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Large-scale network analysis reveals the sequence
space architecture of antibody repertoires

Enkelejda Miho"23, Rok Rogkar?, Victor Greiff> & Sai T. Reddy® '

The architecture of mouse and human antibody repertoires is defined by the sequence
similarity networks of the clones that compose them. The major principles that define the
architecture of antibody repertoires have remained largely unknown. Here, we establish a
high-performance computing platform to construct large-scale networks from comprehensive
human and murine antibody repertoire sequencing datasets (>100,000 unique seguences).
Leveraging a network-based statistical framework, we identify three fundamental principles
of antibody repertoire architecture: reproducibility, robustness and redundancy. Antibody
repertoire networks are highly reproducible across individuals despite high antibody
sequence dissimilarity. The architecture of antibody repertoires is robust to the removal of
up to 50-90% of randomly selected clones, but fragile to the removal of public clones shared
among individuals. Finally, repertoire architecture is intrinsically redundant. Our analysis
provides guidelines for the large-scale network analysis of immune repertoires and may be
used in the future to define disease-associated and synthetic repertoires.
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he high diversity of antibody repertoires, which is defined

by the collection of an individual’s B-cell receptor (BCR)

and antibody sequences, plays a major role in providing
broad and protective humoral immunity. The source of antibody
diversity has long been identified to be the somatic recombination
V—, (D— in the heavy chains) and ]-genes!. Additions and
deletions of nucleotides at the junctions of the gene segments
further increase diversity>3. Antibody identity (clonality) and
antigen specificity are primarily encoded in the highly diverse
junctional site of recombination in the variable heavy chain,
called the complementarity determining region 3 (CDR3)%. Thus,
the similarity landscape of CDR3 amino acid (a.a.) sequences
constitutes the clonal architecture of an antibody repertoire; this
architecture reflects the breadth of antigen-binding and therefore
correlates with humoral immune protection and function.
Understanding sequence-related properties of antibodies is thus
valuable for the development of novel therapeutics and
vaccines®®. However, due to limitations in technological
sequencing depth and algorithmic advances, the fundamental
construction principles of antibody repertoire architecture have
remained largely unknown, thereby hindering a more profound
systems understanding of humoral immunity.

Recently, selected aspects of network analysis have been
employed to investigate antibody repertoire architecture in health
and disease. Network analysis captures antibody repertoire
architecture by representing the similarity landscape of antibody
sequences as nodes (antibody clonal sequence) that are connected
if sufficiently similar’-12 (Fig. 1la). Sequence-based networks
have first been used to show immune responses defined by
similarity between clones, a proxy for clonal expansion8. Network
connectivity was later also used to discriminate between diverse
repertoires of healthy individuals and clonally expanded reper-
toires from individuals with diseases such as chronic lymphocytic
leukemia’ and HIV-1 infection!?. Thus far, network analysis has
mostly been utilized for visualization of network clusters’~12.
Network visualization limits the informative graphical display of
a network to a few hundred antibody clones (100% a.a. identity
sequences) thereby preventing the quantitative description of
immune repertoire architecture. Indeed, it has been shown that
the natural antibody repertoire exceeds the informative visuali-
zation threshold (hundreds of clonal nodes) by at least three
orders of magnitude!3, a limit that previous research did not
explore given the lower biological coverage. Currently, compu-
tational methods for constructing large-scale networks with more
than 103 nodes are not typically accessible in systems biology!.
Furthermore, as of yet, only networks expressing clonal similarity
relations of one nucleotide (nt) or one amino acid (a.a.) between
sequences have been investigated’~12, which, considering recently
discovered biases in VD] recombination and SHM targeting!>-21,
may not be sufficient for a comprehensive immunological
appreciation of repertoire architecture.

To reveal the antibody repertoire architecture by quantitative
statistical analysis, we implement a high-performance computing
platform for network analysis and coupled it with large-scale
antibody repertoire sequencing data from murine and human B-
cell subsets. This leads us to address the following key questions:
(i) Is the antibody repertoire architecture reproducible across
individuals? (ii) How robust is the antibody repertoire archi-
tecture to the removal (deletion) of clones? (iii) To what extent is
the repertoire architecture intrinsically redundant? (Fig. 1).

Results

A platform for large-scale networks of antibody repertoires.
The landscape of antibody clonal similarities is vast and complex;
for example, on the a.a. level, the size of the distance matrix of

all-against-all sequences is =10!2 for a repertoire of ~10° clones
(representative of murine B-cell subsets, see below). In order to
extract the construction principles of antibody repertoires from
such a high-dimensional similarity space, we developed a large-
scale network analysis approach, which was based on represent-
ing CDR3 a.a. clones (a clone here is defined by 100% CDR3 a.a.
identity) as sequence-nodes connected by similarity-edges. Spe-
cifically, we developed a computational platform that leverages
the power of distributed cluster computing and computes the
extremely large distance matrices required for investigating
the similarity architecture of entire repertoires (>10° CDR3 a.a.
sequences, Supplementary Figs. 1, 3). We performed network
analysis on the a.a. level in order to emphasize information that
relates to antigen-driven B-cell clonal expansion. Networks were
built as follows: first the pairwise a.a. sequence similarity of all
clones (distance matrix) was calculated using the Levenshtein
distance (LD, Fig. 1a). Then, we built Boolean undirected net-
works (so called similarity layers), which are constructed such
that nodes (antibody CDR3 sequences) are connected if and
only if they have an LD of n where n can run from 1 through 12.
For example, similarity layer LD; designates the network in
which CDR3 clones (nodes) are connected (via edges) if and
only if, they have an LD of 1 (Fig. 1, Supplementary Fig. 1). LD
measures the number of edits between sequences of arbitrary
length. Therefore, CDR3 sequences did not have to be stratified
by length, thus simplifying the analysis.

The network analysis of circa >10° or more sequences is an
intractable problem without parallel distributed computing. Our
implementation utilizes the Apache Spark?? distributed comput-
ing framework to partition computations across a cluster of
machines (Supplementary Fig. 1b). The construction of large-
scale networks is computationally demanding: a large network
of 1.6 million nodes (simulated strings) required 15 min if the
calculation was performed simultaneously on 625 computational
cores (Supplementary Fig. 1c), while the same computation would
take months without parallelization. Computational costs could
have been lowered substantially by performing network analysis
on only a subsample of the repertoire (e.g., 103 clones), as
reported in previous studies”~!1. However, extensive analysis has
revealed that sub-networks are not a priori statistically repre-
sentative of entire networks. For example, sub-network measure-
ments are not always representative of key parameters such as
degree distribution, betweenness, assortativity and clustering?3-24,
Thus, it was imperative to construct and analyze large-scale
networks based on a similarity distance matrix that covers the
clonal diversity of entire antibody repertoires.

