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Abstract

The objective of this study was to use available data on the prevalence of COVID-19 risk

factors in subpopulations and epidemic dynamics at the population level to estimate proba-

bilities of severe illness and the case and infection fatality rates (CFR and IFR) stratified

across subgroups representing all combinations of the risk factors age, comorbidities, obe-

sity, and smoking status. We focus on the first year of the epidemic in Los Angeles County

(LAC) (March 1, 2020–March 1, 2021), spanning three epidemic waves. A relative risk

modeling approach was developed to estimate conditional effects from available marginal

data. A dynamic stochastic epidemic model was developed to produce time-varying popula-

tion estimates of epidemic parameters including the transmission and infection observation

rate. The epidemic and risk models were integrated to produce estimates of subpopulation-

stratified probabilities of disease progression and CFR and IFR for LAC. The probabilities of

disease progression and CFR and IFR were found to vary as extensively between age

groups as within age categories combined with the presence of absence of other risk fac-

tors, suggesting that it is inappropriate to summarize epidemiological parameters for age

categories alone, let alone the entire population. The fine-grained subpopulation-stratified

estimates of COVID-19 outcomes produced in this study are useful in understanding dispari-

ties in the effect of the epidemic on different groups in LAC, and can inform analyses of tar-

geted subpopulation-level policy interventions.

1 Introduction

Health disparities have emerged with the COVID-19 epidemic because the risk of exposure to

infection and the prevalence of risk factors for severe outcomes given infection vary within
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and between populations and over time [1–7]. For public health policy makers to better

address the pandemic, models reporting stratified estimates are necessary to investigate the

potential outcomes of policy scenarios targeting specific subpopulations. However, estimated

epidemic quantities such as rates of severe illness and death, the case fatality rate (CFR), and

the infection fatality rate (IFR) are often expressed in terms of aggregated population-level esti-

mates or by age group alone due to the lack of epidemiological data at the refined subpopula-

tion level [8–10]. While data may be available for single risk factor strata such as by age [11],

data on subpopulations representing individuals with combinations of risk factors are not

reported or available. Conventionally, estimates of risk effects and outcomes given combina-

tions of conditions are obtained through access to individual-level data and the application of

multiple regression techniques [5, 12]. At the time of this study, individual-level COVID-19

data were not widely available nor sampled in an appropriate manner to avoid substantial bias

[13].

In this paper we develop a model that produces stratified estimates of the probability of dis-

ease progression and death for subpopulations representing individuals with combinations of

risk factors important for COVID-19 using dynamic epidemiological data at the aggregated

population level [14], published studies on the risk of individual risk factors on illness severity,

and prevalences of risk factors in the general population. In the absence of access to individ-

ual-level data, we apply a statistical technique developed for joint analysis of marginal sum-

mary statistics (JAM) [15] to obtain estimates of the conditional effects of combinations of

COVID-19 risk factors on the probability of developing severe illness and death, using data

from published studies reporting the marginal effects of individual risk factors [2, 3]. We con-

sider the risk factors age, existing comorbidities, obesity, and smoking. Separately, we develop

a stochastic epidemic model and use Bayesian methods to estimate time-varying probabilities

of hospitalization, ICU admission, and death given infection at the population level. We inte-

grate the conditional risk effects and the population-level probabilities, together with available

dynamic data on the prevalence of infections and deaths stratified by age, to estimate the prob-

ability of disease progression, CFRs and IFRs, stratified across all plausible combinations of the

modeled risk factors. This approach allows us to produce risk-stratified estimates without

access to either individual-level data on disease progression, or subpopulation-level dynamics

of infections, hospitalizations, ICU admissions, and deaths by risk groups.

Focusing on Los Angeles County (LAC), the most populous and one of the most diverse

counties in the United States, we analyze the estimated overall and risk-stratified time-varying

disease progression probabilities, CFRs, and IFRs in relation to the epidemic timecourse and

implemented policy decisions through the first year of the epidemic, from March 1, 2020

through March 1, 2021. Our analysis is framed in terms of three epidemic waves experienced

in LAC; a first wave from March 1—May 6, 2020, diminished through a strict lockdown; a sec-

ond and larger wave, May 7—October 14, 2020, which peaked at the end of July; and a third

significantly large wave that began on October 15, 2020, peaked in mid-January, and had sub-

sided by March 1, 2021.

The integrated model allows the comparison of dynamic outcomes and parameters across

the overall population, age groups, and more fine-grained subpopulations in LAC representing

age and combinations of other risk factors for severe COVID-19 illness. Such fine-grained

results can be useful in understanding disparities in the effect of the epidemic on different

groups in LAC and can inform studies involving targeted subpopulation-level policy interven-

tions [16].
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2 Methods

We developed a single-population stochastic dynamic epidemic model that accounts for

observed and unobserved transmission of COVID-19 and trajectories through the healthcare

system with hospitalization, ICU admission, and death. Using Bayesian methods for parameter

estimation and uncertainty quantification, we estimated the population-average time-varying

probabilities of transitions between the infected, hospitalized, ICU, death, and recovery com-

partments, and the resulting population-average time-varying case fatality rate (CFR, defined

as deaths over observed infections) and infection fatality rate (IFR, defined as deaths over all

infections) (Section 2.1). In parallel, we used available data from published studies on the mar-
ginal effects of individual risk factors (age, existing comorbidities, obesity, smoking) to calcu-

late conditional risk effects estimates for three models: (1) hospitalization given infection, (2)

ICU admission given hospitalization, and (3) death given ICU admission. The conditional risk

estimates were integrated with the corresponding probability estimates ât , k̂t , and d̂t from the

dynamic epidemic model to create a risk model (Section 2.2). The risk model enables us to esti-

mate, stratified across 54 combinations of the levels of the modeled risk factors (i.e. risk pro-
files), the probability of each stage of disease given infection within LAC. Finally, we integrate

the time-varying stratified probability of each stage of disease with the timeseries of observed

infections, estimated total infections including observed and unobserved, deaths, together

with available data on the prevalence of infections stratified by age, to estimate the risk profile-

stratified CFR and IFR across time (Section 2.2.5).

2.1 Epidemic model

We develop a model of COVID-19 transmission in a single, homogeneously-mixed population

divided into nine compartments representing different disease states (Fig 1). Compartments

relating to the transmission of infection are the widely-used susceptible (S), exposed (latent

but not yet infectious) (E), infectious and observed (I), and recovered (R) classes. By including

the exposed compartment, we are able to model the delay between individuals being exposed

to infection and becoming infectious. We also include a compartment representing infectious

individuals with unobserved and/or unconfirmed infections (A). I represents cases of infection

that have tested positive for the SARS-CoV2 virus and are confirmed in the official register of

infection case data. A represents cases that are symptomatic but do not appear in the con-

firmed case data, whether because they are asymptomatic, are symptomatic and do not get

tested, or get tested and have a false negative result. We model healthcare utilization and out-

come at a more granular level by including compartments representing individuals that are in

hospital (H), in ICU care (Q), and that die (D). H includes individuals that are receiving care

services in skilled nursing facilities (i.e., SNFs). D represents only deaths that are confirmed as

being COVID-19 related. Each individual can only be in one state at each point in time.

