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Abstract
The method of adaptive approximations by Matching Pursuit makes it possible to decom-

pose signals into basic components (called atoms). The approach relies on fitting, in an iter-

ative way, functions from a large predefined set (called dictionary) to an analyzed signal.

Usually, symmetric functions coming from the Gabor family (sine modulated Gaussian) are

used. However Gabor functions may not be optimal in describing waveforms present in

physiological and medical signals. Many biomedical signals contain asymmetric compo-

nents, usually with a steep rise and slower decay. For the decomposition of this kind of

signal we introduce a dictionary of functions of various degrees of asymmetry – from sym-

metric Gabor atoms to highly asymmetric waveforms. The application of this enriched dictio-

nary to Otoacoustic Emissions and Steady-State Visually Evoked Potentials demonstrated

the advantages of the proposed method. The approach provides more sparse representa-

tion, allows for correct determination of the latencies of the components and removes the

"energy leakage" effect generated by symmetric waveforms that do not sufficiently match

the structures of the analyzed signal. Additionally, we introduced a time-frequency-ampli-

tude distribution that is more adequate for representation of asymmetric atoms than the con-

ventional time-frequency-energy distribution.

Introduction
The time evolutions of many physical phenomena are characterized by a fast increase and
slower decay. Quite often the stimulus causes a steep rise in response and then a gradual de-
crease. This kind of behavior is observed for some biomedical signals of non-stationary charac-
ter. For the analysis of non-stationary signals many time-frequency (t-f) methods have been
proposed: windowed short-time Fourier transform, Wigner-Ville transform, wavelets and
adaptive approximations by Matching Pursuit (MP) [1]. Comparison of the above mentioned
methods of t-f analysis shows that the method, which supplies the highest t-f resolution is MP
[2,3]. The MP method decomposes the signal into waveforms (atoms) taken from a very large
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and redundant dictionary of functions of well-defined t-f properties. The resolution of MP is
close to the limit set by the indefinity principle [4]. MP has been extensively used for the analy-
sis of brain signals [5, 6, 7, 8, 9] and Otoacoustic Emissions (OAE) [3, 10, 11]. Apart from high
t-f resolution MP has another advantages such as providing parametric description of signals,
which enables variables characterizing the signal’s components to be extracted, namely fre-
quency, amplitude, latency, time span and phase.

In MP algorithm introduced in [4], a dictionary of Gabor functions was used. Indeed,
Gabor functions provide the highest t-f resolution, however some signals contain highly asym-
metric components, which are ill described by Gabor functions. The problem is especially
important when estimation of latency of the response is of interest.

The aim of this work is to demonstrate the usefulness of the MP method with an Enriched
Dictionary (ED) i.e. dictionary which besides the Gabor functions contains functions of vary-
ing asymmetry. Additionally we propose representation of signals in t-f space by means of the
amplitude maps. This kind of representation eliminates cross-terms and is more intuitive than
conventional energy distribution.

Here we describe the method of adaptive approximation and then introduce an enriched
dictionary containing asymmetric functions. Next, the properties of different t-f representa-
tions are investigated. Then the effects of an application of an enriched dictionary are exempli-
fied both on simulated and on biomedical time series, in this case OAEs and Steady-State
Visual Evoked Potentials (SSVEP). In a final discussion, special properties of the enriched dic-
tionary, such as flexibility and sparseness, are set out.

Materials and Methods
The study was approved by the Bioethical Committee of the Istitute of Physiology and Pathol-
ogy of Hearing. All subjects in the study declared an absence of neurological or mental illnesses,
and were screened against photosensitive epilepsy by the standard clinical EEG test. Informed,
written consent was obtained from all of the subjects. No animal research was conducted.

Signals
All of the signals processed in this study are available at the following web adress: http://zfb.
fuw.edu.pl/data/MPwithAsymmetricFunctionsStudy.rar.

An OAE is a weak signal generated by the inner ear following acoustic stimulus and also
sometimes spontaneously. It can be observed by means of a sensitive microphone placed in the
ear canal. Studies of OAE are essential for gaining a better understanding of the mechanisms of
hearing and are also important for the diagnosis of hearing impairment. They have been partic-
ularly useful in detecting hearing deficits in neonates, children and adults as a non-invasive
test, not requiring the cooperation of the patient. One of the most common ways to measure
OAE is by applying a short broadband stimulus (click) and recording the signals that follow.
Signals generated in this way are called Transient Evoked Otoacoustic Emissions (TEOAE).
The response of the ear after the broadband stimulus lasts about 20 ms and is characterized by
spectra that consist of multiple peaks, distributed between 0.5 and 5 kHz. Because of the com-
plex structure of TEOAEs, several t-f methods have been applied in their analysis, including
short-time Fourier transform [12], methods based on the Wigner-Ville transform [13] or
Choi-Williams transform [14], wavelet transform [15, 16], minimum variance spectral estima-
tion [17], and adaptive approximation [3]. The last method provides the highest t-f resolution.