Comprehensive biological sampling of antibody repertoires
was ensured by the usage of previously generated large-scale
antibody repertoire data (billions of antibody sequence reads)
from human?® and mouse!® naive and antigen-experienced B-cell
populations. Data was analyzed from naive and memory B-cells of
three healthy human donors?>, and pre-B cells (pBC), naive B cells
(nBC) and memory plasma cells (PC) isolated from 19 mice, which
were stratified into one unimmunized and three immunized cohorts.
The experimental design and data allowed for the assessment of
antibody sequence architecture across several important parameters:
(i) across species, (ii) across key stages of B-cell development,
(iii) before (pBC, nBC) and after antigen-driven clonal selection and
expansion (PC, memory B-cells), (iv) differences in the complexity
of the protein antigen [hepatitis B surface antigen (HBsAg),
ovalbumin (OVA) and nitrophenylacetyl-conjugated hen egg
lysozyme (NP-HEL)], and (v) across a scale of different repertoire
sizes (102-10° of unique CDR3 clones). The human2® and murine!8
experimental data?® provided maximal technological and high
biological coverage, enabling comprehensive assessment of the global
similarity landscape and architecture of antibody repertoires!®.
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Fig. 1 Large-scale network analysis reveals the architecture of antibody repertoires and its three fundamental principles. a Large-scale networks (>500,000
nodes) of antibody repertoires were constructed from the Levenshtein distance (LD, edit string distance) matrix of CDR3 clonal sequences (a.a) using a
custom high-performance computing platform (see Methods). Networks represent antibody repertoires of similar CDR3 nodes connected by edges when
amino acid CDR3 sequences differ by a predetermined LD. All clones of a repertoire connected at a given LD form a similarity layer (LD,,). b Deconvolution
of the complexity of antibody repertoire architecture was performed by quantifying (i) its reproducibility through global and clonal (local) properties

or features, (ii) robustness to clonal removal and (iii) redundancy across its similarity layers in the sequence space (Supplementary Fig. 1)

Global patterns of antibody networks are reproducible. In
order to quantify the extent to which antibody repertoire archi-
tecture is reproducible across individuals, we analyzed the
conservation of global (repertoire-level) network measures in
the base similarity layer (similarity layer LD,). The base layer
of the network organization provides information regarding
the minimal differences (i.e., 1 a.a.) of all antibody sequences
that compose the repertoire. While global network measures
take into account all nodes (clones) of a network (Supplementary
Table 1), local (clonal) network measures, discussed in the
next section, are node-based (Supplementary Table 2). We
used classical graph analysis parameters to characterize and
quantify antibody repertoires from a systems prospective.
Although antibody sequence diversity varied highly among
mice (74-85% unique clones in a given mouse, Supplementary

Fig. 2a), we found a remarkable cross-mouse consistency in
clonal interconnectedness (similarity of antibody sequences)
within each B-cell stage: the number of edges (E) among
clones  (Eppc=230,395+23,048; E,pc= 1,016,928 +67,080;
Epc=45%10), the size of the largest component (pBC =46+
0.7%; nBC=58+0.5%; PC=10+1.6%; Fig. 2a) and cluster
composition (Supplementary Fig. 2b) varied negligibly across
mice (see Methods, Network analysis). Thus, although antibody
sequence composition varied substantially between individuals
(Supplementary Fig. 2a), the overall structure of the network
was similar indicating that the similarity relations of antibodies
across B-cell stages and individuals were comparable. This
finding suggests that VDJ recombination, although independent
across individuals, generates antibody repertoires with convergent
architecture.
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Fig. 2 Global and clonal properties of antibody repertoire networks are reproducible. a Network size of antibody repertoires. The y-axis indicates the
absolute number count of CDR3 nodes, CDR3 edges (similarities) and CDR3 clones in the largest component. The mean percentage of the CDR3s
belonging to the largest component by B-cell development stage is shown on top of the dark blue bar. b Global properties, diameter and assortativity
coefficient are shown for pre-B cells (pBC), naive B cells (nBC) and plasma cells (PC). € The mean value of the coefficient of variation for clonal properties
in pBC, nBC and PC repertoires. Wilcoxon test, ppgc,nc/pc < 0.05 (see Methods). d Percentage of clones connected to at least one other clone in the
repertoire at LDy, LD<y, ..., LDy, in pre-B cells, naive B cells, plasma cells. e The power-law (orange), exponential (red) and Poisson (gray) distributions
were fit to the cumulative degree distributions of naive B cell and plasma cell (unimmunized) repertoires of a representative sample for similarity layers
LD, 3,7 (log-log scale). Representative clusters are shown for LD;. f Percentage of CDR3 clones (mean + s.e.m) that compose the maximal core. Subgraph of
the maximal k-core (red), and k-1 (black), k-2 (dark gray) and k-3 (light gray) cores in a representative mouse pBC sample. g Percentage overlap of CDR3
germline V-genes in the maximal core of nBC repertoires (n =5 mice and data sets for Unimm (unimmunized), OVA, NP-HEL, n = 4 mice sets for HBsAg,
mean £s.e.m). h Normalized neighborhood size for orders n={1-10, 15, 20, 30, 40, 50} across CDR3 clones (similarity layer LD,). For a, b, d, barplots
show mean £ s.e.m; for a-e, each B-cell stage n =19 mice. Source data are provided as a Source Data file