Our model applies the following logic and assumptions. Susceptible individuals will become

exposed and develop infection (emphasizing that exposure to the virus is not a sufficient con-

dition for developing an infection) and move to the exposed but latent state E, meaning they

will become, but are not yet, infectious. The transfer of susceptible individuals into the exposed

state happens at a per capita rate βt, the transmission rate, defined as the average number of

individuals that an infected individual will infect per day. βt controls the rate of disease spread

and reduces following modifications including non-pharmaceutical interventions (NPIs). By

including the exposed compartment, we are able to model the delay between individuals being

exposed to infection and becoming infectious. From the exposed and latent state, individuals

will transition to one of the two active infection states: a time-varying fraction rt of these cases

will transfer to the observed infectious state I, and the remaining 1 − rt will transfer to the
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unobserved infectious state A. Therefore, the parameter r represents the fraction of all infec-

tious cases that are observed and confirmed. We assume that new infections are created only

by individuals in the infected classes (I and A), and that individuals in all other compartments,

including in hospital, do not contribute to transmission. Individuals transfer from the exposed

to infectious and observed (I) or unobserved (A) compartments at a rate equal to the inverse of

the mean latency period, dEI.
Infectious cases may either move directly into the recovered state (R), or into hospitaliza-

tion (H) if further care is required. Of all observed and infectious cases (I), we assume that

individuals will require hospitalization with probability αt, equal to Pt(H|I). Infectious individ-

uals transition into the hospitalized state at a rate equal to the inverse of the time between

infectiousness and hospitalization, dIH, or move directly to recovery at a rate equal to the

inverse of the mean time of infection given that hospitalization is not required, dIR. Hospital-

ized individuals will require ICU care with a probability κt, equal to Pt(Q|H), and transfer into

Q at a rate equal to the inverse of the mean time in hospital given that ICU care will be

required, dHQ. With probability 1 − κt they will recover and move into R at a rate of the inverse

of the mean time in hospital given that ICU care will not be required before recovery, dHR.

Individuals in the ICU will recover with probability 1 − δt, moving to R at rate equal to the

inverse of the mean time in ICU before recovery, dQR, or will die with probability δt, equal to

Pt(D|Q), moving to D with rate equal to the inverse of the mean time in ICU care given a fatal

case, dQD. We assume that all unobserved infections (A) will recover directly, since admission

to hospital would entail a COVID-19 test. These cases transition to R at the same rate as

observed infectious (I) individuals, 1/dIR. We assume recovered individuals cannot be

Fig 1. Epidemic model structure and estimated parameters. Model compartments with available data are represented as square compartments.

https://doi.org/10.1371/journal.pone.0253549.g001
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reinfected due to immunity, and cannot infect others. While the dynamics of transitions

within the healthcare setting would change if hospital and ICU, capacity are reached, we do

not model this condition. The only route to death is through an observed infection followed by

hospitalization and ICU care, meaning we do not model individuals that die from COVID-19

illness at home rather than at a point-of-care. We justify this assumption because the majority

of confirmed COVID-19 deaths cases result from individuals who die in SNF, hospital, or fol-

lowing a stay in hospital; analysis of death certificate data from California indicates that 4%-

9% of official COVID-19 deaths have occurred at home, across the three epidemic waves (E.

Garcia, personal communication based on unpublished data for the state of California, April

20, 2021). Furthermore, we do not model a route to death for individuals without a confirmed

COVID-19 infection (A), since record of confirmed COVID-19 infection (or probable based

on clinical evidence) is needed to be classified as COVID-19 mortality [17].

To model this dynamical state system we employ a discrete-time approximation to the cor-

responding stochastic continuous-time Markov process in which transitions of individuals

between disease stages are seen as stochastic movements between the corresponding popula-

tion compartments with random transition rates [18, 19]. This model keeps track of the num-

ber of individuals in each compartment and the flows of individuals transitioning between

compartments through a set of coupled discrete-time multinomial counting processes with

transmission rates defined by Poisson processes. To simulate from this system we employ a

Euler numerical scheme for Markov process models [18]. For more details see Section 1.5 in

S1 Appendix.

The reproductive number, Rt, defined as the mean number of secondary cases generated by

a typical infectious individual on each day in a fully susceptible population [20], is a function

of model parameters including the transmission rate βt [21], and like βt, changes in time with

behavior and interventions. We use the Next Generation Matrix approach to solve for the

reproductive number (Section 1.6 in S1 Appendix) and find that,

Rt ¼ bt
rt

at
dIH
þ

1� at
dIR

þ ð1 � rtÞdIR

" #

: ð1Þ

Thus, Rt is a function of the transmission rate βt as well as other model parameters.

As the pandemic continues and the susceptible population decreases, it becomes important

to study the effective reproductive number Refft, equal to Rt multiplied by the fraction of the

population that is susceptible at time t, S(t)/P(t). When Refft< 1, the epidemic will begin to

decrease (although stuttering chains of epidemic growth may still occur in a stochastic model).

2.2.1 Parameter estimation. All transition rate parameters (e.g., the inverse of the time

between exposure and infectiousness dE I) are modeled as fixed values taken directly from pub-

lished literature (Table 2 in S1 Appendix). The model has five unknown parameters, θ = {βt, rt,
αt, κt, δt}, which we estimate from COVID-19 data for LAC (Table 3 in S1 Appendix).

Due to the relationships between the five interacting model parameters {βt, rt, αt, κt, δt} in

the model formulation, a tractable likelihood function was not possible for our model and a

likelihood-free method of parameter estimation was required. Furthermore, the formulation

of the model allows for multiple parameter solutions to exist. This means that estimated poste-

rior distributions will be multimodal if allowed to vary over a wide prior parameter space. We

use a two-step likelihood-free sampling process to define unimodal posterior distributions and

achieve convergence in parameter estimates, using a broad grid search followed by approxi-

mate Bayesian computation (ABC) sampling. We first perform a broad grid search to identify

possible regions for each parameter, from which we decide on a single mode. External data

sources were used to specify the parameter range for the grid search (discussed below). Second,
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we use ABC sampling to estimate the final posterior distribution for each parameter with a

prior distribution informed by the chosen mode from the grid search step. Specifically, we

define a prior distribution for ABC as a normal distribution with 95% of its values lying within

±25% of the mean value of the chosen mode; for example, if the mean of a chosen mode for

parameter X is determined to be 0.1, then the prior distribution for X will be a normal distribu-

tion with standard deviation of 0.01, chosen such that Pr(0.075 < X< 0.125)� 95%.

Because prior information from existing studies on the reproductive number Rt is more

readily available than for βt, we estimate Rt from data and then use Eq 1 to obtain βt from Rt.
We first estimate R0, the initial value of the reproductive number before any interventions.

The grid search parameter space for R0 is informed by values estimated from previous pub-

lished studies on COVID-19 [22, 23]. We use geolocation trace data from smartphones, i.e.

mobility data, to inform the magnitude and the timing of changes in the distribution of Rt over

time from the initial R0 value. We incorporate data for LAC provided by Unacast [24] on

reductions in distances travelled and encounter rates [25]. Interestingly, this data source

diverges from observed trend in infections with the third epidemic wave, demonstrating a

decrease in mobility activity as the epidemic surge took off. Thus, for dates after October 15,

2020, we do not use mobility data to inform the grid search space for Rt and instead set this

equal to 1< Rt< R0, for dates corresponding to increasing infection trends. The grid search

parameter space for the fraction of observed cases out of all infections, rt, was informed by

results of a CDC study reporting seroprevalence surveys across 10 communities in March

through early May 2020 for t within that time period, and was allowed to vary more widely for

dates after May 2020 [26]. Grid search ranges for the parameters representing the probabilities

of disease stage progression, αt, κt, and δt, were informed by the ratios of the observed numbers

of infections, hospitalizations, and deaths in LAC. Prior distributions used in parameter esti-

mation are specified in Section 2.1 in S1 Appendix.

