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Background

Unsupervised clustering methods [1-4] are integral to most single-cell RNA-
sequencing (scRNA-seq) analysis pipelines [5], as they can reveal distinct cell pheno-
types. Importantly, all existing clustering algorithms have adjustable parameters that
have to be chosen carefully to reveal the true biological structure of the data. If the
data is over-clustered, many clusters are driven purely by technical noise and do not
reflect distinct biological states. If the data is under-clustered, subtly distinct pheno-
types might be grouped with others and will thus be overlooked. Furthermore, most
analysis pipelines rely on qualitative assessment of clusters based on prior knowledge,
which can hinder the discovery of new phenotypes.

To assess the quality of a clustering quantitatively and help choose optimal parame-
ters, some measures of clustering quality and clusterability have been proposed [6, 7],
most of which are not directly applicable to scRNA-seq data. For example, some exist-
ing methods rely on multimodality of the expression matrix, which is not always justi-
fied for scRNA-seq data, especially when considering highly dynamic systems. Other
methods have input parameters, such as the optimal number of dimensions for dimen-
sionality reduction, that cannot be easily determined. Also, general methods do not ex-
plicitly account for uninformative sources of variability, related to cell cycle
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progression or the stress response, for example, which can be important con-
founders. In the context of scRNA-seq, one of the most widely used measures is
the silhouette coefficient [8]. This measure requires the choice of a distance metric
to compute the similarity between cells. Notwithstanding its usefulness, it cannot
be excluded that a partition of random noise obtains a high silhouette coefficient,
indicating high clustering quality. Other measures based on distance metrics or the
fit of probability densities suffer from similar issues and often only provide binary
results instead of a quantitative score [7]. A different approach is pursued by
ROGUE [9], a recently developed tool to assess clustering quality specifically in
scRNA-seq data. ROGUE applies the concept of entropy on a per-gene basis to
quantify the mixing of cell types. While a clear improvement over existing
methods, ROGUE depends on a challenging step of selecting informative genes to
explain the differences between cell types. It also assumes a particular noise distri-
bution and requires the careful choice of an adjustable parameter.

Here, we present phiclust (¢.s), a new clusterability measure for scRNA-seq
data that addresses some of the shortcomings of existing methods. This measure is
based on the angle ¢ between vectors representing the noise-free signal and the
measured, noisy signal, respectively. We consider clusterability to be the theoretic-
ally achievable agreement with the unknown ground truth clustering, for a given
signal-to-noise ratio. (Below, we will describe in detail how we define “signal” and
“noise” in this context.) Importantly, our measure can estimate the level of achiev-
able agreement without knowledge of the ground truth. High clusterability (phiclust
close to 1) means that multiple phenotypic subpopulations are present and that
clustering algorithms should be able to distinguish them. Low clusterability (phi-
clust close to 0) means that the noise is too strong for even the best possible clus-
tering algorithm to find any clusters accurately. If phiclust equals 0, the observed
variability within a cluster is consistent with random noise. Any subclusters of such
a cluster still have a phiclust of 0, which prevents over-clustering of random noise.
Instead of assuming a certain noise distribution or relying on a selection of inform-
ative genes, our measure can be applied to arbitrary types of random noise and in-
cludes all genes in the analysis. This is made possible by certain universal
properties of random matrix theory (RMT) [10], which has been applied success-
fully in finance [11], physics [12] and recently also scRNA-seq data analysis [13].

Below, we will use results of RMT on the singular value decomposition (SVD) of a
single-cell gene expression matrix, where rows correspond to genes and columns cor-
respond to cells. To get an intuitive understanding of RMT, it is useful to first consider
the cell-cell correlation matrix, calculated from the gene expression profiles. We start
from the null hypothesis that the data does not contain any structure and is produced
by a random process. In the context of single-cell transcriptomics, “structure” means
multiple, distinguishable clusters of cells, or phenotypes. RMT can predict, what the
correlation matrix looks like, if the entries of the gene expression matrix are samples of
random variables that are independent and identically distributed. Trivially, the diag-
onal elements of this correlation matrix are all equal to 1. The off-diagonal elements
are not exactly 0, however, despite the absence of any meaningful structure in the data.
Only in the limit of measuring an infinite number of (random) genes would the off-
diagonal elements become identically 0, and the correlation matrix would become the
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identity matrix. In that case, the only eigenvalue of the correlation matrix is 1. RMT de-
scribes the properties of a correlation matrix for a finite ratio of cells and genes. These
correlation matrices are, in a sense, distributed “around” the identity matrix, which
corresponds to an eigenvalue spectrum distributed around 1. Although the individ-
ual entries of the correlation matrix fluctuate from realization to realization, RMT
shows that the eigenvalue spectrum is robust (a so-called “self-averaging” property)
and an analytical expression for it can be obtained [14]. Likewise, RMT predicts
that the singular value distribution of a purely random matrix is closely approxi-
mated by the Marchenko-Pastur (MP) distribution. This result holds true irrespect-
ive of the distribution of the random variable. This universal property of random
matrices allows us to apply RMT to gene expression matrices obtained by scRNA-
seq. Of course, any biologically interesting scRNA-seq measurement should contain
structure, usually in the form of cell clusters. RMT allows us to regard singular
values lying above the MP distribution as evidence for the rejection of the null hy-
pothesis (i.e., the absence of structure in the data). The MP distribution is charac-
terized by sharp upper and lower limits for the singular values of a random matrix
but is strictly valid only in the limit of infinite numbers of genes and cells (while
keeping the cell-gene ratio fixed). For finite matrices, the largest and smallest sin-
gular values are distributed around those sharp limits, which is described by the
Tracy-Widom distribution [15].