Along B-cell development, PC repertoires were five-fold more
disconnected than pBC and nBC networks (PC largest compo-
nent was nearly five times smaller than pBC and nBC, Fig. 2a),
and their centrality was concentrated on specific clones
compared to the homogeneously connected clones in pBC and
nBC networks (centralization zpc=0.05, density Dpc=0.01,
Zp8CnBC = Dupcupc =0, Supplementary Fig. 2c). This result
suggests that early in B-cell development, the architecture of
sequence similarity covers a more continuous sequence space,
while PC show a more heterogeneous antibody sequence
composition. Compared to pBC, nBC showed a higher average
degree (k,sc =3, knpc=>5, kpc=1, Supplementary Fig. 2b)
although both repertoire compartments had identical diameter
(dppcnBc = 26,dpc = 6, Fig. 2b), indicating a similar coverage
of the sequence space. We observed that clones in pBC and

nBC repertoires connected to comparable clones in terms of
degree (assortativity?’=2%, r,pc =048, r,pc =041, Fig. 2b),
whereas PC networks were consistently disassortative: their
highly connected clones were linked to clones with few
connections (rpc =—0.09, Fig. 2b). The assortativity analysis
may reflect the ‘praetorian’ nature of B-cell repertoires: prior
to antigen exposure, all clones are equally important for antigen
recognition, while showing the sequence bias after antigen-
driven selection and expansion for plasma cells (complementary
to clonal count). The characterization of the global patterns
of antibody repertoire networks indicated that pBC, nBC and
PC repertoires were reproducible. pBC and nBC clones cover a
larger diversity space than clones in PC repertoires, where
sequence similarity shows to be centralized and targeted towards
certain clones.
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Clonal features of antibody networks are reproducible. Anti-
body repertoire architecture was also reproducible at the level of
clonal (local, Supplementary Table 1 and Supplementary Table 2)
features: pBC and nBC networks were characterized by a low
variability (coefficient of variation as a measure of relative
variability, CV) across various clonal parameters. The low
variability of clonal parameters in pBC and nBC networks
(CVppc = 2-28%, CVypc = 1-24%) was in contrast to the higher
variability observed in PC repertoires (CVpc = 13-118%, Fig. 2c).
Specifically, low variability across different individuals was
observed in several clonal parameters such as degree, transitivity,
authority and PageRank, closeness and betweenness (Fig. 2c,
Supplementary Fig. 2d). Variation analysis of the similarity
degree indicated that the average number of similar clones to each
of the clones in a repertoire varied marginally in pBC and nBC
(CVppcne = 5,6%). Transitivity showed that the similarity
between clones both similar to a third CDR3 clone varied only
negligibly between individuals (CV,pcnsc = 1,2%, Fig. 2c, Sup-
plementary Fig. 2c). Authority and PageRank showed that the
centrality of a CDR3 in the repertoire topology varied respectively
CVppcnpc=11 and 25% across individuals, suggesting that
individual repertoires were centered variably around certain
CDR3 clones which were centers of highly connected (similar)
clonal regions compared to less connected regions in the same
repertoire network (Fig. 2c, Supplementary Fig. 2d). Closeness
analysis revealed that an analogous number of similarity edges
were required to access every other CDR3 from a given CDR3
clone in antibody repertoire networks of different individuals, as
the similarity of a clone to every other CDR3 clone in the
repertoire varied by CVppcnsc=17% (Fig. 2c, Supplementary
Fig. 2d). Betweenness, the “bridge” function of a clone in
sequence similarity, varied slightly across individuals with CVpc
nac = 28% (Fig. 2¢, Supplementary Fig. 2d), suggesting a com-
parable structure of the similarity route function of
CDR3 sequences in these repertoires. Clones in pBC and nBC
antibody repertoires cover a larger space and clonal similarity is
homogenously distributed at the global repertoire level. Thus,
clones of antibody repertoires in early B-cell development carry
a similar centrality function within the architecture of the
repertoire. These vary negligibly across individuals in their local
network parameters, suggesting a homogeneous sequence-role
among clones within and across repertoires.

Although a higher variability was detected across PC repertoire
networks (Fig. 2¢), clonal parameters were specific to B-cell stages
(PpBcnBo/pc < 0.05): PC clones possessed higher centrality
compared to pBC and nBC (closeness®, eigenvector?!:32, and
PageRank), while antigen-inexperienced clones showed to func-
tion as a bridge to sequence similarity (betweenness33, Supple-
mentary Fig. 2d). Thus, antigen-experienced antibody clones
differentiated in their centrality function; certain antibodies had
a central position (high authority) in the architecture of the
repertoire, with many similar antibodies. In contrast, early B-cell
clones showed a connector function, bridging the sequence space
of the repertoire.

Furthermore, in contrast to pBC and nBC, PC network clonal
parameters correlated with CDR3 frequency (clonal degree
median rpearson = 0.55, betweenness rpearson = 0.82) suggesting
that clonally expanded CDR3 sequences were structural centers of
similar clones (Supplementary Fig. 2e, f). This indicates that
selection of highly frequent CDR3 clones within repertoires for
antibody discovery might be a good proxy for selecting sequences
that have a central role in the structure of sequence architecture,
being centers of similarity. CDR3 authority correlated positively
with germline V-gene frequency in PC clones (rpearson = 0.39),
denoting the potential role of the V-gene usage in the
centralization of these networks (Supplementary Fig. 2g). Thus,

certain high frequency V-genes predispose clones to be highly
connected and similar.

The structure of antibody repertoires is reproducible. Network
analysis revealed that antibody repertoires were constricted along
B-cell development throughout all similarity layers. At LD;,
44-62% of clones were similar (connected) to at least one other
clone in all B-cell stages, revealing a high sequence degeneracy in
clonal generation and selection (Fig. 2d). This indicated that
nearly half of the antibody sequences were similar to one another,
thus demonstrating a high extent of repertoire constriction.

In order to understand if such degeneracy in CDR3 sequence
similarity translated into reproducible repertoire network struc-
tures’!, we determined the clonal empirical degree distribution.
Degree distribution is a distinctive feature of different types
of networks and it provides an immediate indication of how
similarities (degrees) between antibody sequences are distributed
in repertoires. Analysis of the cumulative degree distribution
revealed that antigen-inexperienced pBC, nBC and unimmunized
PC repertoires were exponentially distributed (LD,), whereas PC
repertoires of immunized cohorts were power-law distributed
(base similarity layer LD;, Fig. 2e, Supplementary Fig. 3d-g).
Thus, the probability that antigen-inexperienced CDR3 clones
were similar to one another was exponentially distributed, while
the probability that antigen-experienced antibodies were similar to
another one in the repertoire followed a power-law (scale-free for
several samples but not all). Clusters of connected CDR3 clones
showed a typical tree-like structure for pBC and nBC (generated
by VD] recombination/nucleotide additions/deletions), and a star-
like structure for PC (likely generated by SHM). The structure of
the network suggested an extended and chain-like sequence-
similarity of the antibody clones for pBC and nBC repertoires,
reflecting the vast sequence space that these repertoires need to
cover in order to respond to the huge diversity of potential
pathogens. The star-like structures of antigen-experienced reper-
toires suggests targeted expansion (one or few central clones that
are similar to a large number of secondary clones) of certain
antigen-responding PC clones after immunization.