There is also a class of responses called Synchronized Spontaneous Otoacoustic Emissions
(SSOAEs), which are generated after an acoustic stimulus, but last much longer than typical
evoked components. These components are not well described by symmetric Gabor functions
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[10]. This observation has encouraged us to introduce a dictionary of asymmetric functions for
OAE decomposition [18]. The decaying part of the asymmetric function used in [18] had the
shape of an exponentially damped sinusoid. Herein we applied a more general formula provid-
ing greater flexibility.

SSVEPs are signals comprising electrical brain responses induced by flickering visual sti-
muli. When the retina is excited by an oscillating visual stimulus ranging from 4 Hz to 80 Hz,
the brain generates electrical activity at the frequency of the visual stimulus plus harmonics.
SSVEPs are periodic with a stationary distinct spectrum and are characterized by a good sig-
nal-to-noise ratio and relative immunity to artifacts. SSVEPs provide means for characterizing
preferred frequencies of neocortical dynamic processes. They are used in studies concerning
cognition (visual attention, working memory, brain rhythms, binocular rivalry) and in clinical
neuroscience (aging, neurodegenerative disorders, ophthalmic pathologies, schizophrenia,
depression, autism, migraine, anxiety, epilepsy) [19]. SSVEP also found application in the
design of Brain-Computer Interfaces (BCI), e.g. [20]. Despite 40 years of investigation, the
mechanisms underlying SSVEP are poorly understood, hence the need for advanced signal
processing methods that are able to quantitatively describe these signals.

SSVEP are best observed in the t-f domain. Different t-f methods have been applied to the
signal: chirp analysis [21], continuous complex Morlet wavelets [19] and the “bump”model
[22]. However, none of these methods provided adequate t-f resolution. In particular wavelets–
the most popular method of t-f analysis–give poor time resolution at low frequencies and poor
frequency resolution at higher frequencies.

Experimental procedures
OAEs were measured in 41 subjects (82 ears; 41 right, 41 left; age: 22–35 years). All subjects
were laryngologically healthy and had no otoscopic ear abnormalities. Impedance audiometry
gave normal type-A tympanograms and normal acoustic reflexes. Hearing thresholds were bet-
ter than 20 dB HL for all test frequencies (0.25, 0.5, 1, 2, 3, 4, 6, 8 kHz). Testing was conducted
using the ILO-292 apparatus (Otodynamics, UK, software version 5.6). Standard click stimuli
were used to evoke a total of 260 OAE responses, which were averaged before further analysis.
Stimuli were elicited at approximately 80 dB pSPL level. The inter-stimulus interval was 20 ms.
An early part of the response (0–2.5 ms) was windowed automatically by the system to mini-
mize stimulus artifacts. The sampling frequency was 25600 Hz. All recordings were performed
at the default settings provided by the manufacturer.

SSVEP signals were recorded from one adult healthy person by means of a TMSI-porti 7
EEG amplifier with openBCI and Svarog software. This software is available under terms of the
GPL license from http://git.braintech.pl and http://braintech.pl/svarog. 19 Ag/AgCl electrodes
referenced to linked ears were placed on the scalp according to the 10–20 system were used.
The reference was linked ears. The stimulation was provided by a checkerboard flickering at
frequency 15 Hz. EEG. Sampling frequency was 1024Hz. The 20-second-long SSVEP records
preceded by 5 seconds of resting EEG were averaged over 50 trials.

Matching Pursuit
The method of adaptive approximation by MP introduced by Mallat and Zhang [4] relies on
the decomposition of the signal into an assembly of functions from a very large and redundant
dictionary. A dictionary of basic waveforms can be generated e.g. by scaling, translating and,
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unlike in wavelet transform, by modulating the window function g(t):

gIðtÞ ¼
1ffiffi
s

p g
t � u
s

� �
eixt ð1Þ

where s>0 is the scale, ξ the frequency modulation, and u the translation.
Index I = (ξ, s, u) describes the set of parameters. The window function g(t) is usually even

and its energy in the time domain is mostly concentrated around u with a variance propor-
tional to s. In the frequency domain the energy is mostly concentrated around ξ with a spread
proportional to 1/s.

