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Abstract
The genetic defect of MYO5B is usually associated with microvillus inclusion disease (MVID).
MYO5B mutations are one of the rare causes of progressive familial intrahepatic cholestasis (PFIC) with
normal/low gamma-glutamyl transferase (GGT). In this report, we discuss the case of a nine-month-old girl
with low-GGT cholestasis whose next-generation sequencing (NGS) showed a homozygous splicing variation
(c.3045+3A>T) on the MYO5B (NM_001080467) gene, which was a novel mutation. We identified that this
mutation had a disease-causing effect in silico analysis.

Categories: Genetics, Pediatrics, Gastroenterology
Keywords: novel mutation, genetic mutation, normal/low ggt, progressive familial intrahepatic cholestasis, myo5b

Introduction
Progressive familial intrahepatic cholestasis (PFIC) is a group of autosomal recessive cholestatic disorders
caused by the defects of the biliary canalicular transport. They usually appear in the first month or the first
year of life. The estimated incidence of PFIC varies between 1/50,000 and 1/100,000. They used to be
classified into three groups: PFIC1 (Byler disease), PFIC2 [bile salt exporter pump (BSEP) deficiency], and
PFIC3 [multi drug resistance 3 (MDR3) deficiency], but recently more comprehensive genetical studies have
revealed new genetic mutations. One of these mutations was identified in the gene MYO5B, which encodes
the protein myosin 5b (MYO5B). MYO5B participates in plasma membrane recycling, transcytosis, and
epithelial cell polarization [1,2]. It is found in various tissues like enterocytes, hepatocytes, kidneys, and
respiratory epithelial cells. The most well-known genetic defect of MYO5B is seen in enterocytes, which
causes microvillus inclusion disease (MVID). MVID is a congenital, autosomal recessive disorder
characterized by intractable diarrhea requiring parenteral nutrition and intestinal transplantation. Low-
gamma-glutamyl transferase (GGT) cholestasis was observed in some MVID patients before or after liver
transplantation. This low-GGT cholestasis could not have been attributed to parenteral nutrition or
anticalcineurin inhibitors used after intestinal transplantation [3,4]. Besides, it has been reported that
genetic mutations in MYO5B can cause isolated cholestasis. These patients present with low-GGT
cholestasis, pruritus, and hepatomegaly in the first year of life [5]. 

In hepatocytes, MYO5B binds to GTPase RAB protein, RAB11A, to target adenosine triphosphate (ATP)-
binding-cassette (ABC) transporters like BSEP to the canalicular membrane [6]. This report presents a
patient with low-GGT cholestasis whose genetic analysis revealed a novel mutation in MYO5B.

Written informed consent from the patient’s parents was taken to use and publish all the data and pictures
used in this report.

Case Presentation
A nine-month-old girl presented with jaundice, pruritus, and rickets. Her jaundice and pruritus had started
within the previous month. She had been diagnosed with rickets before she was referred to our department
for cholestasis. She was on vitamin D and calcium replacement therapy. She had been born to
consanguineous parents and had a healthy elder sister. Her prenatal history was unremarkable. She had been
born at term with a birth weight of 2,500 g. There was no family history of chronic liver or bowel disease. Her
weight and height were 6.3 kg (<3rd percentile, -2.47 standard deviation score) and 63 cm (<3rd percentile, -
3 standard deviation score) respectively. Her weight for length was normal. She had scleral icterus, scars on
her arms due to pruritus, and mild hepatomegaly. She did not have discolored stools or diarrhea. Abdominal
ultrasonography was consistent with an enlarged liver with heterogeneous parenchyma and a normal biliary
tree. Her laboratory tests showed low GGT activity and mildly elevated transaminase and bilirubin levels
(Table 1). Her serum bile acid levels were elevated (135.23 mmol/L, normal range: <10 mmol/L). There was
no exocrine pancreatic insufficiency. Fecal elastase level was >500 mg/g. Her laboratory tests evaluating
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tubulopathy and urine organic acid analysis were normal. The prothrombin time was 23.9 seconds, which
returned to normal after vitamin K replacement. The level of vitamin D was <7 ng/ml. She was already taking
vitamin D as prescribed by the Pediatric Endocrinology Department. Vitamins A, E, K, and ursodeoxycholic
acid (UDCA) supplementation were started. The etiology of low-GGT cholestasis was investigated
genetically. No liver biopsy was performed. Next-generation and Sanger sequencing were used for the
patient. The Clinical Exome Solution (Sophia Genetics SA, Saint-Sulpice, Switzerland) was performed on
NextSeq 500 system (Illumina, San Diego, CA) for exome enrichment, with all procedures carried out
according to the manufacturer’s protocols. All bioinformatics analyses, variant filtering, and interpretations
were performed using the Sophia DDM™ platform (Sophia Genetics SA). Next-generation sequencing (NGS)
showed a homozygous splicing variation (c.3045+3A>T) on the MYO5B (NM_001080467) gene (Figure 1A).
Segregation analysis was performed by the Sanger sequencing method (Figure 1B).