In order to investigate if antibody repertoire network structures
were reproducible across species, we constructed large-scale
CDR3 networks with up to 6 million clones from human memory
and naive B-cell samples (Supplementary Table 3) and analyzed
their degree distribution. The degree distribution of human
memory B-cell CDR3 networks was exponential (Supplementary
Fig. 4a). In line with what was already observed in murine
samples, human naive B-cell repertoires showed an exponential
structure (Supplementary Fig. 4b). Thus, human B-cell reper-
toires networks were also structurally reproducible.

In order to prove the tree-/star-like hypothesis and further
investigate the sequence similarity space, we performed k-core34
decomposition (where core is a “shell” englobing similar CDR3)
and neighborhood analysis (Fig. 2f, g, h). A k-core decomposition
was performed by iteratively removing k shells of all vertices of
lower than a certain degree and leaving only the sequential cores of
a network, its connected components. The k-core decomposition
revealed that the largest k-cores (after all external shells with k <
kmax were removed, where k is the degree, ie., number of similar
clones, see Methods) of pBC and nBC (0.04% and 0.06% of CDR3
clones in k-core, respectively) were 200-fold smaller than those of
PC (8.2%, Fig. 2f). Antigen-inexperienced repertoires were thus
characterized by larger coreness values (>20), signifying a more
shell-like structure of CDR3 similarity (Supplementary Fig. 2j, k)
and confirming their tree-like structure. Furthermore, the high
convergence of V-genes at the core-level of antibody repertoire
networks (pBC =50%, nBC=70%, PC=1-10%, Fig. 2g), in
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contrast with the low exact CDR3 sequence core-overlap
(Supplementary Fig. 3a, b, c), suggested a genetically determined
origin of the structure. In naive B-cell repertoires, 70% of V-genes
represented in the core overlap between cohorts suggesting a
starting bias focused on certain V-genes for the structure of the core
architecture of CDR3 sequences.

The average CDR3 neighborhood size, which designated the set
of similar CDR3 clones along each sequential step of similarity
from a certain clone (orders n =1-50), was order-independent
in PC and plateaued at 2% of the network, confirming that PC
clones were connected to one central clone in a star-like similarity
structure, reflecting antigen-driven clonal selection and expan-
sion. Neighborhood size>, the number of similar clones to each
clone, increased with the order of the network in antigen-
inexperienced cells up to 34% (Fig. 2h), signifying tree-like
similarity structures that enable maximal exploration of sequence
space within the genetically predetermined repertoire constriction
space. This result suggests that antibody repertoires are
evolutionarily wired to respond to diverse antigenic stimuli.

Antibody repertoires are highly robust systems. We hypothe-
sized that the reproducible architecture of antibody repertoires
may have evolved to be robust to fluctuations in clonal

composition. It is known that B cells and antibody repertoires are
very dynamic systems characterized by a high turnover rate36-38,
Therefore, we investigated the robustness of antibody repertoire
architecture to clonal removal (deletion).

It has been recently established that individual repertoires
have public clones, which are defined as identical clones present
in multiple individuals!>3%40, While mostly distinct, antibody
repertoires still possessed a substantial fraction of public
clones3%4142 (15-26% along B-cell development, Supplementary
Fig. 2a). Given their considerable proportion within a repertoire,
we determined if public clones were essential to the maintenance
of antibody repertoire architecture. We found that public clones
ranged consistently among the highest authority clones (author-
ity: degree of clonal connectedness, Supplementary Table 2), but
were distributed across the entire authority range in antigen-
inexperienced B-cell repertoires (Fig. 3a). Up to 74% of private
clones (specific to an individual) were connected to at least one
public clone (Supplementary Fig. 2i). To quantify the extent to
which public clones maintain the architecture of antibody
repertoires, we tested the effect of removing public clones on
CDR3 degree distributions. In pBC and nBC, removal of all
public clones transformed their network structure from expo-
nential to power-law; in contrast, removal of public clones did
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Fig. 3 The architecture of antibody repertoires is robust and redundant. a CDR3 clones of an exemplary naive B-cell repertoire (OVA-immunized mouse)
have been ordered from increasing to decreasing frequency (CDR3 rank). Public clones are color-coded in red. b Bootstrapped p-values of the power-law fit
are shown for complete antibody repertoires and after removing public clones. Power law is a good fit to degree distributions for p-values above the dashed
red line (p-value = 0.1, Wilcoxon test). Examples of exponential (red) and power-law (gray) networks are shown on the top panel. ¢ CDR3 clones were
removed randomly at 10%, 50%, and 90% from each original repertoire (20 times) and the power-law distribution was fit to the cumulative degree

distributions of the remaining CDR3 clones. A p-value = 0.1 (Wilcoxon test) is indicated as a red dashed line. In PC samples a fit was not feasible after
removal of 90% of CDR3 clones (NA). d Heatmaps indicate the mean prediction accuracy (Q2, leave-one-out cross-validated R2) of similarity layer LD,
versus similarity layers LD,_1,. The scatterplot shows Q2 for LD vs. LD, for each CDR3 clone. e Prediction accuracy (Q2) for LD; vs. LD, and LDs. For b, ¢, e,

barplots show mean +s.e.m. Source data are provided as a Source Data file
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not change the power-law network structure of PC repertoires
(Fig. 3b). To assess if such a structural shift was specifically due to
the deletion of public clones, we removed (repeatedly) random
subsets of clones representing a similar fraction of public clones.
The structure of antibody repertoires was shown to be robust
along B-cell stages at up to 50% removal of random clones in
mice (Fig. 2e) and up to 90% removal in a human naive repertoire
(Supplementary Fig. 4c). The same structural shift in repertoire
structure caused by the deletion of public clones could only
be replicated by removing 90% of random clones (Fig. 3c).
Therefore, public clones represent pillars that are critical for
maintaining the architecture of an antibody repertoire. The
robustness of the antibody repertoire architecture suggests that
functional immunity might be preserved even after extensive
(random) loss or turnover of antibody clones (or B cells).

Antibody repertoires are evolutionary redundant. Redundancy
is a hallmark of robust systems; for example, redundancy in genes
with the same function is the main mechanism of robustness
against mutations in genetic networks>#. To investigate the extent
of redundancy within antibody networks, we examined whether
their architecture at the base similarity layer (LD;) was mani-
fested in higher order similarity layers (LD.,). Differences greater
than one a.a. between antibody sequences could represent the
potential personal scenarios of antibody repertoire evolution
(somatic hypermutation!>19), a result of successful survival
through selective processes. Specifically, if a clone connected to
many other clones in the LD; similarity layer mutates into a
similar clone at a specific a.a. position, this potential clone will be
connected to many clones in the LD, similarity layer. Thus,
higher order similarity layers can serve as surrogates for the
evolution of potential antibody repertoires from antigen-
inexperienced B-cell populations.