Finding an optimal approximation of a signal by selecting functions from such a large fam-
ily is an NP-hard (computationally intractable) problem [23]. Therefore a suboptimal iterative
procedure is applied. In the first step of the procedure the vector which gives the largest inner
product with the signal f(t) is chosen:

f ¼ hf ; gI0i þ Rlf : ð2Þ

Then the residual vector RIf is decomposed in a similar way. An iterative procedure is
repeated on the subsequent obtained residues:

f ¼ hRnf ; gInigIn þ Rnþ1f ; ð3Þ

where hRnf ; gIni is the amplitude of the winning atom in the n-th iteration. In the procedure the

signal f is decomposed into a sum of waveforms chosen to optimally match the signal’s residues:

f ¼ Pm
n¼0hRnf ; gIni þ Rmþ1f : ð4Þ

The point at which the iterations should be stopped, or, as an equivalent, the number of wave-
forms in expansion (4), can be chosen individually for each signal based on mathematical criteria
or set arbitrarily, e.g. as a percentage of energy accounted for.

In the MP procedure usually functions from the Gabor family are usually used:

gðt; m; s;oÞ ¼ Ne
�ðt�mÞ2

2s2 eiot ð5Þ
where: N is the normalization constant, σ the scale, µ the position in time and ω the circular
frequency.

The method is very robust with respect to noise. The addition of noise with variance twice
bigger than the variance of the signal does not critically influence the t-f positions of waveforms
corresponding to simulated structures [5].

Matching Pursuit with enriched dictionary
In order to account for the presence of asymmetric waveforms in signals, a dictionary consist-
ing of two-sided functions is proposed. These functions are each composed of two parts: the
ascending part is based on a Gabor function, and the descending part on a atan, which makes
possible to account for the large range of decaying characteristics. Such a waveform is described
by the formula:

LðN; a; b; s;o; mÞ ¼ N exp
� ðt�mÞ2

2s

1þ aðt � mÞ atanðbðt�mÞÞþp
2ð Þ

p

0
@

1
Aeiot ð6Þ

where:
N–normalization factor,
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β–constant (must be high enough to encompass the whole range of atan arguments from
almost-1 to +1) we used β = 1016,

μ–position in time,
ω–circular frequency,
α–the descending slope of the function,
σ–scale (time span).
Parameters μ, α, σ, ω are fitted by the MP algorithm.
The function obtained in this way is continuous up to the first order derivative. The wave-

forms described by the above formula could have different rise and fall times for the same fre-
quency. The envelope of such an atom is:

OðN; a; b; s; mÞ ¼ N exp
� ðt�mÞ2

2s

1þ aðt � mÞ atanðbðt�mÞÞþp
2ð Þ

p

0
@

1
A ð7Þ

The dictionary of functions used here consists of asymmetric functions described by Eq 6
and symmetric Gabor functions (which can be considered as a special case of the function in
Eq 6). Examples of functions described by Eq 6 are shown in Fig 1. They include functions of
different shapes, from almost symmetric to highly asymmetric. The ED used in our approach is
larger than the standard Gabor Dictionary (GD) and its size depends on the number of asym-
metries present in the signal components. Here we have used a dictionary of Gabor functions
consisting of 107 atoms. The ED was about 13 times bigger.

The representation of signals in the time-frequency space
The results of MP decomposition can be visualized in the t-f plane by adding the Wigner distri-
butions of each of the selected waveforms. The Wigner distribution is defined by:

W½f ; h�ðt;oÞ ¼ 1

2p

R þ1
�1f t þ t

2

� �
h t � t

2

� �
e�iotdt ð8Þ

The t-f distribution for the decomposed signal is given by the formula:

W½f ; f �ðt;oÞ ¼ P1
n¼0jhRnf ; gInij

2W½gIn ; gIn �ðt;oÞ
þP1

n¼0

P1
m¼0;m 6¼nhRnf ; gInihRmf ; gImiW½gIn ; gIm �ðt;oÞð9Þ

where the double sum in Eq 9, containing cross distributions of different waveforms, corre-
sponds to the cross terms generally present in the Wigner distribution. One usually tries to
remove these terms in order to obtain a clear picture of the energy distribution in the t-f plane.
Removing these terms from Eq 9 in case of Gabor functions is straightforward–only the first
sum is kept. Then the energy density in the t-f plane of the signal’s representation obtained by
means of MP is given by the expression Ef(t,ω):

Ef ðt;oÞ ¼ P1
n¼0jhRnf ; gInij

2W½gIn ; gIn �ðt;oÞ ð10Þ

The distribution conserves the signal energy in the t-f space. This type of distribution was
applied in most of the studies that used MP with dictionaries consisting only of symmetric
Gabor waveforms e.g. [3, 5, 6, 8, 10, 11].