The model was fit to the daily and cumulative count of observed infections and deaths, and

current numbers in-hospital and in-ICU, coming from the GitHub page of the Los Angeles

Times (LA Times) Data and Graphics Department [14]. The infection and death data is

sourced from reports logged by LA Times reporters and editors based on reports from the

LAC Department of Public Health. The in-hospital and in-ICU data was sourced by the LA

Times directly from the California Department of Public Health’s Open Data Portal [27]. We

use the total of both confirmed and suspected COVID-19 patients in hospital or ICU.

Using ABC on multiple parameters simultaneously produces a joint posterior distribution

over all parameters. We simulate the model with each set of jointly-estimated values to pro-

duce estimated timeseries of all state variables, as well as to estimate the time-varying case fatal-

ity rate, CFRt, and infection fatality rate, IFRt at each model run. These are calculated as

estimated deaths (D) over estimated cumulative observed infections (I) or estimated cumula-

tive total infections (I+A), respectively, on date t. Specifically, we simulate the model over 100

jointly estimated parameter sets and 20 stochastic realizations for each set, resulting in 2000

total realizations. We pool together all simulated model trajectories and report their median

and 95% credible intervals (CI) as the 2.5th/97.5th quantiles of realizations. This procedure

quantifies uncertainty from two sources: variability due to posterior parameter distributions,

and variability due to the stochastic variation between model runs with the same parameter

values.

2.2 Risk model

The risk model produces estimates of the probability of disease progression (infection to

hospitalization, ICU admission, and death), and the CFR and IFR, stratified across 54 risk
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profiles q 2 Q, representing all combinations of the different levels of the risk factors age,

comorbidities, obesity, and smoking status. The profile-stratified estimates are tied to the LAC

population through multiple inputs: they are mean-centered on the overall population epi-

demic model estimated parameters αt, κt, and δt, take into account the prevalence of each risk

factor in the LAC population, and are designed to match the prevalence of each risk profile
over infections and deaths in LAC. The profile-stratified probabilities of disease progression,

CFR, and IFR are estimated through six steps, described below and summarized in terms of

data inputs, modeling or analysis steps, and outputs or estimates in the flow diagram in Fig 2.

1. Estimate the population-average probability that individuals in LAC who acquire infection

are admitted to hospital, ât , who are in hospital require admittance to the ICU, k̂t , and who

are in ICU will die, d̂t , using the epidemic model and Approximate Bayesian Computation

as described in the previous section. We also use the epidemic model to estimate the time-

series of the numbers of the LAC population that are infected and observed, infected and

unobserved, in hospital and ICU, and deaths.

2. Calculate conditional relative risk (RR) estimates for three risk factors (existing comorbidi-

ties, obesity, smoking) conditional on one another and on age for three models (m): hospi-

talization given illness, (H|I), ICU admission given hospitalization, (Q|H), and death given

hospitalization, (D|Q). This is done using available data from published studies on the mar-

ginal RR of the four factors on COVID-19 illness at each stage of disease, the correlation

Fig 2. Flow diagram illustrating the risk model, i.e. the set of steps used to produce estimates of risk profile-stratified probabilities of disease

progression and CFR and IFR. The diagram shows data inputs, modeling or analysis steps, and outputs or estimates.

https://doi.org/10.1371/journal.pone.0253549.g002
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between these factors in a population resembling that of LAC, and a statistical method

called the Joint Analysis of Marginal summary statistics (JAM).

3. Estimate the prevalence of each risk profile q 2 Q in the infected population over time.

Data inputs to this step are the prevalence of each marginal risk factor in the overall LAC

population, the correlation between the risk factors in a population resembling that of LAC,

and the proportion of each marginal age group out of all COVID-19 infections in LAC.

4. Estimate the probability of disease stage progression across all risk profiles over time,

dPtðHjIÞ , dPtðQjHÞ , and dPtðDjQÞ such that they are mean centered on the probability esti-

mates from the epidemic model ât , k̂t , and d̂t , respectively. These estimates are produced

by integrating ât , k̂t , and d̂t (Step 1) with the corresponding conditional risk estimates for

each model (H|I), (Q|H), and (D|Q) (Step 2), and the prevalence of each risk profile in the

infected population (Step 3) within a logistic model. This step also produces estimates of

the frequency of each profile q 2 Q at each stage of disease. This is similar in spirit to epide-

miologic approaches that combine risk estimates with baseline hazard rates from external

sources to estimate absolute risk [28].

5. Estimate the conditional RR of age on the other three risk factors, by iteratively adjusting

the conditional RR for each age group input to the logistic risk model (Step 4) until the fre-

quency of each age group over deaths (an output from Step 4) matches the observed distri-

bution of each age age-over-deaths distribution for LAC.

6. Estimate the CFRq,t and IFRq,t for each risk profile using the profile-stratified frequency in

infections (Step 3) and deaths (Step 4), and the timeseries of observed infections, unob-

served infections, and deaths for LAC overall (Step 1). This is produced by projecting the

frequency of each risk profile at each stage of disease (Step 4) onto estimated timeseries of I,
I + A, and D, and dividing to obtain the CFRq,t and IFRq,t ratios.

Below, we provide an overview of the methodology used in each step besides Step 1, which

was described in Section 2.1. Further details on the methodologies employed in each step are

provided in S1 Appendix, Part II. A summary of the mathematical notation used in the risk

model is provided on Table 8 in S1 Appendix.

2.2.1 Step 2: Conditional RR for BMI, smoking, and comorbidities. The risk factors p 2
P included in our analysis are age, body mass index (BMI), smoking status (smoking), and any

comorbidity (comorbidity). The comorbidities included are diabetes, hypertension, chronic

obstructive pulmonary disease (COPD), hepatitis B, coronary heart disease, stroke, cancer and

chronic kidney disease. We modeled age and BMI as an ordinal variable and assume an addi-

tive effect of both age and BMI on the three outcomes. Age was categorized within four groups:

0 − 18, 19 − 49, 50 − 64, 65 − 79, and 80+. BMI was categorized in three groups according to

obesity classes: Class 1 (no obesity) BMI < 30
kg
m2; Class 2 (obesity), 30 � BMI � 40

kg
m2; Class 3

(severe obesity), BMI > 40
kg
m2. Any comorbidity and smoking status were modeled as binary

variables.

We estimate the conditional RR for BMI, smoking, and comorbidity, conditional on age,

for the three models (H|I), (Q|H), and (D|Q) using marginal RR estimates available from

reported studies and a method called the Joint Analysis of Marginal Summary Statistics (JAM)

[15]. JAM uses two pieces of information: (i) the marginal RR between risk factors and the out-

come and (ii) a reference correlation structure between the risk factors, S. For information

informing (i) we obtain the marginal log RR between individual risk factors and COVID-19 ill-

ness severity from peer-reviewed published COVID-19 studies [2, 3] (left column of Table 1).
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For (ii), we estimate the correlation structure S using individual-level data from the National

Health and Nutrition Examination Survey (NHANES) from 2017–2018 [29], weighted by

race/ethnicity proportions to create a population resembling that of LAC (Section 6 in S1

Appendix).