To quantify the extent of redundancy across similarity layers,
we calculated the prediction accuracy of LD, versus similarity
layers LD, ;, using a leave-one-out cross-validation approach
(Fig. 3d, Supplementary Fig. 3h, i). Specifically, quantitative
redundancy was low in PC (LD; > LD,_; prediction accuracy was
28% on average); however, LD; of pBC and nBC predicted CDR3
degree profiles of proximal similarity layers LD, ; with >80%
accuracy (Fig. 3d, e), thereby indicating a high redundancy in
antibody repertoire architecture. This high redundancy is
explained by the structure of the antibody networks (Fig. 2e-h).
Although the distance between proximal similarity layers (LD; to
LD;) seems small (1-3 a.a. CDR3 sequence differences), it
represents ~20% of potential change in clonal a.a. sequence (99%
of CDR3 clones are 4-20 a.a. long), which is in the range of highly
mutated antibodies (e.g., broadly-neutralizing HIV-specific*3).
Therefore, redundancy in the antigen-inexperienced repertoire is
maintained throughout a large sequence space and provides
details on the pre-programmed evolvability*44> of antibody
responses.

Discussion

Large-scale networks capture similarity relations between anti-
body clones that are not deductible from diversity analysis based
clonal counts, thus providing an additional and complementary
layer of information on the sequence diversity of a repertoire.
Leveraging a custom-developed analysis platform for generating
large-scale networks from datasets of millions of unique CDR3 a.
a. sequences, we have discovered fundamental principles of
antibody repertoire architecture such as: (i) reproducibility
(ii) robustness and (iii) redundancy. We were able to detect a high
cross-individual reproducibility by quantifying network para-
meters?’ 2% of antibody repertoires along B-cell development at

the global (size, diameter and assortativity) and clonal levels
(degree, transitivity, authority, closeness, betweenness, PageR-
ank). Importantly, the reproducible clonal similarity structure
was suggestive of the underlying immunobiology of each B-cell
stage: human and murine antigen-inexperienced repertoires
covered an extended sequence diversity space (tree-like expo-
nential similarity structure) to counter high antigen diversity
whereas, antigen-experienced repertoires presented a centralized
network structure (star-like, power law), with many clones being
similar to one central clone possibly originating from antigen-
dependent clonal expansion and selection’-4°, However, due to
the smaller sample size of PC repertoires, this result should not be
over interpreted for this B-cell stage. While counts of unique
clones or clonotypes have been used so far as a dominating proxy
for the diversity of antibody repertoires, network analysis intro-
duces a novel and complementary layer of sequence diversity
information. Networks can resolve the fine sequence structure of
a repertoire or a synthetic (recombinant) antibody library; the
breadth of a synthetic library may be assessed by statistically
fitting its degree distribution to an underlying probability dis-
tribution. For example, power-law distributed synthetic libraries
would be suboptimal for covering a large sequence space.

Large-scale network analysis of entire antibody repertoires
revealed that these systems are robust enough to be amenable to
subsampling, which is in contrast to other network systems?3-24,
Specifically, we showed that the structure of antibody repertoire
networks was robust to extensive subsampling, with a removal of
up to 50-90% of the clones. This result is crucial for the network
analysis of human antibody repertoires, where biological sub-
sampling remains an important problem383%. While access to the
entire human antibody repertoire is unfeasible, the robustness
of the antibody repertoire sequence architecture to major sub-
sampling shows that the structure of clonal sequence diversity is
retained in even 10% of the original sample. This result is relevant
for past and future BCR studies. The robustness of antibody
repertoires might also explain their functionality despite large
fluctuations of antibody repertoire composition over time30-38,
Interestingly, the structure of murine antibody repertoires was
fragile to the removal of public clones. The crucial role that public
clones!? play as pillars of antibody repertoire architecture was
revealed by large-scale networks, yet future research will need to
determine the functional role (antigen specificity) of public clones
in the humoral response.

We found that antibody repertoires presented intrinsic
redundancy across similarity layers. This means that not only
minimal differences (1 a.a. of the base layer LD;) but also further
diversification (>1 a.a. differences between antibody sequences)
may be hardcoded into the constricted sequence space of anti-
body repertoires, thus rendering their evolvability robust (ana-
logously to other biological systems such as transcription factor
networks#). The redundancy of antibody sequential similarities
(LD >1) might serve as a predictor of the immune response
(development of certain sequences in time) following certain
mutational pathways from the base layer of an individual anti-
body repertoire. This redundancy principle would potentially
account only for the one-time snapshot of a repertoire and the
high turnover rate of B-cells.

This work delineates guidelines for the large-scale network
construction and analysis of large and diverse immune reper-
toires. In particular, our network analysis approach can be used
where a partial biological coverage of the repertoire is available,
although this might depend on the B-cell stage, species, and
similarity layer investigated. The network quantitative analysis of
global and clonal properties of adaptive immune repertoires
(antibody and T-cell receptor repertoires) in health and disease is
essential to comprehensively understand their architecture and
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may resolve limitations arising from visualization of graphics
featuring high-dimensional data. It is of great interest to the field
of immunological research to analyze disease-associated datasets
in order to compare the architecture of healthy individuals versus
a disease status and across diseases. However, in order for those
studies to be of statistical, technological and immunological sig-
nificance, novel sequencing efforts of large sorted B-cell popula-
tions are needed. As the field moves towards high-throughput
single-cell analysis, future work might expand network analysis
from clonal CDR3 sequence to clonotypes (e.g., through subgraph
analysis), full length (VDJ]) immune receptor sequences and
paired sequences’~12,