However, theWigner distribution is not an optimal choice in the case of asymmetric dictionar-
ies. This can be illustrated with the simulation presented in Fig 2. The maximum of energy in the
Wigner distribution for the dictionary of Gabor functions is shifted in relation to the maximum
of of instataneous amplitude of the signal. Moreover, it is easy to see that expantion in Gabor
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dictionary needs 4 atoms to represent the function. In the case of ED, with asymmetric functions,
only one atom is sufficient to represent energy of the function in t-f space. However, the squaring
procedure inherent in theWigner distribution creates cross-terms or “ghost-like” structures.

The inconvenience of the lack of correspondence between maximum of energy and maxi-
mum of amplitude in the case of asymmetric structures may be reduced by applying the Rihac-
zek distribution [24]. The Rihaczek distribution is a complex Hilbert space inner product
between the time series and its infinitesimal stochastic Fourier generator. In Rihaczek distribu-
tion the maximum of energy coincides with the maximum of amplitude, but the distribution is
not free from interference terms [25].

The advantage of the Rihaczek distribution in regard to the position of the energy maximum
may be achieved in an easier and more intuitive way while also eliminating the “ghost struc-
tures” and interference terms. Namely, representation may be constructed as a distribution of
amplitude in the time-frequency plane. The idea is based on calculation of outer product
between modulus of Fourier transform of an atom and its envelope P(t). In this way, we get the
amplitude representation of an atom in t-f space A(ω,t), expressed as follows:

Aðt;oÞ ¼ ZTðoÞPðtÞ

ZTðoÞ ¼ FTðLÞ
maxðFTðLÞÞ
����

���� ð11Þ

PðtÞ ¼ hRnf ;LIn
iOðN; a; b; s; mÞ

Fig 1. Examples of functions with different asymmetry used in the enriched dictionary.

doi:10.1371/journal.pone.0131007.g001

Matching Pursuit with Asymmetric Functions for Signal Decomposition

PLOS ONE | DOI:10.1371/journal.pone.0131007 June 26, 2015 6 / 19



where LIn
is the winning atom (function chosen from dictionary) and hRnf ;LIn

i is winning
atom’s amplitude. ZT(ω) is the Fourier transform normalized such that its maximum is equal
to 1 and P(t) is the atom’s envelope. The time-amplitude profile of the amplitude map of a sin-
gle atom gives the atom envelope. The t-f representation of the decomposed signal is a sum of
the distributions given by Eq 11.

In the case of an amplitude map constructed as a sum of the distributions given by Eq 11
the cross-terms are eliminated. The latency of a maximum of a single atom in the amplitude
map is the same as of the maximum of amplitude of the atom in the time domain. The ampli-
tude representation, especially in the case of biomedical signals, is more intuitive and more
compatible with the other methods used to evaluate signals, than the energy representation.

As a result of this study we developed a plug-in to the EEGLAB Matlab Toolbox available at:
http://git.nimitz.pl/mp-eeglab-plugin.git (maintained git repository) or at: http://zfb.fuw.edu.
pl/data/mp-eeglab-plugin.rar (static package).

Fig 2. At the very top: simulated signal. Below: time-frequency-energy representations of the simulated signal obtained by: A—asymmetric dictionary and
B—Gabor dictionary; time-frequency-amplitude representations obtained by: C—asymmetric dictionary and D—Gabor dictionary. Crosses mark the centers
of the atoms.

doi:10.1371/journal.pone.0131007.g002
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Results

Simulations
In Fig 3 the decomposition of the simulated signal into components is shown. The simulated
signal was asymmetric, but it was not constructed from functions contained in the applied dic-
tionary. In fact, it was given by the formula:

f ðtÞ ¼ t

10�6 þ t2
cosðotÞ ð12Þ

We can observe that one atom of the ED accounted for 97.7% percent of the signal energy.
In the case of the GD four atoms were required to account for the same percentage of energy.
The t-f-amplitude maps are shown below the decompositions. The advantages of the ED com-
bined with t-f-amplitude map can be easily seen.

Comparison of t-f distributions obtained by different methods–spectrogram, Rihaczek dis-
tribution, Morlet wavelets, Wigner de Wille transform, MP including enriched dictionary and
MP with Gabor dictionary are shown in Fig 4. The simulated signal consisted of an asymmetric
long-lasting frequency component of 15 Hz similar to SSVEP and two frequency components
of 12 Hz and 10 Hz of a spindle-like shape similar to alpha waves. White noise with the ampli-
tude equal 10% of the synthetic signal was added. In all representations we can distinguish
three components but with the differing resolution. The t-f resolution in the case of the spec-
trogram is not very good and representation of the 12 Hz component is corrupted by the 15 Hz
wave. In the case of Rihaczek distribution and Wigner de Ville transform, strong interference
terms occur. Additionally the latencies and time spans are not correctly reproduced. MP with
the GD for alpha waves gives very good results, but for asymmetric component of 15 Hz the
pre-echo effect is visible, and the latency of the component is not quite correct. For MP with
the ED the representation is more than satisfactory. The MP based t-f distributions display the
amplitude of the signals, not the energy therefore they are free from interference terms (for the
GD they are absent anyway, but they appear for asymmetric functions). Concluding, we may
say that MP with the dictionary including asymmetric functions and amplitude-time-fre-
quency distribution is an optimal method of signal representation in t-f space.