Using the marginal summary statistics from (i), specifically the marginal log relative risks

c
Marg
p;m for risk factor p and model m, JAM obtains conditional log relative risks c

Cond
p;m for each

factor. To accomplish this JAM first expresses the relationship between an outcome m, such as

hospitalization given infection, ICU admission given hospitalization, and death given ICU

admission, and the risk factors p 2 P as a normal linear model, m* N(Pψ, τ2I). For such a

model the conditional or adjusted estimates of effect are given by
^

c
Cond
¼ ðP0PÞ� 1P0m. To fit

this model without access to individual-level data we substitute an estimate of P0P based on an

estimate of this matrix using the correlation S between the risk factors from external NHANES

data as specified in (ii). P0m defines the mean value of the outcome for each of the correspond-

ing values of the risk factor. These can be constructed using the marginal log relative risks

c
Marg
p;m and the frequencies of each risk factor in the population. (See Section 5 in S1 Appendix

for more details).

2.2.2 Step 3: Prevalence of each risk profile in the infected population. We estimate the

time-varying frequency of each risk profile in the infected population, ft,q,I. First, we estimate

the frequency of the risk profiles q in the overall LAC population, lq, by simulating a sample

population based on the prevalence of each individual risk factor in LAC, and the weighted

correlation structure between the risk factors S obtained from NHANES data from Step 2.

The prevalence of each age group comes from the American Community Survey via the tidy-

census R package [30]. The prevalence of obesity, smoking and all comorbidities besides can-

cer come from the Los Angeles County Health Survey (LACHS), study year 2018 [31]. The

prevalence of cancer comes from the California Health Information Survey (CHIS) [32].

Using the vector of prevalences of each risk factor, lp, and correlation structure S, we generate

Table 1. The marginal relative risk of each stage of disease collected from published studies on COVID-19 and

conditional relative risk estimated by the risk model for each risk factor on rates of hospitalization given infection,

(H|I); ICU admission given hospitalization, (Q|H); and death given ICU admission, (D|Q) (95% credible interval).

The reference group is individuals with no comorbidity, BMI < 30
kg
m2, and non-smoking.

Risk Factors Marginal RR (95% CI) Conditional RR (95% CI)

(H|I)
Ordinal BMI 2.98 (2.61, 3.39) 1.82 (1.06, 3.15)

Smoker 1.40 (0.90, 2.17) 1.76 (0.21, 14.52)

Any comorbidity 3.18 (2.42, 4.18) 1.50 (0.59, 3.84)

(Q|H)

Ordinal BMI 1.01 (0.86, 1.18) 1.05 (0.65, 1.69)

Smoker 1.71 (0.87, 3.38) 1.61 (1.45, 1.79)

Any comorbidity 1.34 (0.87, 2.06) 1.02 (0.86, 1.20)

(D|Q)

Ordinal BMI 1† 1.12 (0.73, 1.71)

Smoker 1† 1.96 (1.33, 2.89)

Any comorbidity 1.64 (0.81, 3.32) 1.05 (0.78, 1.43)

†We set the marginal RR for ordinal BMI and smoker to 1 because we did not find the association between obesity

class, smoking status, and the likelihood of death given ICU admission D|Q due to COVID-19 in the published

literature.

https://doi.org/10.1371/journal.pone.0253549.t001
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a simulated population χ by sampling from a multivariate normal, χ* N(x; lp, S), where x is

the number of samples. An any comorbidity variable is constructed as an indicator if any of the

comorbidities are present. We then calculate the vector of the frequencies of each risk profile

in the overall LAC population, lq, as its relative frequency in the simulated population χ.

Second, we use COVID-19 infection cases by age group in illnesses [14] together with the

estimate of the prevalence of each risk factor in the overall LAC population, lq, to estimate the

frequency of each profile within the infected population on each date. We anchor our estimate

of the frequency of each profile over infections on the frequency over ages, as age is the only

risk factor with observed infection prevalence data in LAC.

Infection timeseries data by age group come from the LA Times. We use the age group

infection numbers from the state of California because data for LAC is not available. We

checked that the distribution for aggregate age groups in this California data resemble that

reported by the LAC Department of Public Health [33]. To estimate the frequency of each risk

profile q in the infected population, ft,q,I, the frequency of each age group over infections is

stratified across the risk profiles according to the relative frequency of each profile in the base-

line LAC population.

2.2.3 Step 4: Risk-profile-stratified probabilities of disease stage progression. We con-

struct a logistic model to estimate the probability of disease stage progression across all risk

profiles over time, dPtðHjIÞ , dPtðQjHÞ , and dPtðDjQÞ . Specifically, the model combines the 54

risk profiles as linear combinations of the risk factors specified in a mean centered design

matrix, X; and their corresponding conditional log-RR obtained from JAM, ĉ ; with specified

intercepts set to the estimated probabilities from the epidemic model (Section 2.1) for ât , k̂t ,

d̂t , respectively. For example, to estimate the vector of probabilities of hospitalization given

infection for all risk profiles we use dPtðHjIÞ ¼ expitðât þ Xĉ Þ. The reference profile are indi-

viduals age 0 − 18 with no comorbidity, BMI < 30
kg
m2, and non-smoking.

The mean-centered design matrix is based on the frequency of each risk profile at each

stage of disease. The frequency of each profile in infections comes from Step 3. The frequency

at subsequent stages is calculated recursively for each stage of disease (in hospital, in ICU, and

deceased) using the frequencies in the previous stage of disease and the calculated incoming

probabilities.

2.2.4 Step 5: Conditional RR for age. Rather than estimate the conditional RR for age

using the same methodology as for the other factors as described in Step 2, we estimate the

conditional RR of each age group separately since we have observed data on the distribution of

each age group over deaths for LAC. Given this information, we aim to find the solution set

that minimizes the distance between the distribution over deaths produced by the logistic

model and the observed distribution. Specifically, we choose the conditional RR for age such

that the distance between the frequency of each age group over deaths produced in Step 4 and

the observed distribution of each age group over deaths in LAC is minimized. This is done

through an iterative optimization process in which we vary over a wide search space the condi-

tional RR for each age group for each model that are input to the logistic model (Step 4) and

find the maximizing values for the conditional RR.

2.2.5 Step 6: Risk-profile-stratified CFRq,t and IFRq,t. To calculate the time-varying

CFRq,t and IFRq,t for each risk profile, the estimated frequency of each profile in the infected

population and in the deceased population (obtained from Step 4) are multiplied by each value

of the estimated cumulative number of observed infections (I) or total infections (I+A), and

deaths (D) obtained from each realization of the epidemic model. We find the CFRq,t and IFRq,t

for each model realization as the number of deaths over observed infections, and number of
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deaths over total infections, respectively. Repeating and calculating summary statistics across

the 2000 model realizations achieves the 95% CI. This process therefore accounts for the uncer-

tainty in the estimated parameters and stochasticity in the epidemic model, but not from the

risk model estimates.

3 Results

3.1 Model and parameter estimates

3.1.1 Model fits. Fig 3 summarizes the epidemic model fit with COVID-19 data for LAC

from March 1, 2020 through March 1, 2021 for all disease states across multiple views: New

cases, representing new daily incidence; the current number in a compartment at a specific

date, relevant for understanding current prevalence rates and comparing with healthcare

capacity limitations; and cumulative counts until a specific date. Observed data for available

compartments are plotted as black dots, evidencing the day-to-day variability in case and

death counts. The figure demonstrates that good model fits are achieved in all compartments

across time. Close-ups of the timeseries of the numbers in infection states plotted against avail-

able data are provided in Section 3.1 in S1 Appendix.