As explained above, the presence of structure manifests itself as singular values
above the MP distribution (i.e., the prediction for a purely random matrix). Quali-
tatively, the magnitude of those outlying singular values corresponds to the magni-
tude of the differences between clusters. We can understand this relationship, if we
assume that the measured gene expression matrix is the sum of a random matrix
(the “noise”) and a matrix of noise-free gene expression profiles (the “signal”); see
Fig. 1a. The bigger the difference in gene expression between phenotypes, the lar-
ger the magnitude of the non-zero singular values of the signal matrix. If the num-
ber of non-zero singular values (i.e., the rank of the signal matrix) is small
compared to the dimensions of the matrix, low-rank perturbation theory [16] is ap-
plicable. This theory allows us to calculate the singular values of the measured
gene expression matrix from the singular values of the signal matrix. Remarkably,
knowledge of the complete signal matrix is not required for this calculation.

phiclust is meant to help identify non-random (or deterministic) structure. At
the level of a complete data set, for example of a complex tissue, clusters are typ-
ically easily discernible. However, if we zoom in on a single cluster, it is much
more difficult to decide, whether the variability within that cluster corresponds to
meaningful sub-structure (such as the presence of multiple phenotypes) or is con-
sistent with random noise. Below, we will precisely define a notion of clusterability,
based on the adjusted rand index, and show that it strongly correlates with phi-
clust. Furthermore, we will demonstrate that our measure compares favorably to
the silhouette coefficient and ROGUE on simulated data and experimental data sets
with known ground truth. (See Table S1 for a list of all used simulated and experi-
mental data sets.) Finally, we will apply phiclust to scRNA-seq measurements of
complex tissues and obtain new biological insights, which we validate with follow-

up measurements.



Mircea et al. Genome Biology

(2022) 23:18

b Low signal-to-noise example

a measurement noise signal ® Cluster 1
(gene expression, (random matrix, (expression profiles,
® Cluster2
observed) unobserved) unobserved)
® Cluster3
i Vi‘ . sub-clusters Cluster 4
are present
. Cluster 5
] H
QO - o +
o
E!."! ¥
| S=lE %
T H
! i
(3] MP distribution / v High signal-to-noise example
/
TW threshold [
= !
3
g 9 1
s
£ pure pure
noise signal

phiclust
ol = 008%()

_d

Singular values

0 1 2 3 4
Singular Values
d == PBMC cell type mixture: varying proportions

c
Simulated data: varying fold change
Low signal-to-noise example
== Simulated data: varying fraction of DE genes
High signal-to-noise example 1.00
o L ) PBMC & a
s
075 &f
08 9 5
J B
1 % CD14+Mono o
408 2050 ® cDsT g
E [ & ® nc 5
o4 | FCGR3A+ Mono ~ umap 1
o5 Memory CD4 T
cell to gene ratio : Naive CD4 T
02 | 05 NK
‘\ 2 ® Platelet
0.0 : 0.00
0.0 25 5.0 75 10.0 0.00 025 0.50 075 1.00
Largest singular values tARI
e Mixtures f Input RNA [pg] g
0.33-0.33-0.33 ® 375 75 15 @ 30
® 1-0:0(al) 0a o
0.68-0.16-0.16 (b1) #
01 /,
o ® 0-1-0(a2) oe _ o2 >,
g . _ o~ 5 -
3 & » 0.16-0.68-0.16 (b2) 5 01 301 >
2 - 4 k! s e
5 ® 0-0-1(a3) g 5 y
S 2 00 S 00 > 3
2 & 0.16-0.16-0.68 (b3) g 2 P
@00 201 @ 0.1 #
i Ve [} P 4
o %. y
o g fro; 02 02] »
at 2 03 0.14 0.15 0.16
Normalized total counts

