 and 14 during the differentiation period (RNeasy 
Kit, Qiagen). The RNA concentration was calculated 
assuming OD = 1 as equivalent to 40 µg/mL RNA at 
280 nm. The OD ratio of 180/260 of the RNA measure-
ments was close to 2, indicating high-purity RNA. Total 
RNA was used as a substrate for synthesizing cDNA 
using a First Strand cDNA Synthesis Kit (Thermo 
Scientific, K1622), random hexamer priming, and 
MMuLV reverse transcriptase in a total volume of 
20 µL following the manufacturer’s recommendations.

Real-time PCR was performed using an ABI 7500 
detection system (Applied BioSystems, Foster City, CA, 
USA) with TaqMan chemistry. For each sample, 2 µL of 
transcribed total RNA was used for PCR amplification 
in a total volume of 25 µL with 2x Universal Master 
Mix (Thermo Fisher), with a final primer concentration 
of 600 nM and a final probe concentration of 250 nM. 
The thermoprofile was 50°C for 2 min, 94°C for 
10 min, 94°C for 30 sec, 60°C for 30 sec, and 72°C for 

30 sec for a total of 40 cycles. The data were analysed 
using the 2−Δ∆CT method with the B2M as a refer-
ence [37].

Machine learning method, mask selection and 
adipose/lipid droplet detection

A commercial deep learning-based tool for image 
recognition (Cellari ApS) was applied to generate area 
data from the images acquired on days 0 and 14 of 
adipogenic differentiation by distinguishing areas with 
a lipid/adipose morphology and quantifying them. This 
software uses a convoluted neural network-based 
model [38] to detect areas of interest that are annotated 
by the user, creating detection algorithms or ‘masks’ 
that can be applied for image analysis.

Four different masks were generated by fat area and 
lipid droplet annotation on images taken from Donor 1 
on Day 14. Approximately 6–8 hours were spent on 
annotating each mask. Mask 1 was annotated by 
human observations of cell areas considered to be adi-
pose/lipid. For Mask 2 annotation was done by direct 
comparison of adipose areas from Day 14 images gen-
erated by the IncuCyte live-cell imaging to bright field 
images of ORO-stained areas found in the correspond-
ing well after staining (Figures 2b, c). Mask 3 was 
trained to detect the total cell-covered area (not 
shown) by annotating all areas covered by nucleated 
cells excluding cellular debris. Finally, Mask 4 was 
trained to detect lipid droplets by annotating intracel-
lular lipid droplets situated in adipose areas (Figure 3a).

The mask sensitivities and their ability to detect the 
adipose area were compared to choose the optimal 
mask for use in the quantification of adipose area 
kinetics (further described in the Results section). 
Mask 1 and Mask 4 were applied to serial images 
from days 0 to 14 acquired from each donor to quantify 
the kinetics of the adipose area and lipid droplets dur-
ing adipogenic differentiation. Adipose area means 
were converted from pixels to µm2 using manufacturer 
specifications (at 20x magnification 0.62 µm/pixel; 1 
pixel = 0,3844 µm2).

Statistics

Correlation between increase in adipose area and lipid 
droplet count, and Mask 1 and 3, was analysed using 
Spearman’s correlation. Means and standard deviations 
were calculated to plot adipogenic kinetics and a com-
parison Mask 1 and Mask 2 means on day 0 and 14 was 
calculated using a paired parametric t-test using 
GraphPad Prism 9 (GraphPad Software, Inc.).
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