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Abstract

The limited ability of common variants to account for the genetic contribution to complex disease has prompted searches for rare
variants of large effect, to partly explain the ‘missing heritability’. Analyses of genome-wide genotyping data have identified
genomic structural variants (GSVs) as a source of such rare causal variants. Recent studies have reported multiple GSV loci
associated with risk of obesity. We attempted to replicate these associations by similar analysis of two familial-obesity case-control
cohorts and a population cohort, and detected GSVs at 11 out of 18 loci, at frequencies similar to those previously reported. Based
on their reported frequencies and effect sizes (OR$25), we had sufficient statistical power to detect the large majority (80%) of
genuine associations at these loci. However, only one obesity association was replicated. Deletion of a 220 kb region on
chromosome 16p11.2 has a carrier population frequency of 261024 (95% confidence interval [9.661025–3.161024]); accounts
overall for 0.5% [0.19%–0.82%] of severe childhood obesity cases (P = 3.8610210; odds ratio = 25.0 [9.9–60.6]); and results in a mean
body mass index (BMI) increase of 5.8 kg.m22 [1.8–10.3] in adults from the general population. We also attempted replication using
BMI as a quantitative trait in our population cohort; associations with BMI at or near nominal significance were detected at two
further loci near KIF2B and within FOXP2, but these did not survive correction for multiple testing. These findings emphasise several
issues of importance when conducting rare GSV association, including the need for careful cohort selection and replication strategy,
accurate GSV identification, and appropriate correction for multiple testing and/or control of false discovery rate. Moreover, they
highlight the potential difficulty in replicating rare CNV associations across different populations. Nevertheless, we show that such
studies are potentially valuable for the identification of variants making an appreciable contribution to complex disease.
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Introduction

Genome-wide association studies (GWAS) of common single

nucleotide polymorphisms (SNPs) have identified loci accounting

for only a modest proportion of the heritability of most complex

diseases. Although some of this ‘missing heritability’ may be

ascribed to a large number of SNPs with weak effect [1,2], it is

becoming increasingly likely that there is a substantial contribution

from rare variants with large effect that are not readily identifiable

by SNP-based methods [3–5]. Thus, resequencing of known risk

loci has been pursued to reveal rare point mutations that may have

an appreciable impact on disease risk or severity[6–8].

We have recently proposed that investigation of genomic

structural variants (GSVs) in patients with ‘‘extreme’’ obese

phenotypes provides an effective route for the identification of

novel obesity-associated loci [9]. Initial reports indicate that

subjects with unexplained extreme obesity phenotypes may have a

higher aggregate frequency of large GSVs (e.g. .0.5 Mb)

compared to the general population [10,11], strongly suggesting

that some of the GSVs carried by these unusual patients are

responsible for a pronounced, readily-identifiable phenotype with

high penetrance. Genes within the regions delineated by such

GSVs may also be of direct relevance to obesity in the general

population.

In a first application of this strategy for the identification of

novel obesity loci, we showed that a 593 kb deletion on

chromosome 16p11.2 (at 29.5–30.1 Mb) directly causes obesity

[12]: this association was demonstrated by comparing two cohorts

with developmental delay (DD), with or without additional

ascertainment for obesity, and was then replicated by retrospective

analysis of case-control and population cohorts. We have also

shown that duplications of the same locus have the opposite effect,

being associated with underweight [13]. Several genes whose

altered dosage might plausibly account for the observed phenotype

lie within the deleted region, and their potential role in obesity can

now be investigated in a hypothesis-driven manner, rather than by

the more statistically-challenging hypothesis-free approach appli-

cable to GWAS. Indeed, there are no GWAS signals overlapping

this locus [14,15], illustrating the potential of strategies based on

identification of rare GSVs for the identification of novel obesity

loci.

A growing number of rare GSVs potentially associated with

obesity are now being reported, mainly on the basis of their

identification by analysis of GWAS SNP genotyping data.

Bochukova, et al. [10] compared a small cohort of ,300 patients

with severe early-onset obesity (half of whom also had develop-

mental delay, DD) with control individuals from the general

population, and identified 11 GSV regions that showed association

with obesity at nominal significance, including the obesity-

associated 593 kb region [12] of chromosome 16p11.2 which is

not further studied here. Glessner, et al. [16] identified 8 additional

GSV loci with nominally significant association with obesity, on

the basis of being present in children with ‘‘common’’ obesity

(individuals with severe obesity were excluded from the study) but

absent from control cohorts of normal weight. The GSVs

identified in these two studies vary widely in size, ranging from

2.8 kb to 1.5 Mb, with no overlap between them. With the

exception of the independently identified 593 kb deletion of

chromosome 16p11.2 [12,13], all remain to be replicated.