02 01 00 01 02 03
Singular vector 1

-0.10 -0.05 0.00 0.05 0.10
Singular vector 1

Fig. 1 Phiclust is a proxy for the theoretically achievable adjusted rand index (tARI). a Scheme illustrating
the rationale behind phiclust. b Singular value distributions of simulated data sets with 5 clusters and
different levels of noise; Red: low signal-to-noise, Green: high signal-to-noise. The MP distribution is
indicated by a solid blue line, the TW threshold is indicated by a red solid line, and significant singular
values are highlighted with asterisks. Inserts show UMAPs of the data. The data set with a higher signal-to-
noise ratio has more significant singular values and those singular values are bigger. ¢ Value of the largest
singular value versus for simulated data. Arrows indicate where the examples from b are located. The
relationship between the largest singular values and phiclust only depends on the dimensions of the
expression matrix. Simulations with different cell-to-gene ratios are shown in different colors. d Phiclust
versus theoretically achievable ARI (tARI). Red data points: simulated data sets with two clusters. The
number of differentially expressed (DE) genes was varied; the log fold change between clusters was fixed.
Green data points: simulated data sets with two clusters. The mean log fold change between clusters was
varied; the number of differentially expressed genes was fixed. Blue data points: two synthetic clusters were
created by weighted averages of cells from two clusters in the PBMC data set. Cluster weights were varied.
The grey dashed line indicates identity. Inset: UMAP of PBMC data set with the two clusters used indicated
by red solid circles. e scRNA-seq of mixtures of RNA extracted from three different cell lines. Each data point
is a mixture. For each mixture, the entries of the first two singular vectors are plotted. Colors indicate
different ratios of contributions from the three cell lines. f First two singular vectors of the cluster indicated
by a black solid ellipse in e. The amount of mRNA per mixture [pg] is indicated in color. g Normalized total
counts per mixture versus first singular vector of the cluster shown in f. Linear regression (dashed line) is
used to regress out the correlation with the total counts. Grey area indicates standard deviation
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Results

Phiclust is derived from first principles and does not have free parameters

To derive phiclust, we considered the measured gene expression matrix as a random
matrix perturbed by the unobserved, noise-free gene expression profiles (Fig. 1a). This
is the exact opposite of the conventional approach, which considers random noise as a
perturbation to a deterministic signal. Note that, in our approach, the random matrix
contains both the biological variability within a phenotype as well as the technical vari-
ability (which is due to limited RNA capture and conversion efficiency, for example).
Our point of view allows us to leverage well-established results from RMT [13, 17] and
perturbation theory [16].

Figure S1 illustrates the basic principles that were applied to derive phiclust. RMT
predicts that the SVD of a random noise matrix results in normal distributed singular
vectors and a distribution of singular values that is closely approximated by the MP dis-
tribution, if the matrix is large enough (Additional file 1: Fig. Sla, left column). Here,
we consider the noise-free gene expression profiles of the cells in various phenotypes,
as the “signal” that perturbs the random matrix and thus its singular value distribution.
Since biological and technical variability are lumped into the random matrix, expres-
sion profiles are identical for cells that belong to the same phenotype. For example, in
the case of two distinct phenotypes, the signal matrix has only one non-zero singular
value (Additional file 1: Fig. S1a, middle column). The observed (or measured) gene ex-
pression matrix is obtained as the sum of the random noise matrix and the noise-free
gene expression profiles (Additional file 1: Fig. Sla, right column). The singular value
distribution of the measured expression matrix has exactly one singular value above the
upper limit that the theory predicts for a purely random matrix, the Tracy-Widom
(TW) threshold. The outlying singular value and its associated singular vector corres-
pond to the deterministic component of the measured expression matrix. The distribu-
tion of the remaining singular values (the “bulk”) is still closely approximated by the
MP distribution. Importantly, as the perturbation becomes larger, the value of the out-
lying singular value also increases (Additional file 1: Fig. S1b). A larger perturbation
means more distinct and therefore more easily clusterable phenotypes (compare the
singular vectors in the middle row of Figs. Sla and b). The basic idea of phiclust is to
use the magnitude of the outlying singular values to quantify clusterability.