Application to OAE
OAEs are the time series in which the application of the ED appears to be indispensable An
example of the decomposition of TEOAE by means of enriched and Gabor dictionaries is
shown in Fig 5. Inspecting the t-f map we can observe, in the case of GD, "energy leakage"-
energy preceding the stimulus. The effect is especially clearly visible in the second strongest fre-
quency component of 2.30 kHz. Fig 5 shows that the GD does not represent well the long-last-
ing components of a steep rise. They are approximated by more than one atom.

The MP decomposition is performed in an iterative way, first fitting to the signal the atom
accounting for the most of the energy and then repeating the procedure on the following resi-
dues. In the lower part of Fig 5, five atoms of the decomposition are displayed in order of
decaying energy. In Table 1 and Table 2, parameters describing five strongest atoms are shown.
In the case of ED the first 5 atoms correspond to five asymmetric frequency components:
1.56 kHz, 2.30 kHz, 2.02 kHz, 1.38 kHz and 1.78 kHz. The first two atoms of the GD have simi-
lar frequencies to the ED: 1.56 kHz and 2.30 kHz, but their latencies are longer (Table 1 and
Table 2). Atoms 3 and 4 of the GD have close frequencies (1.86 kHz and 1.90 kHz) similar to
the frequency of the third atom of ED, so it seems that this is the same component of the
TEOAE signal, but the GD was unable to fit one atom to it. In the GD t-f map, we can observe
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Fig 3. The decomposition of the function shown in the upper panels: on the left the representation by means of the enriched dictionary, on the right by means
of the Gabor dictionary. In the case of Gabor dictionary, four functions are needed to account for 97.7% of energy, in case of the enriched dictionary one
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that the long structure at 2.3 kHz consists of several atoms. Inspecting the t-f plot at Fig 5, we
can also see also that there is a small structure of roughly 1.6 kHz and latency around 9 ms
below the third atom (1.86 kHz). This structure, together with the strongest atom (at 1.56 kHz)
of GD decomposition, probably accounts for the same long-lasting component described in
the ED as one waveform of 1.56 kHz frequency. These examples show that the representation
of TEOAE provided by the ED is sparser. One atom of the ED being described in some cases by
two or more atoms of the GD.

An important parameter for TEOAE analysis is the latency of components. One can see in
Fig 5 that the latencies of long-lasting components detected by the GD are usually longer in
case of asymmetric components. When more than one atom is needed to describe a given
waveform the latency of the component is ill defined. The exact identification of TEOAE laten-
cies is important in clinical diagnosis [10].

function alone is sufficient. Panels at the bottom: amplitude representation for enriched dictionary (left) and Gabor dictionary (right). Crosses mark the centers
of the atoms.

doi:10.1371/journal.pone.0131007.g003

Fig 4. Time-frequency distributions obtained by: A—windowed Fourier transform (spectrogram), B—Rihaczek transform, C—Morlet wavelets, D—
Wigner de Ville transform, E—MPwith the enriched dictionary, F—MPwith the Gabor dictionary.Components of simulated signal consisting of
asymmetric waveform of frequency 15 Hz and two spindles of frequencies 12 Hz and 10 Hz are shown at the very top of the picture. On the horizontal axis
time, on the vertical axis frequency in Hz. The colors represent: for four upper panels energy and for two lowest panels amplitude (red the strongest, dark blue
the weakest).

doi:10.1371/journal.pone.0131007.g004
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Fig 5. The decomposition of the TOAE signal shown at the very top; obtained by the enriched dictionary (on the left) and by Gabor dictionary (on the right).
Below the time-frequency-amplitude maps, at the bottom the first five (strongest) atoms of the decomposition. The maxima of amplitudes of the first five
atoms are marked by crosses.

doi:10.1371/journal.pone.0131007.g005

Table 1. Parameters of TOAE structures provided by enriched dictionary.