We have attempted to replicate these recently-reported GSV

associations with obesity, using algorithmic analysis of genotyping

data from obesity case-control and population cohorts. We

replicate association with obesity of GSVs at a single locus on

chromosome 16p11.2; this locus is distinct from the association on

16p11.2 which we previously reported (using the same cohorts),

being separated from it by .600 kb of intervening sequences; the

2 loci are independently associated with obesity. However, we

were unable to replicate a high proportion of the remaining

regions, and conclude that there is a need for the development and

application of robust statistical methods appropriate for testing for

association of rare variants from amongst a large collection of

GSVs, independent of the platform used for GSV detection. We

also highlight the caution required when attempting to support

putative associations by phenotyping affected subjects: phenotypic

data from a small number of individuals from a highly-selected

cohort may not be reliable as an indication of the impact of the

variant in unselected subjects.

Results

GSV Analysis of Obesity-associated Regions
To investigate the 18 putative associations with obesity reported

for rare GSVs [10,16] (see Table 1), we analysed population and

case-control cohorts in a similar manner to that successfully used

in our replication of the association with obesity of the 16p11.2

593 kb deletion [12]. Using existing genotyping data from cohorts

of severely obese (but with no other reported unrelated health

problem) French children and adults, similar numbers of non-

overweight controls, and a general population cohort from

northern Finland [17,18], each genomic region was analysed for

the presence of GSVs.

Initial identification of GSVs was carried out using our cnvHap

algorithm, which is applicable to data from a wide range of

platforms (including Illumina and Affymetrix genotyping arrays,

CGH arrays and next-generation sequencing), and which has

greatly improved sensitivity and specificity for detection of short

GSVs compared to other commonly-used algorithms [19]. To

ensure that our analysis mirrored the procedures that led to the

original reported associations, we scored only those GSVs that

were of a similar type (deletion/duplication) and that spanned the

entirety of the GSV region. In addition, to ensure that only high-

confidence calls were included, for the shorter candidate regions

(those for which we had probe coverage of 6 or fewer probes – see

Table 1) we required that a GSV call included a minimum of 3

consecutive probes in all cases, irrespective of the size of the region

being analysed.

This procedure was applied to our cohorts for each of the 18

loci under investigation (8 identified in subjects with common

obesity [16], 10 in subjects with extreme obesity [10]). Consistent

with the original reports, short GSV regions often featured

multiple overlapping aberrations with varying lengths and break-

points (see Figure 1); by contrast, aberrations identified for larger

GSV regions were much more consistent in both size and

breakpoint location. The results of the analysis, summarised in

Table 1, revealed somewhat different patterns of occurrence for

the 2 sets of GSVs. For the 8 GSVs originally identified in subjects

with common obesity, the overall frequency of calls at these loci in

our cohorts (63 calls in a total of 7959 subjects) was 25% higher

than that in the original report (42/6634), and GSVs at 6 out of 8

loci were detected at least twice. By contrast, the number of calls

(21 in total) for the 10 extreme obesity GSV loci represented a

30% lower frequency than in the original report (29/7650), and

only 5 out of 10 were detected at all: It was notable that the 5

detected were those originally identified only in subjects either

lacking DD or with only mild DD. The remaining 5 were

originally identified in subjects with pronounced DD [10], raising

the possibility that they were not detected because subjects

carrying them tended not to be recruited to our cohorts.
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We also investigated the occurrence of reciprocal GSVs at each

locus (i.e. duplications instead of deletions and vice versa), applying

the same calling criteria (Table S1). Although the overall

frequency of reciprocal GSVs was slightly lower compared to

those showing reported association with obesity, there was a

difference between the two sets of loci: Common obesity GSVs

were identified approximately twice as frequently as their

reciprocal counterparts, but extreme obesity GSVs were 30% less

frequent than reciprocal aberrations. For three GSV loci in

particular (those on chromosomes 3, 17 and 22), all originally

identified in subjects with DD, there was a clearly higher

frequency of the reciprocal event in population cohorts; this is

again consistent with the GSVs identified only in DD patients

having reduced prevalence in the general population.

Case-control Replication Analysis
Combining subjects from the population cohort who were obese

(BMI $30 kg.m22) or normal weight/underweight (BMI

,25 kg.m22) with the corresponding case-control subjects, and

assuming a GSV has a dominant effect, the combined cohort was

sufficient to give .98% power to detect associations (at P,0.05

for Fisher’s exact test) of GSVs present almost exclusively in obese

subjects (odds ratio, OR = 50) at a frequency in cases of 0.005, or

with power of 94% or 83% for odds ratios of 10 or 5 respectively;

even for a GSV frequency in cases of 0.002, power was 67%

(OR = 50), 53% (OR = 10) or 40% (OR = 5). On the basis of the

observed GSV frequencies and ORs in the original reports,

median power was 79.8% (minimum 53%) for the 11 loci for

which the corresponding GSVs were detected in our cohorts; thus,

we might expect to replicate ,80% of genuine associations.

Although this is likely to be something of an overestimate because

of OR overestimation due to the ‘‘winner’s curse’’ [20], the

minimum OR in the original reports was 25 [10,16]), and even for

much lower effect sizes with OR$5 we would nevertheless expect

to detect 62% of associations (71% of those with OR$10).