The principles of the architecture of antibody repertoires
uncovered here through network analysis may serve as a blue-
print for the construction of synthetic antibody repertoires, which
may be used to simulate natural humoral immunity for mono-
clonal antibody drug discovery and vaccine development4448,
Synthetic (recombinant) antibody libraries and their screening
(e.g., by phage display) are highly utilized in antibody drug dis-
covery®®. However, it is also true that most antibody drugs have
been isolated from natural antibody repertoires (e.g., in vivo
selection from mice). Therefore, mirroring the network archi-
tecture of the natural antibody repertoire may be advantageous
for improving the quality of synthetic antibody libraries and their
screening for drug candidates. In order to achieve this, one may
leverage network construction algorithms that specifically mirror
exponential distributions in sequence space, thus producing
synthetic libraries that recapitulate the diversity of naive B cells.
Furthermore, network analysis can serve to the identification of
clones which lead to major alterations in repertoire composition’
and are responsible for repertoire transforming diseases such as
autoimmunity or lymphomas®®°!. The identification of these
central clones in the network structure may allow for interven-
tions to modify disease progression on the repertoire level by
precision therapeutic clonal targeting®2. Jardine and colleagues
have shown that the targeted clonal expansion of selected B-cells
is possible>2. In the future, precise targeting of highly connected
clones (e.g., public clones) may be useful also for therapeutic
remodeling of network structure, if different disease stages are
shown to be connected with specific network architectures. Last,
we envision that large-scale antibody network analysis could be
useful in personalized medicine in the prediction of immunity
scenarios because of the redundancy that antibody repertoires
present in their architecture. The architecture is just a snapshot of
the repertoire at a given time. However, the intrinsic similarity
relations among all clones as nodes in the networks can make
potential sequence changes trackable and their probabilities may
be assigned toward which sequence space might develop. In
conclusion, we believe the stage is set for a rapid progression of
the present guidelines into what was long ago envisioned by Niels
K. Jerne®3: the field of network systems immunology, which offers
the potential to obtain greater understanding of the complexity of
immune responses.

Methods

Mouse dataset. The dataset analyzed was produced as described by Greiff et al.2!.
Briefly, murine B-cell populations of pre-B cells (pBC, IgM, bone marrow, =7.5 x
10° cells/mouse, c-kit"CD19TIgM~CD25+PI"), naive follicular B cells (nBC, IgM,
spleen, =1 x 10° cells/mouse, CD138-CD19+IgD2*IgMtCD232+CD21*PI"), and
memory plasma cells (PC, IgG, bone marrow, =9 x 104 cells/mouse, CD138+CD22-
MHCII"CD19-IgM~PI") were sorted using fluorescence-activated cell sorting
(FACS) from C57BL/6 ] mice unimmunized (n = 5) or prime-boost immunized
with alum-precipitated antigens: nitrophenylacetyl-conjugated hen egg lysozyme
(NP-HEL, n =5), ovalbumin (OVA, n=5) or Hepatitis B virus surface antigen
(HBsAg, n = 4). Following total RNA extraction, full-length antibody variable heavy
chain (VD]) libraries were generated by a two-step PCR process, as described
previously>*. Libraries were sequenced using the Illumina MiSeq (2 x 300 bp)
platform. Mean Phred-scores of raw data were >30. Approximate paired-end reads

(full-length VDJ) were: pBC = 5 x 10° reads (untreated n = 1,666,407, NP-HEL n =
2,306,769, OVA n = 2,337,876 and HBsAg n = 2 330 505 sequencing reads), nBC =
10 x 10° reads (untreated n = 6 487 616, NP-HEL n =4 157 887, OVA n =4 245
486 and HBsAg n = 6,076,876 sequencing reads) and PC = 4 x 10° reads (untreated
n =188 440, NP-HEL n =125 118, OVA n = 194,003, and HBsAg n =

121,382 sequencing reads)?!. The experimental design of the study minimized
technological (sequence undersampling) and biological undersampling (cell

undersampling) as explained in depth in a previous publication?!.

Data preprocessing and CDR3 clonal analysis. Antibody read sequences have
been preprocessed and VD] annotated with MiXCR>> and further filtered to retain
only those sequences that had CDR3 length >4 a.a. and occurred more than once in
each CDR3 repertoire data set (Supplementary Fig. 1a). Clones were defined by 100%
a.a. sequence identity of CDR3 regions. CDR3 regions were defined by MiXCR
according to the nomenclature of the Inmunogenetics Database (IMGT)>®. Unique
mean CDR3 a.a. clones analyzed for pBC cohorts were untreated n = 152,859,
NP-HEL n = 185,128, OVA n = 188,971 and HBsAg n = 159,546; nBC untreated
n =424 940, NP-HEL n =395 048, OVA n =330 466 and HBsAg n =440 834;
PC untreated n =143, NP-HEL n =156, OVA n =154 and HBsAg n = 132.

Human dataset. Sequencing data of naive and memory B cells from three healthy
human donors were published by DeWitt et al.2% and downloaded already pre-
processed from http://datadryad.org/resource/doi:10.5061/dryad.35ks2. The dataset
contains 2-4 x 107 naive B-cells and 1.5-2 x 107 memory B-cells for each donor.
Unique CDR3 a.a. clones analyzed were D1-M n = 2,305,669, D2-M n = 1,836,019,
D3-M n = 3,127,059 for memory B cells and D1-Na n =6 187 146, D1-Nb n=
5,716,124, D2-N n = 4,408,661, and D3-N n = 6,348,502 for naive B cells (Sup-
plementary Table 3). After alignment and preprocessing, we constructed large-scale
networks from unique CDR3 of ~6 million nodes.

Network construction. To construct networks (graphs), a sparse triangle matrix of
pairwise Levenshtein distances (LD) between CDR3s must first be computed. For
small samples (up to 100,000 unique CDR3 sequences) such a calculation is
relatively fast on a single computer. However, due to the N complexity of required
calculations, computing the pairwise matrix for samples of >100,000 unique
CDR3 sequences becomes prohibitively expensive. To perform these computations,
we developed software that utilizes the Apache Spark (2) distributed computing
framework to partition the work among a cluster of many machines (Supple-
mentary Fig. 1b). We chose specifically Apache Spark because (i) its deployment is
very flexible with regard to underlying computing infrastructure and (ii) for
similarity layers LD.;, the networks become extremely large and difficult to pro-
cess. When two sequences were similar within a defined threshold (Levenshtein
distance, LD = 1-12), they were connected in the repertoire network (i.e., simila-
rities of 1 a.a. differences were captured in similarity layer 1, LD, 2 a.a. in LD, and
so on). In these cases, our package can take advantage of the Spark Graph Frames
distributed graph library>’, which allows scaling to even larger samples with mil-
lions of sequences (Supplementary Fig. 1c). With this approach we were able to
compute the distance matrices for large samples (>100,000 unique

CDR3 sequences) within minutes (Supplementary Fig. 1b. c).