Due to the universality of RMT, all described principles are independent of the par-
ticular noise distribution (see Additional file 1: Fig. Sla-b for normal distributed noise
and Additional file 1: Fig. Slc-d for Poisson distributed noise). SVD of appropriately
preprocessed real data sets therefore leads to singular value distributions with the same
shape as obtained in simulations: a bulk closely approximated by the MP distribution
and one or multiple outlying values. We found that data preprocessing has to comprise
normalization and log-transformation, as well as gene-wise and cell-wise scaling (Add-
itional file 1: Fig. S2a-d). SVD of raw data or log-transformed, normalized data typically
results in a largest outlying singular value that is much larger than all others (Add-
itional file 1: Fig. S2a,b). The corresponding singular vector reflects a global trend in
the data and is called “market mode” in the context of stock market analysis [11, 18].
Here, we call it “transcriptome mode”, since it corresponds to an expression trend that
is present across all cells, irrespective of cell type (such as, for example, high expression
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of particular cytoskeletal genes or essential enzymes and low expression of certain
membrane receptors or transcription factors). The transcriptome mode is obviously not
informative for clustering. Scaling shifts its singular value to 0, which effectively
removes it from further analysis (Additional file 1: Fig. S2c,d). We tested for all data
sets used in this study, whether the bulk of the singular value distribution of each clus-
ter deviates significantly from the MP distribution after the described preprocessing
(Kolmogorov-Smirnov test, Additional file 1: Fig. S2e). For reasonably large clusters (>
50 cells), we only found one example of a (marginally significant) deviation from the
MP distribution.

We next wanted to confirm, for real data, that the remaining outlying singular values
reflect the strength of the signal, i.e., differences between the phenotypes. To that end,
we extracted the gene expression profiles from two clusters in an experimental single-
cell RNA-seq data set and added, as additional signal, a matrix with one non-zero sin-
gular value. As to be expected, SVD of the combined data results in one additional sin-
gular value, which increases with the strength of the perturbation (Additional file 1:
Fig. S2f-g). See Table S2 for a list of all outlying singular values of experimentally mea-
sured expression matrices as well as the corresponding signal matrices. All in all, these
tests show that the basic principles of random matrix theory and perturbation theory
are applicable to real single-cell RNA-seq data.

So far, we have shown that the values of the outlying singular values are, qualitatively,
related to the differences between phenotypes. However, their magnitudes are difficult
to interpret. Phiclust is derived from the outlying singular values and can be interpreted
as a measure of clusterability, as we will show in the next section. More specifically,
phiclust is defined as the squared cosine of the angle between the leading singular vec-
tor of the measured gene expression matrix and the corresponding singular vector of
the unobserved, noise-free expression matrix. Low-rank perturbation theory is able to
predict this angle using only the dimensions of the measured gene expression matrix
and its singular values, but without knowledge of the noise-free expression profiles. See
Additional file 2 for a detailed derivation. If the noise level is low compared to the sig-
nal, this angle will be small, since the measured gene expression matrix is then very
similar to the noise-free signal. This would result in phiclust close to 1. As the level of
noise increases, for a fixed signal, the singular vectors of the measured expression
matrix and the noise-free signal become increasingly orthogonal and phiclust ap-
proaches 0. To illustrate the calculation of phiclust, we simulated data sets with realistic
noise structure using the Splatter package [19] (Fig. 1b,c). As to be expected, increasing
the number of genes that are differentially expressed between clusters makes the clus-
ters more easily separable and leads to larger singular values outside of the MP distri-
bution (Fig. 1b). By construction, this results in higher values of phiclust (Fig. 1c).
Please refer to Table S2 for the numerical values of the outlying singular values in the
simulated expression matrices as well as the corresponding signal matrix.

We would like to stress at this point that phiclust is derived from universal properties
of perturbed random matrices, which can be considered first principles. By contrast,
many other measures are developed based on empirical observations and justified post
hoc by their usefulness. Phiclust is calculated using only the SVD and the dimensions
of the expression matrix. Thus, it does not have any free, adjustable parameters, which
would have to be chosen by the user or learned from the data.
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Phiclust is a proxy for clusterability

To show that phiclust is a proxy for clusterability, we have to make the concept of clus-
terability more precise and quantifiable. We adopted the Adjusted Rand Index (ARI)
[20] as a well-established measure for the agreement between an empirically obtained
clustering and the ground truth. Next, we will argue that perfect agreement with the
ground truth (ARI = 1) is not achievable in the presence of noise, even with the best
conceivable clustering algorithm.

Take, for instance, the simplest possible case of two cell types, A and B. Without any
noise (technical or biological), expression profiles within a cell type are identical and
the data can be clustered perfectly. Correspondingly, the singular vector of the expres-
sion matrix has only two different entries (Additional file 1: Fig. S3a, left). Therefore, it
is easy to find a threshold that discriminates between the two cell types. In the presence
of noise, however, there is a chance that the measured expression profile of a cell from
cell type A looks more like cell type B and is therefore clustered with other cells from
cell type B and vice versa. Correspondingly, the entries of the singular vector are now
spread by the noise and can overlap (Additional file 1: Fig. S3a, right). Even if we use
the best possible threshold to discriminate between the two cell types, some cells will
be necessarily misclassified, if the distributions overlap.