Although GSVs at these loci were observed at similar overall

frequencies to those in the original reports, we observed a low rate

of replication for associations with obesity (Table 1). For 10 of the

Figure 1. Procedure for identification of GSVs. Following data export and QC, GSV calling was carried out using the cnvHap algorithm.
Illustrative data for 3 GSV loci (shaded) show all positive GSV calls (black) together with examples of calls not meeting the necessary criteria (grey);
probes at which copy number changes were identified are also indicated (circles).
doi:10.1371/journal.pone.0058048.g001
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11 GSVs detected, the reported obesity association was not

replicated, even at nominal levels of significance. Of particular

note was that each of the 6 GSVs originally identified in subjects

with common obesity was present in at least 1 normal weight or

underweight individual, contrary to the criteria used to identify

these GSVs (i.e. being present exclusively in obese subjects) [16].

Indeed, for the majority of loci the GSV frequency was higher in

normal weight than in obese subjects.

For a single GSV, however, the association with obesity was

strongly replicated. A deletion of 220 kb on chromosome 16p11.2

(at 28.73–28.95 Mb) affecting several genes including SH2B1, was

identified in 6 obese individuals compared to none in normal

weight subjects (P = 5.4861024). This deletion spans a locus

implicated in obesity in SNP-association studies [14]. Of note,

apart from rare instances of more extensive deletions spanning

both regions [10,21], which complicated the previous analysis of

this region (see Text S1), this 220 kb region is completely separate

from the 593 kb locus (also on 16p11.2) whose association with

obesity/underweight has been previously reported by us [12,13];

they are 600 kb apart, there is no discernible linkage disequilib-

rium between SNPs within each region (Figure S1), and copy-

number changes at the 593 kb locus have no consistent effect on

expression of genes at the 220 kb locus [13]. Thus, each locus is

independently associated with obesity.

The Contribution of Chromosome 16p11.2 220 kb
Deletions to Obesity

Consistent with the original report for the SH2B1 locus [10], 5

of the affected subjects were from our cohort of severely obese

children, a significant enrichment compared to our general

population cohort (P = 1.461023). Extending the analysis to

include multiple other population cohorts (Table 2) unambigu-

ously confirmed the association between this deletion and

childhood obesity (P = 8.761027; OR = 38.4, [95% confidence

interval = 10.4–120.6]). This finding was further strengthened

(P = 3.8610210, OR = 25.0 [9.9–60.6]) by inclusion of previously

published data [10,21].

Intriguingly, the association with adult obesity is less clear. We

investigated by MLPA the parents of the 5 severely obese children

carrying the deletion, finding that 4 deletions were inherited (one

arising de novo). However, only two of the four adult carriers were

obese and there was no significant difference in BMI between the

carrier and non-carrier parents (P = 0.15, Student’s t-test).

Furthermore, not only were no deletions identified in a total of

840 subjects from adult severe obesity cohorts (a significant

difference from the overall frequency for child obesity, P = 0.039),

but out of 8 adult carriers from our population cohorts, only 3

were obese. Nevertheless, a further 4 were overweight (BMI

$25 kg.m22) so that, overall, adult carriers had a mean BMI of

30.2 kg.m22 [27.3–33.3], with a mean Z-score (relative to their

respective population distributions) of +1.10 [+0.34–+1.86]

(P = 9.1461024, one-tailed Z-test). The impact of the deletion in

terms of BMI is made clear from comparison of the 4 carriers from

NFBC1966 and the remainder of this cohort (mean BMI

change = +5.8 kg.m22 [+1.5–+10.8]; P = 3.5361023, one-tailed

t-test). Thus, adult carriers of this deletion show an appreciable

increase in BMI, but this is not necessarily sufficient for them to

cross the threshold into clinical obesity.

The original association between this GSV and obesity was

supported by reported disproportionate extreme hyperinsulinae-

mia in carriers of the deletion [10]. We sought to confirm this

finding by investigating fasting insulin and the response to oral

glucose in the subjects from our study. However, we found no

evidence in our cohorts for the reported phenotype. Compared to

the remainder of the cohort from which they were drawn, levels of

fasting insulin in carriers of the deletion were not discernibly

different from those expected for a subject’s BMI, for both

children (Fig. 2a) and adults (Fig. 2b), with no indication of the

reported 3-fold increase; similar conclusions were drawn when the

comparison was limited to individuals of the same gender and age

(Figure S2). Equally, no difference was observed in either fasting

insulin (Fig. 2b) or in the insulin response to oral glucose (Fig. 2c)

between carrier and non-carrier parents of child probands.