In addition to the computational complexity inherent in creating the distance
matrix, the construction of networks for large LD is computationally expensive. We
therefore avoided constructing networks altogether for calculating the node degrees
and instead used a map-reduce distributed algorithm. For practical purposes, the
construction of small networks was performed using the Networkx library>$>%, For
generating and outputting the largest graphs to disk in common network formats,
we used the efficient graph-tool library (https://graph-tool.skewed.de/). For
manipulating and analyzing the largest networks, our software package took
advantage of the Spark GraphFrames distributed graph library as mentioned
above®’.

The software was developed in python (https://www.python.org/) using the
Numpy/Scipy®® scientific libraries for matrix and array manipulation and Apache
Spark!” as the distributed backend. Our software package for antibody repertoires
imNet is available (https://github.com/rokroskar/imnet) and includes tutorials and
demos, including scripts to set up the distributed computation environment on
commonly-used compute cluster infrastructure The results shown in this work
were obtained using 1-625 cores of the Euler parallel-computing cluster operated
by ETH Ziirich. In addition, imNet is a python library and can be used locally to
work with both python 2 and 3.

Degree distribution fits. Degrees (number of similar CDR3 sequences to a specific
CDR3 sequence) were calculated for each of the similarity layers LD;_;, for each
CDR3 sequence in each sample. CDR3 with zero degrees that were not similar to
any other CDR3 in the network were excluded in order to fit degree distributions.
The power-law, exponential and Poisson distributions were fitted to the empirical
degree distributions of the networks, constructed as described in Network con-
struction, by estimating X,,;, (estimated lower degree threshold by minimizing the
Kolmogorov-Smirnoff statistic®!) and optimizing model parameters using the
poweRlaw®? package. We first discriminated if the power-law distribution could
describe the best fit to the degree distribution by bootstrapping 100 times the
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power-law p-value obtained from each sample after estimating X,,;,. Following the
approach described by Virkar and Clauset®3, a p-value > 0.1 indicated that the
power-law distribution described the degree distribution (Supplementary Fig. 1a).
To determine the degree distribution in cases where the power law was not the best
distribution fit (p-value <0.1), we compared the exponential and the Poisson fits.
Two-sided p-value = 0 indicated that the fitted models could be discriminated, and
one-sided p-value = 1 (Wilcoxon test) indicated that the first (for example expo-
nential) model was the best fit for the data®2.

Robustness. Public clones were defined as clones shared among at least two
subjects in a cohort (Supplementary Fig. 2). In order to assess the robustness of the
architecture of antibody repertoire networks, we removed public clones from each
sample. As controls, we performed repeated removal (20 times) of randomly
selected clones in the size of public clones. The p-values (Wilcoxon test) for the
power-law fit were calculated after 100x bootstrapping for each repertoire; one-
sided and two-sided p-values were used for the comparison between the expo-
nential and the Poisson fits (see Degree distribution fits).

Network analysis. Drawing from network theory®4, we translated the concepts of
network analysis?? to antibody repertoires. An antibody repertoire network is an

undirected graph G = (V, E) described as a set of nodes (CDR3 vertices, V) together
with a set of connections (similarity edges, E), representing the adjacency matrix A
of pairwise Levenshtein distances (LD) between CDR3 a.a.

0 -+ LDy,
Sequences A =

LD

In the context of antibody repertoires, we let N = [V| and L = |E|. The order of a
graph N represents the number of its unique CDR3 clones (nodes). The size of a
graph L is the number of its CDR3 similarity connections (edges). The degree k,
that represents the edges connected to a node, describes the count of all similar
CDRS3 clones to a CDR3 based on LD. Because the degree indicates how active a
node is, it could be interpreted as a measure of how central a CDR3 clone is in the
antibody repertoire network. In simpler terms, it quantifies the number of CDR3
clones that are similar to a certain CDR3, and thus the potential development or
the evolutionary routes to this CDR3.

The average degree (k) = ‘T:"k’ = 2L is the average number of similar CDR3
clones. The degree distribution P(k) = N/N, defined as the fraction of nodes with
degree k (Ny) in total nodes, represents the fraction of CDR3 clones that have the
same number of similar CDR3s. The cumulative degree distribution P, = > 0| p
describes the fraction of nodes with degree greater than or equal to k' In
Erdds-Rényi (ER) random graph models, degrees follow a Poisson distribution
P(k) = W‘Te"‘k in the limit of large numbers of nodes, while degree distributions
have an exponential tail P(k) ~ e~ in exponential networks®®.

Global characterization?® described the network as a whole, such as degree
distribution, centralization, largest component, diameter, clustering coefficient,
assortativity and coreness. The centralization analysis indicates if the network is
homogeneous (clones are connected in the same way) or is centered around certain
nodes (highly connected clonal regions compared to less connected regions in the
same network). The largest component is the largest cluster of connected CDR3
clones. The diameter (d) is the maximum distance (shortest path between two
nodes) between any pair of CDR3 sequences. The clustering coefficient (C)
represents the probability that neighbors of a node are also connected, which
translates in antibody repertoires as the probability that CDR3 clones similar to a
specific CDR3 are also similar among one another. Network density (D) is the ratio
of the number of edges (CDR3 similarities) and the number of all possible edges in
the network. The assortativity coefficient?® (r) indicates if nodes in a network
connect to nodes with similar characteristics. It is positive if nodes tend to connect
to nodes that are similar to them (i.e., highly connected CDR3 sequences are
similar and connect to highly connected CDR3 sequences), and negative otherwise.
Coreness is a measure of the network’s cohesion and allows one to understand the
global network structure and is useful in comparing complex networks by
analyzing the subsets of CDR3-cores that form layers in the antibody repertoire. K-
core decomposition is a process that is performed by iteratively removing shells of
all vertices of degree less than k (k < kyax) leaving the k-cores of a network (its
connected component). The k-core of a graph is the maximal subgraph in which
each node has at least degree k. We have computed the maximal k-core of antibody
repertoire networks (the innermost core, kp,,,) and the core distribution along k
degrees.