This type of error is unavoidable (or irreducible) and known as Bayes error rate [21]
in the context of statistical classification. From the overlap of the singular vector en-
tries, we can calculate the Bayes error rate or, equivalently, a theoretically achievable
ARI (tARI, see also Additional file 2). Of course, this is only possible for data with
known ground truth. We first used simulated data to show empirically that commonly
used clustering methods are not able to exceed the tARI (Additional file 1: Fig. S3b,c).
It therefore quantifies our notion of clusterability: With increased noise, tARI decreases
and it is more challenging even for the best conceivable clustering algorithm to distin-
guish the difference between phenotypes. Importantly, phiclust is strongly correlated
with the tARI (Fig. 1d) and thus allows us to estimate clusterability without knowing
the ground truth.

So far, we have assumed additive noise (i.e., the measured gene expression is the sum
of a random matrix and the noise-free expression matrix). Low-rank perturbation the-
ory also makes a prediction for multiplicative noise (i.e., the measured gene expression
is the product of a random matrix and the noise-free expression matrix). In that case,
phiclust still scales approximately linearly with the tARI, but its dynamic range depends
somewhat on the cell-to-gene ratio (Additional file 1: Fig. S3d). To our knowledge, the
noise generating mechanisms at work in scRNA-seq have not been pinpointed compre-
hensively. Therefore, we will continue to assume additive noise, noting that our ap-
proach can be easily adapted to multiplicative noise.

To test the relationship between phiclust and the tARI in experimentally measured
data, we used an scRNA-seq data set of peripheral blood mononuclear cells (PBMCs)
[22]. We chose two very distinct cell types and created new clusters as weighted, linear
combinations of expression profiles from the two cell types. This approach allowed us
to precisely control the difference between the newly created clusters, while maintain-
ing the experimentally observed noise structure (Additional file 1: Fig. S3e). Also for
this data, phiclust strongly correlates with the tARI (Fig. 1d). As an alternative to the
tARI, we also calculated the theoretically achievable silhouette coefficient [8] (tSIL),
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which considers the distances between the best possible clusters (Additional file 1: Fig.
S4 a-c). For a large range of simulation parameters, the tSIL has a smaller dynamic
range than the tARI, which makes it less useful overall for assessing clusterability. In
contrast to phiclust, ROGUE [9] does not show collinearity with the tARI (Additional
file 1: Fig. S4d). Therefore, ROGUE seems to implement a notion of clusterability that
is distinct from our point of view.

Confounder regression removes unwanted variability

To further characterize the performance of phiclust on experimental data sets with
known ground truth, we used a measurement of purified RNA from 3 cell types, mixed
at different ratios [23] (Fig. le). We noticed a significant correlation between the
amount of input RNA and the entries of the first singular vector of individual clusters
(Fig. 1f). This might be explained by lowly expressed genes not being well-represented
in the low-input libraries and the resulting differences in the expression profiles. In any
case, the amount of input RNA seemed to be a confounding factor that could lead to
high values of phiclust, even in the absence of meaningful subclusters. Correspondingly,
we found a correlation between the singular vector entries and the number of total
counts, despite normalization of the data (Fig. 1g). This is consistent with the finding
that total counts are a confounding factor in scRNA-seq data that cannot be eliminated
by normalization using one single scaling factor per cell [22, 24]. Different groups of
genes scale differently with the total counts per cell. Therefore, a correlation with the
total counts remains even after normalization.

More generally, there are various experimental and biological factors that drive arte-
factual or irrelevant variability in single-cell RNA-seq data [22, 25]. We therefore intro-
duced a regression step that removes the influence of any nuisance variables, such as
the number of total counts per cell, ribosomal gene expression, mitochondrial gene ex-
pression, or cell cycle phase (see also Additional file 2). More specifically, we first re-
gress the entries of a singular vector on one or multiple confounders. The fraction of
variance explained by all confounder is then given by the adjusted R* (coefficient of de-
termination) of the linear regression. Since the squared singular values can also be
interpreted as the amount of variance explained, we correct them by multiplying with 1
— the adjusted R* found in the confounder regression. (See Table S2 for a list of the un-
corrected and corrected singular values for both simulated and experimental expression
matrices.) The corrected singular values are then used to calculate phiclust.