# Amplitude [au] Width [s] Latency [s] Frequency [Hz]

1 279.37 0.0038 0.0065 1564.61

2 163.52 0.0099 0.0044 2304.21

3 207.78 0.0032 0.0060 2017.00

4 135.52 0.0057 0.0060 1379.30

5 69.56 0.0133 0.0060 1777.52

6 84.96 0.0040 0.0057 2549.01

doi:10.1371/journal.pone.0131007.t001
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Application to SSVEP
For SSVEP analysis we applied the MP method with the dictionary encompassing asymmetric
waveforms and for comparison the dictionary with symmetric atoms only. In Fig 6 the time-
frequency-amplitude maps and the five strongest atoms obtained by decomposition of the
SSVEP registered at electrode O2 are shown for the enriched and Gabor dictionaries. The t-f
representations reveal the very narrow-band characteristics of SSVEP. In the case of Gabor
representation we can observe the “energy leakage” effect–the energy of the signal appears
before the start of the signal. The symmetric dictionary is unable to clearly show the onset of
SSVEP. In the case of the ED the first and second atoms correspond to the basic frequency of
15 Hz and its harmonics. However, in the case of the GD only the third atom corresponds to
the harmonics, since the second atom is needed to improve the representation of the 15 Hz
component. In the case of the ED the third atom of very short duration represents the fast
onset of SSVEP, and its latency of 5.05 ms corresponds very well to the start of the stimulus.
The GD does not allow accurate determination of the onset of SSVEP. In Table 3 and Table 4,
amplitudes, frequencies, latencies and time spans of the displayed atoms are given. It is easy to
see that for both representations the frequencies of harmonics reproduce the stimulating fre-
quency very accurately.

The t-f pattern shown in Fig 6 is characteristic of the electrodes placed in the location where
SSVEP is the strongest. For the electrodes further away from the place of SSVEP generation,
the t-f characteristic is different. In Fig 7 the t-f map and decomposition of SSVEP into the first
four atoms are shown for electrode P4. For the ED the first and second atoms correspond to
the 15 Hz component and its harmonics and the third atom reveals structure similar to VEP
(as its time span, 300 ms, roughly corresponds to the time span of VEP). This kind of decom-
position appears for the posterior, central and frontal electrodes. For the GD this VEP-like
structure is also present, but it usually occupies a lower position in the energy ranking of the
atoms than the corresponding atom from the ED. It is interesting that VEP is hardly visible for
the occipital electrodes, where it is masked by the SSVEP. We can see that the representation of
SSVEP by means of a dictionary with asymmetric functions has a greater amount of informa-
tion and may be very useful for the study of these signals.

We shall not describe in detail the features of SSVEP decomposition by MP, since it is not
our aim to investigate the properties of these signals, which would require a separate study of
the larger material. However, we would like to emphasize the advantages of the proposed repre-
sentation. First of all, representation encompassing asymmetric waveforms is sparser. Taking
into account all 19 electrodes, the average number of atoms needed to describe 95% of energy
was for the GD 2.73 ± 1.28, and for the ED 1.67 ± 0.82 atoms. Secondly application of Gabor
dictionary creates “energy leakage” in t-f representation, which appears before the onset of
SSVEP. Symmetric waveforms are not well suited to describing the steep rise of SSVEP. The
time of the appearance of SSVEP can be very well estimated by means of decomposition into

Table 2. Parameters of TOAE structures provided by standard Gabor dictionary.

# Amplitude [au] Width [s] Latency [s] Frequency [Hz]

1 190.37 0.0064 0.0097 1565.19

2 116.68 0.0145 0.0113 2299.00

3 288.69 0.0020 0.0060 1863.93

4 194.22 0.0023 0.0095 1899.29

5 160.79 0.0032 0.0053 2516.50

6 96.72 0.0049 0.0089 1387.25

doi:10.1371/journal.pone.0131007.t002
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Fig 6. The decomposition of the SSVEP signal recorded at electrode O2 (shown at the very top) obtained by the enriched dictionary (on the left) and by
Gabor dictionary (on the right). Below: time-frequency-amplitude maps, at the bottom the first five atoms of the decomposition. In Table 3, parameters
(frequency, amplitude, time occurrence and time span) describing the first five atoms are shown. In the time-frequency map harmonics at 30 Hz is not shown
in order to make the figure more compact.

doi:10.1371/journal.pone.0131007.g006

Table 3. Parameters of SSVEP structures provided by both dictionaries in O2 channel.

# Amplitude [au] Width [s] Latency [s] Frequency [Hz]

Dictionary E G E G E G E G

1 28.54 23.31 19.70 19.47 5.94 14.29 14.98 14.98

2 5.22 9.26 19.24 11.49 9.77 5.66 29.95 14.90

3 28.60 5.95 0.26 17.53 5.05 18.41 14.85 29.95

4 5.83 7.60 2.42 8.26 14.19 5.76 19.85 15.07

(E-enriched dictionary, G-Gabor dictionary)

doi:10.1371/journal.pone.0131007.t003
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Table 4. Parameters of SSVEP structures provided by both dictionaries in P4 channel.