Quantitative Trait Replication Analysis
As noted above, a significant association with obesity of

deletions of the SH2B1 locus was identified by quantitative

analysis of BMI in the NFBC1966 population cohort alone, Thus,

the reduced sample size was compensated for by inclusion of

subjects with intermediate phenotypes (i.e. overweight) and the

increase in statistical power that derives from analysis of

quantitative traits compared to case-control approaches to

association testing; indeed, this advantage becomes progressively

more marked at lower allele frequencies for the genetic marker

under test [22]. Therefore, we investigated whether any other

putative GSV-obesity associations were replicated when using this

approach. For each candidate GSV that was identified in at least 3

NFBC1966 subjects – the SH2B1 locus and 5 other loci (Table 1) –

and also the previously-identified 16p11.2 obesity locus, we

Table 2. Replication of obesity association for 220 kb
deletion on chromosome 16p11.2.

Cohort Deletions Total P

Child obesity

Child obesity (France)a 5 645 8.7461027 a

Published data

Severe early-onset obesity (UK) 3 278

GOOS (UK) 2 1,062

CHILD OBESITY TOTALb,c 10 1,985 3.81610210 b

Adult obesity

Adult obesity (France) 0 701

Bariatric weight-loss surgery
(France)

0 139

ADULT OBESITY TOTALc 0 840 0.039 c

General population

NFBC1966 (Finland) 4 5,213

EGCUT (Estonia) 0 2,665

CoLaus (Switzerland) 1 5,612

deCODE (Iceland) 6 36,583

SHIP (Germany) 0 4,068

TOTALa 11 54,141

Published data

WTCCC2/GAIN (UK/US) 2 7,362

ISC/PARC/NINDS/HGDP/CHOP
(Europe/US)

1 7,700

POPULATION TOTALb 14 69,203

Instances of the 220 kb deletion were identified in multiple cohorts by analysis
of SNP genotyping data, with subsequent validation by MLPA or qPCR.
Published data were as according to the respective reports [10,21].
a,b,cDifferences between pairs of combined cohorts, as indicated, were tested
using Fisher’s exact test.
doi:10.1371/journal.pone.0058048.t002
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conducted a 2-way analysis of variance, with gender and GSV

status as explanatory factors and log-transformed BMI as the

response variable. Since several individuals carried more than one

of these GSVs, we also conducted a single, combined, multifac-

torial analysis of these 7 GSVs; this gave very similar results to

those for the separate individual tests. Alternative approaches (e.g.

2-tailed heteroscedastic t-tests using gender-corrected BMI data)

also yielded similar results.

Three loci tested did not give significant association with BMI

although, for two of these, statistical power was limited because

only 3 carriers were identified – this number of carriers permits

only moderate significance (P = 7.45611023) even for the 593 kb

deletions of chromosome 16p11.2 that are known to be strongly

associated with morbid obesity [12,13]. However, in contrast to

the case-control replication analysis, this quantitative approach

provided limited evidence to support involvement in BMI of 2 loci

(in addition to the confirmed association with deletions in the

SH2B1 region), albeit only at or near nominal significance

insufficient to survive correction for multiple-testing. There was

suggestive evidence for association with BMI of duplications near

to the KIF2B gene on chromosome 17q22 (P = 0.103; mean BMI

change = +2.3 kg.m22 [–0.4 – +5.4]); and deletions at a second

locus within the FOXP2 gene on chromosome 7q31.1 were

nominally associated with reduced BMI (P = 0.0476; mean BMI

change = –2.3 kg.m22 [–4.4 – –0.03]). However, this latter effect

was opposite to the increased risk of obesity originally reported

[16].

To investigate these loci in more detail, we assessed the potential

functional impact of the individual GSVs carried by these

individuals. For duplications on chromosome 17q22, all GSVs

identified in our study affected intergenic sequences and covered

the same genomic region as was spanned by the GSVs previously

reported as associated with obesity. However, of the 10 predicted

deletions at the locus on chromosome 7q31.1 that were identified

in our population cohort, 5 extend substantially beyond the GSV

region previously identified as obesity-associated (Figure 3), which

spans 1–3 small exons that (depending on the splice variant)

encode either part of the 59-untranslated region of the FOXP2

mRNA or a small part of the N-terminal of the protein. By

contrast, the larger deletions identified in our analysis are

predicted to include several additional exons and also a possible

binding site (as indicated by ChIP-seq) for transcription factors

including NF-kB, which has been implicated in the regulation of

adipocyte differentiation and proliferation [23]. Thus, these larger

variants may have very different functional effects from the smaller

deletions. Consistent with this, the subjects carrying the 5 largest

putative deletions in this region had significantly reduced BMI

compared to both the population (P = 7.861023, mean BMI

change = –4.2 kg.m22 [–6.8––1.2]) and carriers of the smaller

deletions (P = 0.0177, one-tailed t-test). The smaller variants had

no discernible impact on BMI (P = 0.88).

Discussion

The analysis of rare GSVs for association with complex traits

represents a complementary approach to SNP- or sequence-based

methods for identifying novel loci that can account for the ‘missing

heritability’ of multiple complex traits [3,9]. Even though causal

GSVs themselves may be rare and found only in individuals with

extreme phenotypes, the identification of such GSVs can enable a

more focussed search for rare causal sequence variants. This logic

lay behind the elucidation of the impact on obesity of defects in

SIM1. The original identification of SIM1 as a possible obesity

gene was as a result of its disruption due to a chromosomal

rearrangement (a balanced translocation) in a single individual

with profound obesity [24]; this was followed by the identification,

by exon sequencing, of rare SIM1 variants that co-segregate with

syndromic obesity and of common variants implicated in common

obesity [25,26]. The potential of this approach to reveal additional

novel obesity-associated loci is supported by our analysis, which

provides evidence to support reported GSV associations at 3 loci

[10,16].