Section 3.2 in S1 Appendix provides values of the five estimated parameters at two-week

intervals from March 1, 2020 through March 1, 2021. The two-step parameter estimation

approach (broad grid search to select a single mode of each parameter, followed by approxi-

mate Bayesian computation (ABC) using a prior distribution specified around that single

mode) achieved convergence in posterior densities. Convergence is not reached for the broad

grid search step, with multi-modal distributions returned for each parameter (not shown). By

specifying a narrow prior distribution around a mode chosen from the broad grid search sam-

pling, convergence around a dominant single mode is achieved in the final posterior density

returned by the ABC sampling step (see Section 3.3 in S1 Appendix for density plots of prior

and posterior distributions).

3.1.2 Epidemic timecourse in LAC. The LA City Mayor’s Office distinguishes between

three stages of the COVID-19 epidemic in LA City and County relating to policy response

measures implemented following the orders of the County Health Officer: Stage I, March 19—

May 7: the initial shutdown; Stage II, May 8—June 11: the first steps towards reopening; Stage

III, June 12 and beyond: greater reopening followed by “modifications” closing higher risk set-

tings (including bars and indoor seating in restaurants) [34, 35]. The start of the school year

on August 18, although virtual, marked a change in activity level and is also depicted. We char-

acterize three waves of the epidemic occurring across these stages: a first wave, March 1—May

6, 2020, occurring between Stage I and the beginning of Stage II and peaking on April 1; a sec-

ond and larger wave, May 7—October 14, 2020, beginning with Stage II and peaking on July

30 during Stage III; and a third and more than five times larger wave that began on October

15, 2020 and subsided by March 1 2021. Fig 4b–4f characterize the estimated model parame-

ters relative to these policy stages and epidemic waves; a full time course of the epidemic and

policy decisions in LAC can be found at [36].

We estimate that for most of the first wave, which coincides with Stage I, the overall obser-

vation rate was rt = 0.19 (95% CI: 0.12,0.26) of all infections observed. Beginning in mid-April

2020, the observation rate began to steadily increase through the second wave and Stages II

and III until levelling off at a value of rt = 0.5 (0.34, 0.64) of infections observed by August 15,

2020. In the initial period of the outbreak before public behavior began to change and policy

interventions were implemented, we estimate the basic reproduction number in LAC was

R0 = 3.69 (3.6, 3.82). From March 12 to March 27, 2020, beginning just before the Stage I lock-

down was implemented, we estimate a reduction to an Rt of 0.88 (0.77, 0.95). The
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corresponding reduction in transmission led to a levelling off at 36,000 (14,000, 79,000) esti-

mated current total infections (including observed an unobserved) on April 2, 2020.

Rt remained below 1 until the end of April, reaching 1.26 (1.06, 1.39) just as the Stage II

reopening began. The increase in Rt> 1 facilitated the increase in infections and the second

wave of the epidemic, which peaked at 105,000 (41,000, 200,000) current total infections. Fol-

lowing the decrease in the susceptible population due to the sizeable number of cases accrued

from the second wave, Rt,eff began to diverge appreciably from Rt. By mid-July Rt,eff had

Fig 3. Summary of the epidemic model fit with COVID-19 data for Los Angeles, for all state variables, across multiple views: New cases,

representing new daily incidence, current number in a compartment at a specific date, and cumulative counts. Available observed data (for new

and cumulative counts)are plotted as black dots. Estimates are shown as the median number in compartments over time, with the 50% (darker) and

95% (lighter) CI.

https://doi.org/10.1371/journal.pone.0253549.g003
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dropped below 1, whereas Rt based on behavior alone took two weeks longer to drop below 1.

Rt,eff reached a lowest value of Reff,t = 0.76(0.58, 0.91) in mid-August, just around the time the

school year began virtually, where it remained through mid-October.

Following the further re-opening of personal service businesses, malls, and outdoor drink-

ing establishments in late September through October, the third wave began. We estimate an

Rt (based on behavior alone) of 2.03 (1.87, 2.22) from October 15, 2020—January 1, 2021, and

a final spike of 2.40 (2.15, 2.55) from January 1—January 5, before beginning to decrease to

1.06 (0.97, 1.17) by January 15. Meanwhile, with soaring infections the effective Reff,t dropped

back below 1 by January 5, 2020, even as the Rt based on behavior alone was spiking at values

above 2. Rt,eff remained below 1 through March 1, 2021. Current observed infections peaked at

approximately 580,000 (275,000, 850,000) on January 13, meaning that at this time over 5% of

the LAC population was currently infected, compared with just over 1% of the population with

current observed infections. By March 1, 2021, current observed infections had dropped back

down to pre-surge levels of October 15, 2020. When unobserved cases are accounted for, we

estimate that 40%–60% of the LAC population had been infected with COVID-19 by March 1,

2021.

Fig 4. Timeseries of model-estimated parameters relative to key dates and COVID-19 policy decisions in LAC. Model-estimated median curves are

plotted along with the 50th% (dark shading) and 95% CI (light shading). (a) Rt, the time varying reproduction number. (b) Reff,t, the effective

reproduction number. (c) rt, proportion observed infections. (d) αt, the probability of hospitalization given infection; κt, probability of ICU admission

given hospitalization; and δt, probability of death given admission to the ICU. (e) Population-average case fatality rate, CFRt. (f) Population-average

infection fatality rate, IFRt.

https://doi.org/10.1371/journal.pone.0253549.g004
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We identify three phases of the probabilities of disease stage progression, αt, κt, and δt
across the three waves. The highest values for all three probabilities were observed during the

first wave, which as we will see below was marked by a proportionally higher fraction of infec-

tions from the higher-risk elderly population and in particular those 80+, a lot of whom com-

ing from SNFs/care homes; αt = 0.349(0.322, 0.38), κt = 0.327(0.309, 0.348), and δt = 0.506

(0.452, 0.565). The three probabilities decreased starting at the beginning of May as infections

started to increase, this time with a higher proportion coming from younger, lower-risk popu-

lations. From mid-May through mid-October, 2020, αt = 0.153(0.118,0.19), δt = 0.196(0.143,

0.234), and κt = 0.526(0.503, 0.543), with a brief increase to values 0.184 (0.142, 0.228), 0.246

(0.179, 0.293), and 0.579 (0.553, 0.597), respectively, during the height of the second wave in

mid-late July. With increasing infections in the third wave, αt and κt further decreased to val-

ues 0.1 (0.077, 0.124) and 0.157 (0.114, 0.187), respectively. Meanwhile, δt increased to its high-

est value yet of 0.737 (0.704, 0.76), suggesting that while the infected population had become

either lower risk for hospitalization or less inclined to seek treatment in healthcare, for those

making it through to the final stages of hospitalized care, their probability of survival was low.

Despite the drop in αt during the third wave, the surge of infections meant that hospital capac-

ity was surpassed for the first time during this wave (Fig 4 in S1 Appendix). ICU capacity was

not surpassed at any point, although it was approached during the third wave.

The population-wide CFRt and IFRt are also characterized by three phases, peaking at the

beginning of May 2020 before the probabilities of disease progression began to drop, leveling

out through the summer of 2020, and decreasing further with the third wave as the initial

influx of cases outpaced the deaths, which later started to catch up. On May 15, 2020, marking

the majority of deaths that could have come from the end of the first epidemic wave, CFRt =

5.56%(4.35%, 6.3%) and IFRt = 1.1%(0.41%, 1.81%); on October 15, 2020, marking the major-

ity of deaths that could have come from the end of the second epidemic wave, CFRt = 2.74

(2.08, 3.39) and IFRt = 0.55(0.22, 0.96); and on March 1, 2021, marking the majority of deaths

that could have come from the end of the third wave, CFRt = 1.65(1.29, 2.06) and IFRt = 0.32

(0.16, 0.55). Here we have provided values at the end of each wave to allow the number of

deaths occurred from each wave to catch up with the number of infections.