Interestingly, the relative influence of the confounders considered in this study varied
substantially between data sets (Additional file 1: Fig. S5a). For example, cell stress is a
relevant confounder only in the kidney data set. This is likely related to the cell dissoci-
ation procedure, which is necessarily more aggressive for kidney tissue, compared to
the other samples: bone marrow mononuclear cells (BMNCs) and purified RNA, ex-
tracted from cell cultures. Total counts and ribosomal gene expression explain most of
the artefactual variance in BMNCs. This might be explained by high variability in the
metabolic state of the cells. In Table S2 we list the R* values of each considered con-
founder for each cluster. For real scRNA-seq data sets, confounder regression can lead
to a significant reduction of phiclust (Additional file 1: Fig. S5b, see Table S2 for the
numerical values.) It is therefore an important part of the method.
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Confounder regression can also help to analyze data sets that are not made up of
regular clusters but contain irregularly shaped continua of gene expression. For ex-
ample, in developmental and stem cell biology, we commonly observe differentiation
paths, which are large clusters with gradually changing expression profiles. Uncorrected
phiclust values are high for such paths, which suggests meaningful subpopulations
(S5¢,d). Depending on the biological question, it might in fact be desirable to cluster
differentiation paths, for example, to separate a stem cell state from a differentiated cell
type. For other applications, it could be preferable to treat a differentiation path as one
cluster. In that case, we can use pseudotime approaches [26] to infer a temporal order
of the gene expression profiles and use the inferred pseudotime in the confounder re-
gression. If all observed variability is explained by developmental dynamics, phiclust is
reduced to 0 and thus no sub-clustering is suggested (S5c¢,d).

Phiclust has high sensitivity for the detection of sub-structure

After correction for unwanted variability, we compared the performance of phiclust
with other clusterability measures in the RNA mixture data set (Fig. le). Phiclust
successfully indicated the presence or absence of subclusters for all tested combi-
nations of the 7 original mixtures (Additional file 1: Fig. S6). By contrast, ROGUE
only indicated the presence of substructure when the merged clusters were very
clearly distinguishable (Additional file 1: Fig. S6 b,c). The silhouette coefficient was
qualitatively similar to phiclust but its dynamic range was much smaller (Add-
itional file 1: Fig. S6, middle row). This might become critical in the case of highly
similar phenotypes, which is precisely where phiclust might have an advantage. An
example for this can be seen in Additional file 1: Fig. S6b: the silhouette coeffi-
cients in the pure cluster are very similar to the merged clusters (which were com-
posed of two original clusters). To compare phiclust with the silhouette coefficient
in more detail, we carried out additional simulations (Additional file 1: Fig. S7).
First, we simulated 3 clusters and subsequently merged two of them. While phi-
clust clearly distinguished the merged cluster from the pure cluster, the silhouette
coefficients were similar for both. Increasing the fraction of genes that are differen-
tially expressed between the merged cluster increased the difference in silhouette
coefficient, but only gradually (Additional file 1: Fig. S7b). By contrast, phiclust
jumped to values close to 1 for the merged cluster for very small fractions of dif-
ferentially expressed genes (around 0.03). It is therefore the more sensitive meas-
ure. The silhouette coefficient strongly depends on the number of principal
components used in dimensionality reduction (Additional file 1: Fig. S7c), as well
as the metric for distances between expression profiles (Additional file 1: Fig. S7d).
Phiclust does not depend on such user-defined parameters. Most importantly, the
silhouette coefficient cannot answer the question, whether an identified cluster
contains meaningful substructure, as it requires partitioning into at least 2 sub-
clusters. We simulated a cluster without any substructure and all variability was
purely random (Additional file 1: Fig. S7e). The silhouette coefficient was maximal
for a k-means clustering with k = 2, which might prompt a user to conclude
(wrongly) that there are 2 sub-clusters present. Phiclust, which does not require
any further partitioning of the cluster, was 0, indicating correctly that the observed
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variability was consistent with random noise. All in all, these comparisons indicate
that phiclust is a sensitive measure, which detects differences between highly simi-
lar phenotypes.

Genes responsible for the detected substructure can be identified

In full analogy to the reasoning outlined so far, our approach can also be used to
characterize variability in gene space, for which we defined the conjugate measure g-
phiclust (see Additional file 2 for the derivation). Above, we considered only the right
singular vectors, where each entry corresponds to a cell in the data set. We therefore
also call them “cell-singular vectors.” In the simplest case of well separated clusters, en-
tries in the cell singular vectors indicate the membership of a cell in a cluster or a
group of clusters. For the left singular vectors, each entry corresponds to a gene. There-
fore, we also call them “gene-singular vector.” The squared cosine of the angle between
the leading gene-singular vector in the measured gene expression matrix and the corre-
sponding gene-singular vector of the noise-free signal matrix is g-phiclust. As for phi-
clust, data sets with higher signal-to-noise ratios are characterized by higher values of
g-phiclust (Additional file 1: Fig. S8a). “Signal” and “noise” are defined exactly as above:
“noise” is a random matrix and the “signal” is a low-rank matrix consisting of noise-
free expression profiles, where the strength of the signal (or difference between the
clusters) corresponds to the magnitude of the non-zero singular values. A g-phiclust
close to 0 would indicate that all observed differential gene expression can be explained
by random noise. Larger values of g-phiclust indicate less overlap of the gene expres-
sion profiles between phenotypes. We therefore expect to find a bigger number of sig-
nificantly differentially expressed (DE) genes and/or larger fold changes between
phenotypes. We confirmed by simulations that genes with larger absolute entries in a
gene-singular vector contribute more to the differences between the clusters separated
along the corresponding cell-singular vector (Additional file 1: Fig. S8b-d): For example,
if two clusters (A and B) are separated along a cell-singular vector and cells in cluster
A are characterized by positive entries, the genes with large positive entries in the cor-
responding gene-singular vector will be mostly expressed in cluster A. We call these
“variance driving” genes. Our approach thus not only identifies relevant substructure in
a cell cluster but can also reveal the genes responsible for it. In contrast to differential
expression tests, the variance driving genes can be obtained before clustering and might
help the user interpret the observed variability and make an informed decision on
whether it is useful to sub-cluster the data. If the variance driving genes have enriched
biological features (such as being involved in the same signaling pathway or cellular
function), we can take that as additional evidence for biologically meaningful sub-