Despite being well-powered to confirm the majority of true

associations, and identifying GSVs at similar overall frequencies to

the original reports, only one reported association was confirmed

using a case-control approach. We also conducted tests for

association with BMI as a quantitative trait, for those loci at which

GSVs were identified sufficiently frequently in our population

cohort (for which there was no prior ascertainment on the basis of

obesity). Of 3 GSVs present in .0.1% of subjects, 2 showed

association with changes in BMI at or near nominal significance.

Duplications of a region lying between the KIF2B and TOM1L1

Figure 2. Metabolic phenotype of carriers of a 220 kb deletion at chromosome 16p11.2. (a) Fasting plasma insulin levels relative to BMI,
for 558 normoglycaemic severely obese children from northern France either carrying a deletion (black) or not (grey). (b) Fasting plasma insulin levels
relative to BMI, for 5254 normoglycaemic 31 year-old Finns either carrying a deletion (black circles) or not (grey circles). Also shown are the parents of
obese French child probands who carry a deletion (black triangles) or not (white triangles). (c) Plasma insulin levels in response to a 75 g oral glucose
load in parents of obese child probands. Data shown are mean 6 SEM for carrier parents (n = 3, mean BMI = 28.6 kg.m22, black triangle) and
unaffected parents (n = 4, mean BMI = 27.0 kg.m22, white triangles).
doi:10.1371/journal.pone.0058048.g002
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genes showed marginal association with increased BMI, consistent

with the original report [16]; there is at present no readily

apparent functional basis for this putative association. Intriguingly,

the second nominally-significant association was between deletions

within the FOXP2 gene and decreased BMI, an effect in the

opposite direction to that previously reported for the locus. This

apparent directional inconsistency is likely to be due to the

influence of GSVs that are appreciably larger than those

previously reported, suggesting that the different variants identified

at this locus have widely varying functional effects. A role for

FOXP2 in obesity is supported by the presence within the gene of

independent SNP associations at P,1023 with all of BMI [14],

waist-hip ratio (adjusted for BMI) [15] and insulin resistance [27]

(Figure S3). A plausible basis for association between FOXP2

variants and obesity is through its involvement in neurodevelop-

ment [28], whose importance in feeding behaviour is well-

established [29]; alternatively, an obesity-related phenotype might

be independent of effects on FOXP2, and result instead from

deletion of a putative NF-kB binding site.

Although the 2 associations above provide tentative support for

the original reports that these loci may play a role in obesity, they

are nevertheless insufficient to survive correction for multiple

testing. The only association unambiguously replicated by our

study was that between a 220 kb deletion of chromosome 16p11.2

and obesity. It is interesting to note that this second replicated

locus lies only 600 kb from that previously identified, also on

chromosome 16p11.2, and that both deletions arise de novo with

high frequency, probably reflecting general chromosomal insta-

bility on chromosome 16p due to the presence of multiple

segmental duplications [10,12,21]. The high rate of recurrence of

these deletions likely contributed to their early discovery and

replication using these methods.

We confirm a marked increase in the risk of severe childhood

obesity in carriers of the 220 kb deletion, which accounts for a

total of 0.5% of the combined cases from our study and the

original report. The impact on obesity status in adult carriers

appears less pronounced, but there is nevertheless an appreciable

increase in BMI (corresponding to 15–19 kg in weight for subjects

160–180 cm in height). There are several possible reasons for the

apparent difference between children and adults: it may reflect

population differences (the child carriers of the GSV were from

France and the UK, the adults primarily from Nordic countries); it

may reflect cohort ascertainment, for instance that the child

cohorts did not include overweight or mildly obese subjects – it is

notable, however, that the deletion was not reported at a

comparable frequency in cohorts of children with common obesity

[16]; it may reflect a genuine attenuation of the effect of the

deletion in adults, so that impact of the GSV on obesity becomes

less pronounced with increasing age; or the severe obesity

observed in children may have been triggered by an aspect of

the modern obesogenic environment that was experienced to a

lesser degree by older subjects.