# Amplitude [au] Width [s] Latency [s] Frequency [Hz]

Dictionary E P4 E P4 E P4 E P4

1 10.52 9.17 19.14 18.92 6.43 14.77 14.98 14.98

2 8.03 6.54 12.03 13.55 6.33 12.44 29.95 29.95

3 29.10 3.34 0.30 11.81 5.31 5.51 3.17 15.06

4 15.71 29.11 0.48 0.30 5.29 5.31 13.10 3.17

(E-enriched dictionary, G-Gabor dictionary)

doi:10.1371/journal.pone.0131007.t004

Fig 7. The decomposition of the SSVEP signal recorded at electrode P4 (shown at the very top) obtained by the enriched dictionary (on the left) and by
Gabor dictionary (ont right). Below: time-frequency-amplitude maps, at the bottom the first five atoms of the decomposition. In Table 4, parameters
(frequency, amplitude, time occurrence and time span) describing the first five atoms are shown. In the time-frequency map harmonics at 30 Hz is not shown
in order to make the figure more compact.

doi:10.1371/journal.pone.0131007.g007
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asymmetric atoms, which is not the case for symmetric ones. The examples presented in Figs 6
and 7 show topographically the different t-f characteristics of SSVEP and indicate the possibil-
ity of following its evolution across the brain, which may be helpful in revealing the mecha-
nisms of SSVEP generation.

Discussion
The application of asymmetric waveforms for adaptive approximation of signals has already
been proposed in the field of musical signals. In [26, 27], damped sinusoids were proposed as
basic functions. They well describe musical tones, which have a very sharp onset, but seem to
be less appropriate for other signals such as OAE and SSVEP, in which the rising part of the
signal is less steep. A similar argument holds for the asymmetric functions introduced in [28],
which consisted of cosine and exponential functions with fixed parameters. These kinds of
functions were tailored for the representation of music and specifically for recognition of basic
notes, but they are less appropriate for a more general class of signals with components of var-
ied degree of asymmetry. The dictionary built from symmetric and asymmetric oscillatory
components, namely the Epsilon-Skew-Normal dictionary for multichannel MP decomposi-
tion was proposed in [29], however its advantages for experimental signal analysis were not
clearly demonstrated.

Asymmetric functions in our dictionary are very flexible. Different kinds of wave shapes
may be designed by changing one parameter only. As is easy to observe by examining Figs 4–7,
the introduced functions well account for structures with different degrees of asymmetry. We
may say that they constitute a general framework which is useful for different kinds of signals.

The computation time of the procedure depends on the size of the dictionary, which
depends on t-f resolution, which in turn is connected with a t-f grid on which the atoms are
fitted. Here, we have used a high resolution, namely for OAE signals Δt = 0.2 ms and Δf =
12.5 Hz. In the case of SSVEP the time resolution was Δt = 8 ms and the frequency resolution
0.064 Hz.

In our earlier implementation of asymmetric functions [18] the shape of the function con-
sisted of two functions. The ascending part was described by Gabor function and the descend-
ing one by exponential function. Here, we used the analytical function atan, which allowed the
usage of gradient descent methods in the approximation procedures. In consequence, the time
of calculations decreased by a factor of 5. The time of calculations can be further reduced by
the application of a dictionary with a smaller t-f resolution, since in some applications a very
dense dictionary, such as we have used here, is not needed.

We have proposed another kind of t-f representation of signals, namely amplitude represen-
tation, which is free from cross-terms. A broadly applied representation of t-f distribution in
terms of energy comes from electrical engineering, where power is of basic interest. Also, more
traditional methods of analysis do not allow easy determination of the amplitude values of sig-
nal structures. In the case of biomedical signals amplitude is of primary interest, since it is
more understandable for medical doctors and biologists, its link with the signal itself being
more intuitive. It seems that in other fields of research as well, representation in terms of time-
frequency-amplitude may have advantages other than the elimination of cross-terms. It was
shown in [4] that the dictionary consisting of Gabor atoms provides a t-f resolution close to the
theoretical limit, while in case of asymmetric functions the resolution is lower. However, in
practical applications, there are advantages more important than resolution. The representa-
tion by means of asymmetric functions is more sparse than for Gabor functions. For the
description of long-lasting OAE or SSVEP components more than one symmetric atom is
needed. The percentage of energy that accounted for the same number of iterations performed
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by means of both methods varied, depending on the number of asymmetric structures. How-
ever, it was always higher for the ED, unless the number of iterations was high and was
approaching the residues connected with noise.