population.

Application of phiclust to a BMNC data set drives the discovery of biologically
meaningful sub-clusters

The most important application of phiclust, in our opinion, is to prioritize clusters for
further sub-clustering and follow-up studies. For a complex tissue with dozens of clus-
ters, it is not feasible to sub-cluster all of them and try to validate all resulting subpopu-
lations. This is particularly inefficient, if many subclusters are in fact just driven by
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random noise. High values of phiclust nominate those clusters that likely have deter-
ministic structure and are therefore worthwhile to be scrutinized experimentally in

more detail.

To demonstrate the application of phiclust and g-phiclust, we analyzed scRNA-seq
measurements of complex tissues. In a data set of bone marrow mononuclear cells
(BMNCs) [27], we calculated phiclust for the clusters reported by the authors (Fig.
2a,b). For all clusters, except the red blood cell (RBC) progenitor cluster, the bulk of
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Fig. 2 Application of phiclust to a BMNC data set drives the discovery of biologically meaningful sub-
clusters. a UMAP of BMNC data set. b Phiclust for the BMNC data set. Error bars indicate the uncertainty
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the singular value distribution was well-described by the MP distribution. (In the RBC
progenitors, we found several singular values below the lower limit of the MP distribu-
tion. These outliers did not influence the further analysis since we are only interested
in singular vectors above the upper limit.) The first cell-singular vectors of all clusters
were significantly correlated with several confounding factors (see Fig. 2d for RBC pro-
genitors and Fig. 2e for MAIT cells). After correction for these confounding factors,
phiclust corresponded well with a visual inspection of the cluster UMAPs (Fig. 2b):
Where obvious clusters were present, phiclust was highest, while homogeneous,
structure-less clusters resulted in a phiclust of 0. Reassuringly, many progenitor cell
types received a high phiclust (indicating possible substructure) in agreement with the
known higher variability in these cell types. Ranking existing clusters by g-phiclust re-
sulted in a very similar order (Additional file 1: Fig. S9a).

To confirm the presence of relevant substructure, we subclustered the two original
clusters with the highest phiclust (Additional file 1: Fig. S9 b-e). In the RBC progeni-
tors, we identified 4 subsets that correspond to different stages of differentiation, ran-
ging from erythroid precursors to highly differentiated RBCs, as identified previously
[28]. In the dendritic cell (DC) progenitor cluster, two subclusters were identified,
which correspond to precursors of classical or plasmacytoid DCs, respectively [29]. For
both examples, the variance-driving genes found in the gene-singular vectors were lo-
calized to their corresponding clusters (Additional file 1: Fig. S9 c,d) and overlapped
strongly with differentially expressed genes found after subclustering (see Table S3).