The reported disproportionate hyperinsulinaemia in carriers of

these deletions is reminiscent of the phenotype of SH2B1 knockout

mice [30], which previously led to the suggestion that haploinsuf-

ficiency of SH2B1 is the primary cause of obesity in these

individuals [10]. However, the absence of evidence in our data to

support this phenotype reopens the possibility that haploinsuffi-

ciency of one of the other genes in the region is responsible for the

observed GSV-associated obesity phenotype (although SH2B1

remains a strong candidate). It also highlights the caution required

when interpreting data derived from a heavily-selected cohort –

carriers of a GSV drawn from such a cohort do not necessarily

accurately reflect the phenotypic effect of a GSV in the general

Figure 3. Reduced BMI in carriers of deletions in the FOXP2 region. Deletions within FOXP2 are shown relative to selected tracks from the
UCSC browser (http://genome.ucsc.edu) for the corresponding region of chromosome 7: FOXP2 coding transcripts (UCSC Genes); histone
modifications H3K4Me1, H3K4Me3, H3K27Ac (ENCODE Regulation); and binding by transcription factor NF-kB (ENCODE TFBS). Multiple additional
transcription factors bind at the apparent NF-kB binding site. The minimum extent of each predicted deletion, the probes at which copy number
changes were identified and the BMI for carriers of each deletion are as shown. Grey shading indicates the region previously associated with BMI [16].
doi:10.1371/journal.pone.0058048.g003
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population. We suggest that, if possible, attempts to investigate

additional phenotypes that may be associated with a variant

should not use individuals that have been ascertained on the basis

of the phenotype of interest; instead, they should be drawn from

independent cohorts and selected solely on the basis of being a

carrier of the variant under study.

There are many issues that remain to be addressed when

seeking to identify GSVs that are associated with complex disease,

several of which are highlighted by this study; some of these issues

are also relevant to the analysis of rare variants identified by

sequencing approaches [31,32]. In particular, we make the

following observations and recommendations:

Cohort Selection
Ascertainment according to broad criteria can give only limited

enrichment of rare variants. Conversely, cohorts selected on the

basis of pronounced phenotypes may be difficult to recruit, a

potential problem not only for variant discovery but also for

replication, especially where the discovery cohort includes

individuals not normally recruited to other cohorts (e.g. those

with DD). For instance, we were unable to attempt replication of

GSVs that were originally identified in cases with severe obesity

plus DD since very few of these were detected in our cohorts; some

of these may reflect novel ‘syndromic’ forms of obesity whose

replication will require analysis of additional ‘obesity plus’ cohorts.

We also note that recruitment of cohorts of sufficient size by

including subjects from a range of localities or ethnicities may

introduce complications, since the majority of population groups,

both within Europe and worldwide, have not yet been assessed for

population specific GSVs. This also poses a problem for

replication – the failure to detect some GSVs in our cohorts

may reflect low frequencies in the populations from which they

were drawn. Furthermore, although subjects carrying a highly-

penetrant causative variant might naı̈vely be expected to display

the phenotype regardless of ethnicity, geographical origin or

environmental exposure, we have very little information on the

potential for cohort-specific modifiers that can confound that

expectation, or on differences in the frequencies or characteristics

of rare variants between different populations. As a minimum,

therefore, it is essential to include appropriate geographically-

matched controls (as was the case in the original reports that are

the subject of our replication study).

GSV Detection
In general, large GSVs are more readily detected from

genotyping or CGH array data, but occur infrequently so that

phenotype associations are difficult to demonstrate statistically.

Conversely, accurate calling of smaller GSVs spanning only a few

probes remains problematic, despite ongoing improvements in

methods for GSV detection [19,33,34]. Inaccuracy in GSV calling,

with an appreciable frequency of both false positive and false

negative calls, results in inflated P-values and an increased rate of

false-positive associations (Text S2; Figure S4). This is conceptually

equivalent to other scenarios in which genome-wide inflation occurs

as a result of genotyping inaccuracy [35] – indeed, attempts to apply

algorithmic detection of GSVs to genome-wide genotyping data

yield results with marked inflation [36] (our unpublished observa-

tions) – and we suggest that the appropriate correction is to apply

established methods of genomic control, e.g. scaling of x2 values

according to the genomic inflation parameter l.

Overlapping GSVs and Variable Effects
Although different instances of large GSVs commonly have

approximately the same boundaries [10], with a correspondingly

high probability of having the same or similar phenotypic effects,

smaller GSV regions routinely feature a range of overlapping GSV

calls of different sizes and locations [36,37], thereby presenting a

dilemma – in the absence of strong prior information to enable

modelling of the effects of different GSV variants, how should a

range of variants affecting a single locus be combined when testing

for association with a phenotype of interest? One approach,

analogous to methods such as the ‘cohort allelic sums test’ [38]

developed for analysis of multiple rare sequence variants within a

gene, is to treat a set of overlapping GSVs as functionally identical,

effectively discounting the structural complexity, so that only a

single hypothesis related to a putative functional effect is tested.

Although perhaps appropriate where, for instance, all variants are

predicted to have similar functional consequences due to directly

disrupting or deleting a particular gene or due to affecting an

intergenic region, this approach requires user intervention and is

not universally applicable (e.g. in the context of a genome-wide

analysis). A more general unsupervised approach for analysis of

such complex loci, used in the studies examined here [10,16] and

also in analyses of common GSVs [36,37,39], is to test separately

at multiple probe locations within a region. However, as illustrated

by our analysis of the FOXP2 locus, it cannot be assumed that

overlapping but distinct variants have similar effect sizes or even

directions; furthermore, such ‘point-wise’ analysis entails multiple

statistical tests at each GSV locus, leading to potential inflation in

the reported P-value for the region as a whole. Thus, there is a

need for methods that properly address the structural complexity

frequently observed at GSV loci. One straightforward approach

might be to apply a locus-specific multiple-testing correction,

according to GSV complexity, to reflect the number of indepen-

dent tests made at a locus, in a manner similar to that used to

correct for multiple tests of SNPs in linkage disequilibrium [40].