In the case of TEOAE, the advantages of applying adaptive approximations have already
been demonstrated. For example by means of MP it was first possible to identify basic compo-
nents and connect them with the resonance modes of the cochlea [3]. Further improvement in
TEOAE analysis was introduced by enriched dictionaries that made it possible to avoid
describing one long-lasting component by several atoms and to eliminate the “pre-echo” or so-
called “energy leakage” effect–the artifact connected with the occurrence of energy before the
start of the actual signal.

An important aspect of the proposed method is the possibility of accurately determining of
the latency of components. In the case of OAE signals, this is an important parameter for
understanding the mechanisms of OAE generation, namely through comparison of the models
with the experimentally estimated latency-frequency dependence. The accuracy of the estima-
tion of this function is crucial for testing physiological models. Latency is also a parameter that
is used in clinical diagnosis of hearing disorders [10, 11]. There have been attempts to identify
the latencies of OAE components by means of wavelet transform [30], but the procedure did
not yield the satisfactory results. Delays of components of different frequencies were found in
an animal study in which OAE recorded for sweeping stimulating frequency was followed by
Fourier analysis [31]. In the MP approach, latency is given directly as a parameter of the fitted
function. The problem of paradoxically long latencies found in newborns was explained
through the application of the MP procedure [10], which revealed the important contribution
of SSOAE (i.e. long-lasting components) in the OAE of very young children. However, the cor-
rect estimation of the latencies of long-lasting components became possible only after applica-
tion of a dictionary containing asymmetric functions.

The application of the ED to SSOAE made it possible to find the correspondence between
the ratios of SSOAE frequencies and the musical scale [32]. In this respect, a special feature of
the ED was its sparseness, which made it possible to avoid representation of one long-lasting
component by means of several atoms.

Quite a few t-f analyses of SSVEP have been performed up to now. Wavelet transform was
applied to SSVEP in [33, 34, 35]. In [21], adaptive chirplet transform was used. Vialatte [36]
applied to SSVEP so-called “bump” analysis based on complex Morlet wavelets followed by
construction of "bumps" based on half ellipsoid basis functions. However, these methods suf-
fered from the limitation of t-f resolution inherent in the wavelet method [5, 6]. MP outper-
forms other methods of t-f analysis in several aspects [1, 2, 3]. From the examples shown in
Figs 6 and 7 we can see that in the case of SSVEP the frequency parameter is well determined
by MP with Gabor dictionary but this is not the case for latencies of components. For studies
devoted to the investigation of the SSVEP generation mechanism, paradigms connected with
cognition processes, or applications in clinical neuroscience, description by asymmetric func-
tions (which better reproduces the character of SSVEP) seems indispensable.

Various theories have been put forward to explain the complexity of SSVEP [19]. These the-
ories assume different pathways of visual stimulus propagation and different distributions of
the active dipoles in the brain. The representation of SSVEP by means of basic components of
well defined in t-f and described parametrically in t-f domain may help in unraveling the mech-
anisms underlying SSVEP. The topographical inspection of SSVEP components may elucidate
the propagation of the signal and help in understanding the complexity of SSVEP.

SSVEP are used in neurophysiological investigations as frequency tags. Propagation of the
SSVEP peak frequency from the primary visual areas to other brain structures is used to track
the neural dynamics correlated with attention [19]. In working memory tasks, the memory
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load may be estimated according to the decrease of SSVEP amplitude in relation to the distance
from the source [37]. In these kinds of investigations, the detailed correct description of SSVEP
components and accurate determination of their frequencies seem indispensable.

SSVEP are also used for investigation of aging and psychiatric disorders such as schizophre-
nia and depression. SSVEP latency is delayed for schizophrenic patients [38]. Topographical
differences in SSVEP were observed for patients suffering from major depression [39]. The list
of SSVEP applications in neuroscience and in clinical neurology is long and it seems that the
adequate representation of this signal in the t-f domain may be helpful in a wide range of clini-
cal applications.

One of the advantages of the proposed method is the parametric description of the compo-
nents in terms of their frequency, latency, time span, amplitude and degree of asymmetry.
These kinds of parameters have a clear physical meaning and could be helpful in revealing the
mechanisms of signal generation. Parametric description facilitates the statistical analysis of
results, finding the meaningful functional dependencies between values characterizing compo-
nents, and testing models.

Conclusion
Here we have proposed a general method of decomposition of time series into basic compo-
nents described by means of parameters of clear meaning. The enriched dictionary of functions
allows the description of a large class of signals containing structures of broadly varying degree
of asymmetry. It provides flexible and sparse representation of the time series. We have intro-
duced the representation of signals in the time-frequency-amplitude space, which apart from
eliminating spurious structures from the representation, offers a new perspective on signal
representation. The presented results obtained for signals of differing origin indicate that the
proposed approach may have a potentially broad range of application in different branches of
biomedical research.
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