Clonal (local) characterization of antibody repertoires was performed by
analyzing local properties of the networks?3. The importance of CDR3 clones was
measured by calculating the authority®®, eigenvector?’ and PageRank28 scores of
each node in repertoire networks. In particular, the authority (a) of nodes is defined
as the principal eigenvector of the transpose matrix t(A)*A, where A is the
adjacency matrix of the network. Eigenvector centrality indicates the centrality of a
CDRS3 clone, not only dependent on the number of similar CDR3 (number of
degrees, connections) but also on the quality of those connections: CDR3-nodes
with high eigenvector values are connected to many other nodes which are, in turn,

connected to many others (and so on). PageRank measures the importance of the
similarity between two CDR3 clones within the network extending beyond the
approximation of a CDR3 importance or quality. Closeness (centrality*®) (c) was
calculated to measure how many steps were required to access every other CDR3
from a given CDR3 clone in antibody repertoire networks. We calculated the
normalized closeness by multiplying the raw closeness by n-1, where n was the
number of nodes in the network. Cligue analysis identified maximally-connected
subgraphs (a subset of nodes) in which every CDR3 was similar to every other
CDR3 sequence and the largest clique was the maximal completed subgraph which
had more nodes than any other clique in the network. The node betweenness (b) is
the number of geodesics (shortest paths) going through a node and indicates the
“bridge” function of a CDR3 sequence. Network properties were calculated using
the igraph®” R package.

Network properties. Units are numeric and dimensionless:

Network size is represented by the number of nodes (vertices) and/or number
of edges (links, connections, degree).

Largest component size is the number of nodes in the largest component,
calculated as the subgraph in which any two vertices are connected.

Diameter (numeric) is the largest number of vertices which must be traversed in
order to travel from one vertex to another and is calculated by using a breadth-first
search like method.

Assortativity coefficient? r is a preference for a network’s nodes to attach to
others that are similar in some way, e.g., the tendency of the nodes to connect with
other nodes with similar degree values. The assortativity coefficient (r) is the
Pearson correlation coefficient of the degrees at either ends of an edge and lies in
the range —1<r<1l:r= a_lﬁ;jk(ejk — g;qi) where e is the joint probability

j

distribution of the remaining degrees of the two vertices at either end of a
randomly chosen edge, symmetric in its indices on an undirected graph ej = e
obeying the rules (i) 3" ej =1 and (i) > ey = q; (given that py is the
probability that a randomly chosen node on the graph will have degree k and g is

the normalized distribution of the remaining degree—the number of edges leaving

(k+1

) . .
the node other than the one selected g, = Z—;kj“). 02 is the variance (standard
j £71

deviation) of the distribution g and it is useful when comparing networks in order
to normalize.

Clusters are connected components of a graph. The cluster size is the number of
connected nodes in a cluster. The cluster number is the number of clusters in a
graph.

Clustering coefficient/transitivity is the the ratio of the triangles and the
connected triples in an undirected graph. Let e,(j) denote the number of edges that
connect the immediate neighbors of a node j and let k; denote the node degree of j,
that is, its number of immediate neighbors, the clustering coefficient is C; = %
The clustering coefficient for the whole graph is the average of the local values:
C= iZ;lzl CJ

Density is the ratio of the number of edges and the number of possible edges.

Centralization is the network centrality indices which characterize each vertex/
edge with respect to their position within the network.

Average degree is the average number of connected vertices.

Neighborhood of a vertex v is the number of vertices adjacent to v, the subgraph
induced by all vertices adjacent to v: N(G) = (J,cq N(v)

Centrality measures the influence of a node in a network:

Eigenvector centrality score is the values of the first eigenvector of the graph
adjacency matrix; the score is the result of a process in which the centrality of each
vertex is proportional to the sum of the centralities of those vertices to which it is
connected. In general, vertices with high eigenvector centralities are the ones
connected to many other vertices which are, in turn, connected to many others and
soon®:x, =1 3 x, where M(v) is a set of the neighbors of and A is a constant.

teM(v)

Authority is the centrality of each vertex proportional to the sum of the
centralities of those connected to it.57 g = t(A)*A where A is the adjacency of the
graph.

PageRank is a technique that identifies important nodes based on the link
structure of the graph. Every node of the graph (v) is represented by a numerical
score between 0 and 1, known as its PageRank?8, n(v), which depends on the
structure of the graph, i.e, the probability to reach any node from a given node,
and on the value of « that expresses the teleport operation probability to jump from
a node to any other node in the graph (fixed parameter chosen in advance).
PageRank is the principal left eigenvector of the transition probability matrix P =
NxN, characterizing a Markov chain of N states, where P;; is the probability that the
state at the next time-step is j, conditioned on the current state i. The left
eigenvectors of the transition probability matrix P are N-vectors 7 such that
7P = MAii. The N entries in the principal eigenvector 7 are the PageRank values for
the corresponding nodes.

Closeness centrality of a vertex measures how easily other vertices can be
reached from it. It is defined as C(v) = W where d(v, w) is the distance

28,67

between vertices v and w.
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Betweenness centrality for each vertex is the number of the shortest paths that
pass through it defined as B(v) = 3", , %

SEVEL ‘17“
shortest paths from node s to node t and oy(v) is the number of those paths that
pass through v.

where o is the total number of

Quantifying the predictive performance (Q2) of linear regression models. The
predictive performance (Q?2) of each linear regression model (Y =X + ¢) was
calculated using leave-one-out cross-validation (LOOCV): Q* = ( - %) - 100,

~ \2 -
where PRESS is the predictive error sum of squares <Z}':1 (Y] - Y[i]) with Y}
denoting the prediction of the model when the j-th case is deleted from the training
_\2
set and TSS is the total sum of squares (ZLI (Y] — Y) ) (Greiff et al., 2012). X

and Y are CDR3 degree vectors of repertoires at each LD;_j,. LOOCV was per-
formed using the forecast R package®S. Cross-validation was used because, in
contrast to regular regression analysis, it enables the quantification of the predictive
performance of each regression model.

Simulated networks. Networks (nodes V = 102-105) were simulated with the ER,
exponential and power-law models using base R% and igraph®’. Random networks
were simulated according to the ER model, exponential networks were simulated
setting a probability of a connection between two nodes p = 0.5 and scale-free
networks were simulated using the Barabasi-Albert model (Barabasi and Albert,
1999).

Graphics. Graphic representations were produced using base R% and the ggplot2 R
package’?. Heatmaps were produced using the NMF package’!. Networks and
network clusters visualization were performed using igraph®” employing the
Fruchterman-Reingold force-directed and Kamada-Kawai layout algorithms.
Large-scale networks (Fig. 1a) were visualized using Gephi (version 0.9.1)7%; node
size was scaled 10-100 proportional to the degree of a node and a blue to gray color
gradient was applied to nodes from high to low degrees.

Statistical significance. Statistical significance was tested using the Wilcoxon
rank-sum test. Results were considered significant for p < 0.05.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Code availability

Software is available at https://github.com/rokroskar/imnet.

Data availability
Antibody repertoire sequencing data analyzed is available with ArrayExpress accession
number: E-MTAB-5349.
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