FIGURE 1: Molecular genetic analysis of the family
A. Excerpt of next-generation sequencing data visualized using Integrative Genomics Viewer (IGV). The black
frame indicates the mutation (chr18:47421308T>A)

Note: The mutation is shown as a T→A change because IGV always displays the forward strand, and in the
MYO5B gene, the coding strand is the reverse one [7]

B. Results of DNA sequencing. The splicing germline mutation, c.3045+3A>T on the MYO5B (NM_001080467)
gene of the family (indicated by orange frame)

As the patient resided in a city far away from our clinic, she was only able to come for examination at the age
of 28 months. Her parents reported that the patient had started to have diarrhea, and her pruritus had
stopped at the age of 16 months. She had one to three instances of watery stools per day. She weighed 9 kg
(<3rd percentile, -2.76 standard deviation score) and her height was 73 cm (<3rd percentile, -4.64 standard

deviation score). Her body mass index was 16.9 kg/m2 (77th percentile), and she had hepatomegaly. Her
bilirubin levels were normal (Table 1). Laboratory test results for infectious causes and celiac disease were
also normal. Supportive treatment was provided for diarrhea. She was evaluated for renal Fanconi syndrome
as patients carrying MYO5B mutations could develop this syndrome [8]. However, there was no sign of the
syndrome. At her last visit, she was still on UDCA therapy, and it was decided that she did not need to use
any other antipruritic drug.
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Variables 9th month 28th month Normal value*

GGT (U/L) 11 12 6-42

AST (U/L) 61 33.2 <32

ALT (U/L) 49.7 35.3 <33

Total bilirubin (mg/dl) 3.85 0.31 <1.2

Direct bilirubin (mg/dl) 2.25 0.07 <0.3

Albumin (g/dl) 4.18 4.3 3.97-4.94

Prothrombin time (seconds) 23.9 16.8 11.5-15.5

TABLE 1: Laboratory results of the patient at 9th and 28th months
*These are the normal values of our laboratory

AST: aspartate aminotransferase; ALT: alanine aminotransferase

Discussion
MYO5B mutations causing MVID were first identified by Müller et al. [9] in 2008. Normal/low-GGT
cholestasis accompanying MVID has been reported as an atypical finding or a consequence of parenteral
nutrition before or after intestinal transplantation [10-12].

Girard et al. [13] investigated the etiology of low-GGT cholestatic liver disease among their patients with
MVID. In their study, there were 28 children with MVID, and eight among them developed intrahepatic
cholestasis either early in life or after intestinal transplantation. The mechanisms of cholestasis were
explained by the impairment of the MYO5B/RAB11A apical recycling endosome pathway in hepatocytes,
changed expression of BSEP at the canalicular membrane, and increased ileal bile acid absorption and
hepatic bile acid uptake.