3.2 Conditional relative risks (RR) for risk factors

Table 1 displays as mean and 95% CI the marginal relative risks (RR) extracted from the litera-

ture (left column) and the RR for BMI, smoking, and comorbidity conditional on age esti-

mated by JAM for the three risk models representing increasing disease progression:

hospitalization given infection, (H|I), ICU admission given hospitalization, (Q|H), and death

given ICU admission, (D|Q). We observe that the independent effect of comorbidities and

obesity attenuate with increasing severity of disease; smoking may increase with age, however

a very wide confidence interval for (H|I) makes this conclusion tentative.

Separately, the estimated conditional RR for each age group, estimated such that the distri-

bution of age groups in the infected and deceased populations produced by the model matches

that observed in LAC, are shown in Table 2. Our modeling approach estimates that the condi-

tional risk of advancing to the next stage of illness relative to the reference population is equiv-

alent across the three models, i.e. (H|I) = (Q|H) = (D|Q); we report this single set of values for

each age category in Fig 2. The independent effect of age is much higher than from any other

risk factor, and increases exponentially with age. Fig 11 in S1 Appendix shows the frequency of

the age groups in the deceased population estimated by the model compared with the observed

frequency, i.e. the distributions featured in the objective function used to estimate the condi-

tional RR for the age groups for the three models in Step 5 of the risk model methodology.
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3.3 Risk-profile-stratified probabilities of disease stage progression

Tables 4, 9–11 in S1 Appendix show the estimated probabilities of disease stage progression

for each of three models dPtðHjIÞ , dPtðQjHÞ , and dPtðDjQÞ , as well as the estimated frequency in

the overall LAC population stratified across each risk profile characterizing a unique combina-

tion of age group, BMI range, smoking status, and any comorbidity. Profile-stratified probabil-

ities are shown for dates ranging every two weeks from May 15 2020—March 1 2021, The

probability of hospitalization given infection, ICU admission given hospitalization, and death

given ICU admission vary extensively across the risk profiles. Notably, the risks within specific

marginal factor groups also vary extensively. To demonstrate the variability in disease stage

progression probability across risk profiles, we show in Fig 5a–5c the range of values that can

be taken on by profiles falling within each age group. Specifically, these figures show the mean

(as a point), and minimum and maximum (error bar) of the probabilities across the compos-

ing risk profiles within each age group 0 − 18, 19 − 49, 50 − 64, 65 − 79, 80+, under each of the

three risk models. The figures demonstrate that the difference in probability between profiles

within an age group may vary more widely than across adjacent age groups, in particular for

the probability of hospitalization given infection dPtðHjIÞ ; the factor increase between adjacent

age groups ranges from 1.25 to 2 while the ratio increase from the maximum to minimum pro-

file ranges from a factor of two to four times.

3.4 Risk-profile-stratified CFRq,t and IFRq,t

Tables 12 and 13 in S1 Appendix show the median and the 95% CI of the estimated risk-pro-

file-stratified case fatality rates CFRq,t and infection fatality rates IFRq,t across dates every two

weeks from May 15 2020—March 1 2021. To facilitate interpretation of the variability in these

quantities across risk profiles, we show in Fig 6a and 6b the range of values that can be taken

on by profiles falling within each age group; the mean (point), and minimum and maximum

(error bar) of the median CFRq,t and IFRq,t across the composing risk profiles within each age

group are shown. The maximum IFRq,t for each age group comes from individuals with at

least one comorbidity, a smoking history, and severe obesity, while the minimum comes from

individuals that have no comorbidities, do not smoke, and have a healthy BMI.

As with the probabilities of disease progression, the CFRq,t and IFRq,t vary extensively both

across age groups, as well as across profiles representing different combinations of risk factors

for a given age group. The factor differential between the risk profiles decreases with age, vary-

ing from a 3- to 30-fold difference across profiles within each age groups. There are also

changes in the CFRq,t and IFRq,t across epidemic waves for the higher age groups. On May 15,

2020, marking the end of deaths from the first wave, median IFRq,t ranged from 0.01%

(0.006%, 0.019%) to 0.27% (0.14%, 0.44%) across profiles for ages 19 − 49; on March 1, 2021,

Table 2. The estimated conditional relative risk (RR) for each age group relative to the reference age group of 19–

49. The estimated conditional RR of advancing to the next stage of illness is equivalent across the three models, (H|I),
(Q|H), and (D|Q). The RR are conditional to the other risk factors and estimated from LAC infection and death data

stratified by age, using the combination of the epidemic and risk models.

Age group (H|I) = (Q|H) = (D|Q)

0 − 18 0.14

19 − 49 1

50 − 64 2.59

65 − 79 6.69

80+ 18.17

https://doi.org/10.1371/journal.pone.0253549.t002
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Fig 5. Range of the probabilities of hospitalization given infection across each risk profile, dPtðHjIÞ , summarized for each age group. Each figure

shows the mean (as a point), and minimum and maximum (error bar) probability for each age group 0 − 18, 19 − 49, 50 − 64, 65 − 79, 80+, under each

risk model. (a) Range of the probabilities of ICU admission given hospitalization across each risk profile, dPtðQjHÞ , summarized for each age group. (b)

Range of the probabilities of death given ICU admission across each risk profile, dPtðDjQÞ , summarized for each age group. (c) Range of probabilities of

disease stage progression for the three models dPtðHjIÞ , dPtðQjHÞ , and dPtðDjQÞ across all risk profiles within each age group.

https://doi.org/10.1371/journal.pone.0253549.g005
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marking the end of deaths from the third wave, the IFRq,t for 19 − 49 remained the same. For

ages 50 − 64 on May 15, 2020, median IFRq,t ranged from 0.14% (0.075%, 0.23%) to 1.9%

(1.0%, 3.14%); these values remained approximately constant through March 1, 2021. For ages

65 − 79 on May 15, 2020, median IFRq,t ranged from 1.25% (0.65%, 2.04%) to 7.7% (4.02%,

12.6%); the minimum and maximum median IFRq,t values decreased to 0.90% (0.48%, 1.41%)

and 4.22% (2.23%, 6.65%), respectively, by March 1, 2021. For ages 80+ on May 15, 2020, the

IFRq,t ranged from 6.5% (3.4%, 10.7%) to 18.3% (9.5%, 29.9%) but by March 1, 2021, had

dropped to 3.5% (1.9%, 5.5%) and 8.3% (4.4%, 13.3%), respectively.

Fig 6. a-b: Range of CFRq,t and IFRq,t values taken on by risk profiles within each age group. Each figure shows the mean (as a point), and minimum

and maximum (error bar) of the median CFRq,t and IFRq,t for each age group 0 − 18, 19 − 49, 50 − 64, 65 − 79, 80+. c-d: Median (line) and 95% CI

(shading) of the CFRq,t and IFRq,t of the most-populous risk profiles for each age group. (a) Range of CFRq,t taken on by risk profiles within each age

group. (b): Range of IFRq,t taken on by risk profiles within each age group. (c) CFRq,t of the most-populous risk profile for each age group. (d) IFRq,t of

the most-populous risk profile for each age group.

https://doi.org/10.1371/journal.pone.0253549.g006
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We also plot the estimated median and the 95% CI for the most prevalent risk profile within

each age group in Fig 6c and 6d, to compare with the extremes presented in Fig 6a and 6b. The

CI for the IFRq,t are wider than for the CFRq,t, since the former account for uncertainty in the

infection observation rate, rt. Although wide, the CI are non-overlapping between the most-

prevalent profiles for each age group visualized in the figures.