Alternatively, more sophisticated methods developed for aggre-

gating rare sequence variants in the absence of prior information,

for instance as implemented in the ‘thgenetics’ R package [41],

might be adapted for use with complex GSVs.

Although problematic for the identification of an association, we

nevertheless note that the existence of multiple different GSVs

may be of great utility in dissecting a locus whose association has

been conclusively demonstrated.

Statistical Power and False Discovery
Even after enrichment by selection of an appropriate discovery

cohort, and testing only for rare GSVs with dominant phenotypic

effects, low statistical power remains an important issue, with

increased rates of false negative and false positive associations at a

given significance threshold and inflated estimates of effect size

(‘‘winner’s curse’’) [20,31,32]. As noted above, increasing cohort

size to give improved power and/or reduced type I error rate may

not be readily achievable for highly specific phenotypes. A second

statistical issue, common to all scans for variant associations, is that

each of the many GSVs detected in even a small cohort is the

subject of a separate independent hypothesis, so that substantial

multiple testing correction of the significance threshold or rigorous

control of the false discovery rate (FDR) is required if a large type I

error rate is to be avoided. Even after the use of predefined criteria

to select a subset of GSVs for analysis, the necessary correction

remains substantial: In the previous studies, subjects with common

obesity carried approximately 20 GSV calls per individual (1080

cases, 2500 controls) [16]; more than 300 separate rare GSV loci

were identified in the extreme obesity discovery cohort alone [10];

and both used a point-wise method for assessing association at

complex GSV regions. Although attempts were made to take

account of multiple testing (e.g. exclude GSVs present in the
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Database of Genomic Variants, including only rare GSVs,

empirical estimate of FDR), it is unclear to what extent these

methods are effective – methods developed for association analysis

of rare sequence variants are not consistently well-powered even

for large sample sizes [42]. Indeed, inspection of the original

overall P-values for each GSV (Table 1: reproduced from or

calculated according to the original reports; see Text S1) shows

that even a moderate correction to the threshold for significance to

account for these multiple tests would have excluded the majority

of the reported loci. Thus, our observation of an apparent high

rate of false positives is likely to reflect insufficient control of the

FDR.

We suggest that a potentially useful approach is to adopt a two-

stage study design: initial genome-wide analysis of case-control

cohorts for GSV discovery, although likely to be underpowered,

will nevertheless yield a set of candidate GSVs; unselected

population cohorts can then be screened for individuals carrying

these GSVs. The key advantage of this approach is that carriers

identified from population cohorts are not biased (either qualita-

tively or quantitatively) by pre-existing ascertainment criteria, so

that the impact of the GSV on phenotype can be directly analysed

using more powerful quantitative methods.

Our replication of the obesity association of deletions including

SH2B1 and the finding of limited evidence to support 2 further

associations, together with recent successes in other disorders

including attention deficit hyperactivity disorder [43], demonstrate

that analysis of carefully-selected cohorts has the potential to

reveal novel, rare, causal GSVs. However, it is clear that there

remains a need for an accepted foundation on which to base

genome-wide searches for rare variants. In its absence, attempts to

overcome the unavoidable lack of statistical power may lead to the

adoption of methods whose effectiveness is not readily quantifi-

able. Thus, there is a danger that reported associations may

include a large number of false positives. Similar caveats should

perhaps also be attached to the growing number of studies

investigating common GSVs [36,37,39]. Although careful exper-

imental design and the inclusion of additional phenotypic and/or

experimental data can help to limit this problem, our findings

illustrate the urgent need for well-defined, robust statistical

methods that are readily applicable to the search for causal, rare,

genomic structural variants.

Materials and Methods

Cohorts
Initial replication analysis was of cohorts used in our previous

work [12], with ethnic outliers removed as described. Obesity

case-control cohorts from France were as previously published

[17]: Phenotypes and genotyping data (Illumina Human

CNV370-duo arrays) passing quality control were available for

649 obese children with a body mass index (BMI) $97th percentile

corrected for gender and age; 557 non-obese controls (BMI #90th

percentile); 705 obese adults (BMI $40 kg.m22) and 843 non-

obese controls (,25 kg.m22). Data for 141 severely obese French

patients undergoing elective bariatric weight-loss surgery were as

previously described [12]. For The Northern Finland Birth Cohort 1966

(NFBC1966) prospective birth cohort [18], phenotypic data and

genotyping data (Illumina Human CNV370-duo arrays) passing

quality control was available for 5,216 subjects aged 31 years at

the time of phenotyping. For further replication of the 220 kb

deletion on chromosome 16p11.2, genotyping data was available

for other previously-described population cohorts as follows: the

CoLaus prospective population cohort [44] –5,612 white individ-

uals aged 35–75 years randomly selected from the general

population in Lausanne, Switzerland; the EGCUT BioBank [45]