Later, in 2017, Gonzales et al. [5] reported that MYO5B mutations could cause cholestasis with normal
serum GGT activity in children without MVID. Immunostaining data of their patients supported the
hypothesis that MYO5B mutations caused an impairment of MYO5B/RAB11A interaction, altering the
targeting of ABC transporters (i.e., BSEP, MDR3) to the canalicular membrane of the hepatocytes, and thus
impaired the canalicular bile secretion [5,13,14]. Qui et al. [15] researched the underlying genetic mutations
in patients with normal-GGT cholestasis with unknown etiology. Whole exome sequencing and targeted
sequencing were performed in their study. Mutations in MYO5B were found to be around 20% among the
patients with normal-GGT cholestasis with unknown etiology. These patients had no diarrhea, and isolated
cholestasis was thought to be caused by non-severe mutations in MYO5B.

Gonzales et al. [5] reported five patients presenting with jaundice, pruritus, and discolored stools, who had
cholestasis resembling classical normal-GGT PFIC. The starting age of their symptoms was around one year.
Similarly, our patient presented with jaundice and pruritus at the age of nine months. This could be a
distinguishing feature for MYO5B-cholestasis as PFIC1 and PFIC2 are usually present in the first months of
life [16,17].

In a recently published series involving six patients, mutations in MYO5B associated with early-onset
cholestasis were recorded [18]. These patients had severe pruritus. Some patients needed a wide selection of
antipruritic medication, whereas others required early surgical intervention. Our patient had adequate relief
with UDCA and did not need any further medication.

Our patient started to have mild diarrhea when she was 17 months old. She had one to three watery stools
during the day. Gonzales et al. [5] had one patient who had several episodes of severe acute diarrhea. As the
duodenal histology was normal, it was suggested to be a coincidence. Qui et al. [15] have mentioned that
one of their patients had a history of loose stools until the age of three. Cockar et al. [18] have reported
minimal incidence of gastrointestinal disease in their series. Four of six patients had no evidence of
gastrointestinal disease, whereas two patients had intractable diarrhea for a while. An upper gastrointestinal
system endoscopy has not been performed for our patient, and hence we cannot comment on the duodenal
histology and the relationship of this symptom with MVID.

In summary, NGS of our patient showed a homozygous splicing variation (c.3045+3A>T) on the MYO5B
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(NM_001080467) gene. The variant has not been previously reported in the Human Gene Mutation Database
(HGMD) [19] and population studies (ExAC: Exome Aggregation Consortium and 1000 Genomes Project). In
silico analysis, programs such as Human Splicing Finder (HSF) [20] and MutationTaster [21] showed that the
change might have pathogenic effects. The fact that the change was not reported in the population, the
parents were carriers in the segregation analysis, and the interpretation of the alteration of the WT Donor
site as most probably affecting splicing according to HSF showed us that this variant could be the cause of
the disease (Table 2).

Algorithm/matrix Position Sequences Variation

HSF donor site (matrix GT) Chr18:49894943 -REF: AAGGTATGC -ALT: AAGGTTTGC 89.74 > 77.96 → -13.13%

MaxEnt donor site Chr18:49894943 -REF: AAGGTATGC -ALT: AAGGTTTGC 9.55 > 5.42 → -43.25%

TABLE 2: Interpretation of the variant according to HSF
Interpretation: alteration of the wild type donor site, most probably affecting splicing

HSF: Human Splicing Finder; REF: reference; ALT: alteration

Until now, different types of mutations have been reported in the MYO5B gene, albeit in a small number. In
a functional study by Overeem et al. [22] about the MYO5B gene, the authors specifically observed that
missense changes caused cholestasis, and changes that constituted a premature stop codon caused MVID. In
another study conducted by van IJzendoorn et al. [23] on 22 cases with MYO5B mutation, the authors
emphasized that it was difficult to make a general comment on the disease and that personalized
approaches would be more appropriate.

Conclusions
Based on our findings, the effects of MYO5B mutations, which are heterogeneous in terms of clinical
findings, will become more apparent with the increase in the number of cases and functional studies. The
clinicians should be aware of MYO5B mutations in patients with isolated cholestasis. We believe that this
novel MYO5B mutation should be investigated in patients who have the characteristics of low-GGT PFIC.
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