3.5 Frequency of risk factor groups at each stage of disease

Fig 7 shows the model estimated frequency of risk factor groups (age groups, obesity class

groups, any comorbidity, and smoking) in the population of individuals in each stage of dis-

ease (infected, hospitalized, admitted to ICU, and deceased), compared with their frequency in

the overall LAC population at two week intervals from May 15, 2020 through March 1, 2021.

The figure illustrates the effect of each risk factor on its frequency in the population at each

stage of disease. Age greater than that of the reference of 19 − 49 years has the largest effect on

Fig 7. Estimated frequency of risk factor groups in the overall LAC population, and the distribution of individuals in each stage of disease from

infected, hospitalized, admitted to ICU, to deceased at two week intervals from May 15, 2020 through March 1, 2021. (A) age group, (B) any

comorbidity group, (C) obesity class group, and (D) smoking status group.

https://doi.org/10.1371/journal.pone.0253549.g007
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each probability of disease progression and the most apparent increase in frequency at each

stage of disease. Both comorbidities and obesity have a much larger effect on the probability of

hospitalization given infection than death given hospitalization, which corresponds to a large

increase in the proportion of individuals with comorbidities and obesity in the infected popu-

lation and hospitalized populations, but little difference between the hospitalized, in-ICU, and

deceased population. Smoking shows the smallest effect overall out of all risk factors, in part

because this risk factor is infrequently represented in the risk profiles more prevalent in the

infected population.

Most notably, Fig 7a makes apparent the decrease in the frequency of higher age groups in

the infected population between the first and third epidemic waves, and the effect this change

had on the composition of the hospitalized, in-ICU, and deceased populations. For example,

individuals 80+ show a steep increase in the fraction of the population progressing to each

stage of disease; between May 15, 2020 (marking the end of deaths that could have come from

the end of the first epidemic wave), and March 1, 2021 (marking the end of deaths that could

have come from the third wave), the observed frequency of individuals 80+ in the infected

population decreased from 10% to 3% and the prevalence of this group in the hospitalized pop-

ulation changed from 25% to 12.5%, in the in-ICU population from 50% to 35%, and in the

deceased population from 65% to 40%. Meanwhile, individuals aged 19 − 49 show a steep

decrease in the fraction of the population as disease stage progresses; increasing from 50% to

62% of the infected population, 24% to 36% of the hospitalized population, 7% to 12% of the

in-ICU population, and 2% to 6% of the deceased population between May 15, 2020, and

March 1, 2021.

4 Discussion

This work has developed a framework for using available data on COVID-19 epidemic dynam-

ics and prevalences of COVID-19 risk factors at the population level to estimate time-varying

subpopulation-stratified probabilities of disease progression and CFR and IFR during three

epidemic waves in Los Angeles County from March 1, 2020, through March 1, 2021. In the

absence of individual-level data, the technical contribution of this work was to integrate a

dynamic epidemic model with a risk modeling approach to estimate conditional effects from

available marginal data and to subsequently produce time-varying subpopulation-stratified

estimates for LAC. To reflect the uncertain knowledge of many parameters and the under-

standing that in non-linear systems small variations to specific parameters can result in large

impacts in outputs [37], we account for uncertainty in all results through the use of a stochastic

epidemic model and a Bayesian approach to parameter estimation. The epidemic modeling

framework produces estimates with confidence intervals of the population-wide reproductive

number, case observation fraction, probabilities of disease progression, and CFR and IFR. On

its own, the risk model estimates the conditional effects of each risk factor and therefore the

overall effect of risk factors in combination. These adjusted effects have not been typically

reported in observational studies on COVID-19, yet help to understand more precisely what

subpopulations are at highest risk of advancing to each stage of disease. Integration of the risk

model with the epidemic model allows the comparison of dynamic outcomes and parameters

across the overall population, age groups, and more fine-grained subpopulations in LAC rep-

resenting age and combinations of other risk factors for severe COVID-19 illness. Such fine-

grained results can be useful in understanding disparities in the effect of the epidemic on dif-

ferent groups in LAC, and can inform studies involving targeted subpopulation-level policy

interventions [16].

PLOS ONE Risk-stratified COVID-19 outcomes for Los Angeles County: March 1, 2020—March 1, 2021

PLOS ONE | https://doi.org/10.1371/journal.pone.0253549 June 24, 2021 19 / 25

https://doi.org/10.1371/journal.pone.0253549


We focus our modeling framework on the risk factors age, comorbidities, obesity, and

smoking status as these demographic and medical conditions have consistently been identified

across various studies as factors inducing the probability of progressing to severe illness given

COVID-19 infection [8]. We do not include race/ethnicity as a factor, because although

strongly predictive of the risk of overall mortality from COVID-19 [17], it has been shown that

increased exposure risk and not race per se explains racial disparities in COVID-19 health out-

comes [38, 39].

Analyses demonstrate that the risk of severe illness and death from COVID-19 infection

have decreased over time and moreover vary tremendously across subpopulations represent-

ing combinations of the four modeled risk factors, which we call risk profiles, suggesting that it

is inappropriate to summarize epidemiological parameters for the entire population and epi-

demic time period. This includes variation not only across age groups, but also within age

strata combined with other risk factors analyzed in this study. The highest IFR for each age

strata come from profiles including comorbidities, obesity Class 2 or 3, and current smoking

status. The factor differential between the risk profiles with highest and lowest IFR within each

age strata decreases with age. At the end of the first epidemic wave, we find median IFR rang-

ing from 0.01% to 0.27% across risk profiles for the age group 19 − 49, an almost 30-fold differ-

ence; ranging from 0.14% to 1.9% across profiles within age group 50 − 64, a 14-fold

difference; from 1.25% to 7.7% for ages 65 − 79, a 6 fold difference; for ages 80+, the range was

from 6.5% to 18.3%, a 3-fold difference.

Our age-stratified IFR estimates during dates corresponding to the first and second epi-

demic waves in LAC (May—October, 2020) are comparable to those found in recent notable

reviews and modeling studies including a meta-regression of seroprevalence data from 11

European countries and 12 U.S. locations [8], a study comparing mortality data from 45 coun-

tries with 22 seroprevalence studies [40], and a model-based analysis for estimating IFR during

in New York City’s large first epidemic wave (March—May, 2020) [10].