–2,666 individuals randomly selected from the 48,000 Estonian

participants; the deCODE population cohort [46]–36,601 recruited

from the whole of Iceland; the SHIP cross-sectional survey cohort

[47,48] –4,070 German citizens from Western Pomerania. In all

cases, individuals in the above cohorts were excluded from the

analysis if they had previously been shown to carry single-locus

obesity variants (e.g. in MC4R); specifically excluded were those

carrying the obesity-causing deletion of 593 kb on chromosome

16p11.2 (4 child obesity, 4 adult obesity, 2 bariatric patients, 3

NFBC1966, 1 EGCUT, 18 deCODE, 2 SHIP) [12]; no subject

was related to any other subject. All participants or their legal

guardians gave written informed consent, and all local ethics

committees approved the study protocol. EGCUT is conducted

according to Estonian Gene Research Act. For deCODE, all

procedures related to this study have been approved by the Data

Protection Authority and National Bioethics Committee of

Iceland.

GSV Identification
The GSV regions were selected either as stated in the original

report [16] or the region common to all GSVs identified in that

region [10], and were analysed according to the GSV analysis

pipeline illustrated in Figure 1. Intensity data from the French and

NFBC1966 cohorts were exported from Illumina BeadStudio in

the form of logR ratio (LRR) and B Allele Frequency (BAF);

samples with a low SNP call rate (,95%) or a genome-wide LRR

variance .0.3 were excluded. The cnvHap algorithm with default

parameter settings (false discovery rate ,5%) was applied to each

region under investigation plus additional 500 kbp flanking

regions; using these parameters we expect high sensitivity for

GSV detection – even a false discovery rate as low as 1% gives

genome-wide sensitivity of ,40% for GSV detection in an

individual, and .60% for identifying the presence of a GSV in a

cohort [19]. The initial (unsupervised) GSV detection was further

improved by a series of manual procedures applied to each GSV

locus under study: Only GSV calls covering at least 3 consecutive

probes were considered; for short GSV regions spanning 6 or

fewer probes, GSV calls were required to span the entire region;

and SNP cluster plots were manually inspected to confirm both

positive and negative GSV calls and to check for possible

artefactual sources of differential GSV detection between cases

and controls. For longer GSV regions (i.e. spanning $11 probes),

it was also necessary to manage the effects of data noise or of the

presence of a second small GSV in the same location on the

homologous chromosome on GSV calling; a side-effect of the

improved sensitivity of cnvHap is that, particularly for samples

with lower data quality, larger GSVs are sometimes split into

several smaller GSV calls. Thus, a modified procedure was

employed: GSV calls across the entire region were combined, and

individuals with copy number changes (i.e. deletion or duplication,

as appropriate) at over 50% of probes within the region were

provisionally called as carrying a GSV; the presence of a full-

length GSV in these individuals was then confirmed by manual

inspection of the LRR and BAF data. This approach again

minimises the potential for artefactual associations arising from

different GSV call-rates in cases and controls (e.g. due to

differences in DNA quality). Furthermore, for both adult and

child case-control cohorts, any potential bias in GSV detection

favoured an increased call rate in cases (higher mean number of

GSV calls per subject) which would be expected to favour false

positive associations and to mitigate against false negatives. All

chromosomal coordinates are given according to genome build 36

(hg18).
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Screening for the 220 kb deletion on chromosome 16p11.2 in

GWAS data from additional cohorts was variously carried out

using a Gaussian Mixture Model [49]; Circular Binary Segmen-

tation [50,51]; QuantiSNP [52]; PennCNV [53]; BeadStudio GT

module (Illumina Inc); and Birdseed [54]. At least two indepen-

dent methods were used for each cohort. Where DNA was

available, GSV calls at this locus were confirmed and probands’

parents investigated by multiplex ligation-dependent probe am-

plification [55], using the oligonucleotide probe set previously

described [10] (kind gift of I.S. Farooqi).

Fasting Insulin and Oral Glucose Tolerance test
Data for insulin, after fasting and following 75 g oral glucose,

were from previously-reported studies [18,56]. Plasma insulin was

assayed by radioimmunoassay (Pharmacia Diagnostics) in blood

samples drawn either after overnight fasting or at 0, 30, 60, 90,

and 120 min after glucose ingestion.

Statistics
Tests for case-control association and calculation of odds ratios

were carried out using the fisher.test function, tests for differences

in log-transformed BMI used the analysis of variance aov function,

and Z-test for deviation from population mean used the Student’s

t-test t.test function, each as implemented in R [57]. Calculations

of post-hoc achieved power for one-tailed Fisher’s exact test were

carried out using G*Power version 3.1.2 [58].
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