A feature of our IFR estimates for the higher age groups (65+) is that they decreased in the

third epidemic wave; median IFR for ages 65 − 79 ranged from 1.25% to 7.7% after the first

wave compared with 0.90% to 4.22% after the second wave; for ages 80+ the median IFR ran-

ged from 6.5% to 18.3% after the first wave and had dropped to a range of 3.5% to 8.3% after

the third wave. The decrease in IFR for the same profiles during the third wave may be

explained by three factors. First, the first and second waves were characterized by a large num-

ber of outbreaks in nursing homes/SNFs; it has been demonstrated that when high rates of

infection have occurred among nursing home residents, IFRs for the same age group (and the

overall population-average IFR) will be significantly greater then when cases in care-home-

aged populations have been in the general community due to greater frailty in care home pop-

ulations [40]. Second, there may have been improvements in medical treatment over the

course of the epidemic [41, 42]. Third, a limitation of our model-based analysis for older risk

strata is that we assume unobserved infections are equally distributed across all risk profiles,

whereas there are likely to be far fewer unobserved or asymptomatic infections for those at

higher risk of severe outcomes. For risk profiles including individuals age 65+, and for dates

during the third wave when the number of infections spiked especially among younger age

groups, our IFR may therefore be underestimated and the true values lie between IFR and CFR
estimates. For the most prevalent profile within age group 65 − 79, the CFR was 6.2% (95% CI:

4.2%, 9.3%), and for the most prevalent profile within age group 80+, the CFR was 21.7%

(14.9%, 32.3%). More generally, in interpreting our results for policy implications, emphasis

should be placed on the relative differences in IFR across risk profiles and the understanding

that the IFR for a specific age strata represents an average across a wide variation given the

presence or absence of other risk factors.
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Our overall IFR estimate for LAC at the end of the first epidemic wave of 1.11% (95% CI:

0.41%, 1.81%) is similar to the overall IFR estimated in the NYC study after the first large

wave, when only confirmed deaths are accounted for, of 1.10% [10]. IFR estimates at the end

of the second wave are equivalent to the global estimate of 0.5% as of September, 2020 coming

from the study by O’Driscoll et al. (2020) utilizing mortality and seroprevalence data across 45

countries [40]. The decrease in IFR between the first and second waves follows from the

decrease in the prevalence of populations aged 65+ in observed infections from approximately

23% on April 15, 2020 to 12% and lower as of July 15, 2020 [14], but may also reflect other

changes in the demographic composition of infected individuals including other at-risk sub-

populations for which stratified data in LAC is not available (e.g., individuals with comorbidi-

ties). The slight decrease in overall IFR at the end of the third wave of 0.32% (0.16%, 0.55%)

may reflect the decrease in age groups 65+ in the observed infected population from 12% on

July 15, 2020, to 10% on December 12, 2020, and a proportional increase in unobserved infec-

tions from younger age groups.

Our estimates may misrepresent the true IFR from COVID-19 in LAC because we account

only for underascertainment of infections and not of deaths [43, 44]. Although we assume that

the underascertainment of deaths is much lower than for infections, the percentage is likely to

have been the highest during the third wave given that the percentage of documented at-home

deaths increased from 4% in the first wave to 9% in the third wave (E. Garcia, personal com-

munication based on unpublished data from the state of California, April 20, 2021); this may

most affect estimates for older age groups in which unaccounted for deaths are likely to be the

highest [40, 45]. Even at the lowest overall IFR estimated for LAC, a key finding is that

COVID-19 is substantially more deadly than seasonal influenza, which has a population-aver-

age IFR of approximately 0.05% [8, 46].

A critical factor determining our IFR estimates is the fraction of cases that are detected, r(t).
We estimate that this was 19% (95% CI: 12%, 26%) in the first wave of the outbreak and had

stabilized to 50% (34%, 64%) in the late summer through the fall, following the peak of the sec-

ond wave. There is insufficient serological information for LAC to provide confirmatory evi-

dence behind these estimates, and CDC studies of serology carried out in various settings

throughout the USA (not including LAC) during the first epidemic wave vary from as low as

2.3% of infections observed to as high as 30% of infections detected [26]. An additional piece

of evidence that supports low detection rates is the low fraction of infections that seek medical

attention, since this informs how many infections are of at least moderate COVID. A recent

study has used serological studies, participatory surveillance systems, and mathematical

modeling to estimate the underdetection of infections in France and found that only 31% of

individuals with COVID-19-like symptoms consulted a doctor in the study period. Although a

different context, this result suggests that large numbers of symptomatic COVID-19 cases do

not seek medical advice and therefore many of these likely do not show up in the official regis-

ter of cases [47].

This study is prone to typical limitations occurring when modeling epidemiological dynam-

ics in the context of a rapidly evolving infectious disease outbreak. We model the major epi-

demic trends across the three waves using time-varying parameters, however this approach

does not enable capturing all of the complexity of the changing epidemic. Due to the model

specification and the concurrent estimation of multiple time-varying parameters, multiple

joint parameter solutions exist, resulting in multimodal posterior distributions. We attempted

to address this by employing a two-step parameter estimation approach, first using broad grid

search to identify and choose a mode of a posterior distribution, and second using approxi-

mate Bayesian computation to identify the shape of the distribution around the chosen mode.

This process involved the use of “expert opinion” to guide the choice of parameters towards
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most correctly representing the major trends and peaks at each epidemic wave, at the expense

of accurately capturing deviations from the major trendlines.

Data informing the conditional effect estimates within the risk model were therefore aggre-

gated across early, large, retrospective studies from China (for comorbidities and smoking) [3]

and NYC (for BMI) [2] on the fractions of hospitalization, ICU admission, and death by indi-

vidual risk factors. We chose these studies due to the limited body of research reporting mar-

ginal or conditional risk effects for the same cohort across the three modeled stages of disease

progression, returned by a Pubmed search at the start of this study. While we attempt to

reframe these results for the demographic composition of the LAC population through

regional data on the prevalence of risk factors and the correlation structure between risk fac-

tors, there may be differences in the underlying study population or treatment setting between

China, NYC, and LAC that would lead to heterogeneity in effect estimates. However, we

believe that the estimates from the Chinese studies do represent population-based estimates as

these samples avoid some of the biases present from other potentially available studies, but

with highly selected samples.

While this work has focused on demonstrating the substantial heterogeneity in risk proba-

bilities and IFR across subpopulations, it employs a single-population epidemic model. LAC

is a large county consisting of many composing cities and communities, each with their own

epidemic processes unfolding at different rates [48]. Extreme disparities in infection inci-

dence and mortality have been observed for different communities within LAC. This includes

incidence rates up to 15 times higher in low-income neighborhoods in East LA with high per-

centages of essential workers than in affluent communities in West LA [14], and COVID

deaths as a proportion of the typical total deaths 11.6 times higher for young, foreign-born

Latinx than for young, U.S.-born, non-Hispanics (for California) [17]. These large differences

in infection incidence and death will undoubtedly translate into large differences in probabil-

ities of disease progression and IFR. However, at the time of beginning this study we did not

have the data to formally model subpopulation-specific probabilities of exposure or the data

on hospitalization and death counts for different groups necessary to fit the parameters of a

multi-population model. The approach we developed is a way to use commonly available

population-level epidemic timeseries data to model multiple groups in a single population,

and combine these population-level estimates with prevalence rates of risk factors to produce

stratified estimates for different subpopulations, specific to the region of LAC. This adaptive

approach allowed us to provide epidemic trends and risk estimates that informed the LAC

Department of Public Health and other decision-makers in real-time during the emerging

epidemic.

Future work will develop multi-population models that estimate subpopulation-strati-

fied probabilities of infection, of illness progression, and IFR, accounting for key risk fac-

tors of both exposure to infection and severe illness given infection. Risk factors for

exposure are not limited to age and health conditions, but also include more diverse socio-

economic factors including occupation and essential worker status, neighborhood of resi-

dence, housing overcrowding, multigenerational households, economic status, and access

to PPE [48–52]. In the meantime, the subpopulation-stratified estimates of disease progres-

sion and IFR produced using the framework presented here can be used to evaluate policy

decisions that may involve both population-wide interventions and interventions that tar-

get specific subpopulations at risk of developing severe illness given infection, for example

isolating or prioritizing vaccination for the elderly or those with other health-related risk

factors [16].
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