Phiclust reveals subpopulations in a fetal human kidney data set that can be confirmed
experimentally
As a second example of our approach, we analyzed a fetal human kidney data set we
published previously [30]. In our original analysis, we were forced to merge several
clusters, since we were unsure if the observed variability was just noise. We hence
wanted to use phiclust to find previously overlooked subpopulations. As for BMNCs,
phiclust corresponded well with a qualitative assessment of cluster variability (Fig. 3a):
Clusters with visible sub-clusters had the highest values of phiclust. Ordering the clus-
ters by g-phiclust resulted in a similar ranking as phiclust (Additional file 1: Fig. S10a).
Subclustering of the cluster with the highest phiclust, ureteric bud/collecting duct
(UBCD), revealed a subset of cells with markers of urothelial cells (UPKIA, KRT?7) (Fig.
3b, Additional file 1: Fig. S10b-e). Immunostaining of these two genes, together with a
marker of the collecting system (CDH1), in week 15 fetal human kidney sections con-
firmed the presence of the urothelial subcluster (Fig. 3c, Additional file 1: Fig. S11a).
Another cell type we did not find in our original analysis, are the parietal epithelial
cells (PECs). They could now be identified within the SSBpr cluster (S-shaped body
proximal precursor cells) (Fig. 3b, Additional file 1: Fig. S10b-e). To reveal these cells
in situ, we stained for AKAP12 and CAV2, which were among the top differentially
expressed genes in this subcluster (Table S4), together with CLDNI1, a known marker
of PECs, and MAFB, a marker of the neighboring podocytes (Fig. 3d, Additional file 1:
Fig. S11b). Next to the PECs and proximal tubule precursor cells, SSBpr also contained
a few cells that were misclassified in the original analysis, indicating the additional use-
fulness of phiclust as a means to identify clustering errors.
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Further analysis of a cluster of interstitial cells (ICa) revealed multiple subpopulations
(Fig. 3b, Additional file 1: Fig. S10b-e). Immunostaining showed that a POSTN-positive
population is found mostly in the cortex, often surrounding blood vessels, whereas a
SULT1E1-positive population is located in the inner medulla and papilla, often sur-
rounding tubules (Fig. 3e, Additional file 1: Fig. S11c). CLDN11, another gene identified
by analysis of the gene-singular vectors (Additional file 1: Fig. S10b-e), was found
mostly in the medulla, but also in the outermost cortex. A more detailed, biological in-
terpretation of the results can be found in Additional file 3.

Discussion

Here, we presented phiclust, a clusterability measure that can help detect subtly differ-
ent phenotypes in scRNA-seq data. Universal properties of the underlying theory make
it possible to apply phiclust to arbitrary noise distributions, and the noise can be addi-
tive or multiplicative. Empirically, we find that the bulk of the singular value distribu-
tion of measured expression matrices is well-approximated by the MP distribution.
This supports the assumption that the noise is generated by independent and identi-
cally distributed random processes.

While most of the technical and biological noise can likely be considered random,
there are also known systematic errors and unwanted, confounding factors (such as the
efficiency of RNA recovery, cell cycle phase etc.) Therefore, regressing out uninforma-
tive, deterministic factors, is an important part of the method.

The approach underlying phiclust also allows us to identify the genes that are most
relevant for the biological interpretation of the observed variability. We found these
genes to overlap strongly with differentially expressed genes identified after sub-
clustering. The g-phiclust measure, a conjugate to phiclust, quantifies how distinguish-
able the expression profiles of different phenotypes are in the presence of noise.

The most important application of phiclust is the nomination of clusters for sub-
clustering and subsequent experimental validation. All clusters that were nominated in
the fetal kidney data set turned out to have subpopulations that could be validated by
experiments: rare urothelial cells, which differ from nearby clusters in only a few genes;
PECs and subtypes of interstitial cells, which had distinct spatial distributions.

There are several other methods that attempt to detect the presence of meaningful
information in single-cell RNA-seq data. Below, we will compare phiclust to some of
the most popular examples: the silhouette coefficient, ROGUE, robust PCA, the dip
test, and ZINB-WaVE.

The silhouette coefficient is a popular tool to assess clustering quality. In contrast to
phiclust, this coefficient requires a (sub-)clustering, and it cannot be used to decide,
whether a cluster contains meaningful variability and should be sub-clustered further.
As demonstrated, using the silhouette coefficient can lead to over-clustering of random
noise as well as missing the presence of subtly different phenotypes. Likewise, phiclust
appeared to be more sensitive than ROGUE, an entropy-based clusterability measure.
Both ROGUE and the silhouette coefficient do not scale linearly with the tARI, which
we introduced as an upper limit to the achievable agreement of an empirical clustering
with the ground truth.

Robust PCA [31, 32] decomposes a measured expression matrix into a sparse compo-
nent and a low-rank component. Under the assumption that noise is sparse, the sparse
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component is identified with random noise. In our opinion, there is no reason to as-
sume that the noise in scRNA-seq data is sparse or sparser than the measured expres-
sion matrix itself. Likely, every non-zero gene expression measurement was corrupted
by noise. Additionally, the remaining low-rank component cannot be identified as the
noise-free signal. It is fundamentally impossible to reconstruct the noise-free signal
from the measured expression because the noise is created by a random process. The
low-rank component is therefore only a (noisy) approximation of the noise-free signal.
Given the fundamental limit to signal reconstruction, the best thing we can do is quan-
tify the closeness between signal and measured expression, as implemented by phiclust.
In robust PCA, the low-rank matrix is often further subjected to dimensionality reduc-
tion, where it is difficult to determine the correct number of dimensions. phiclust does
not require any dimensionality reduction and uses all available data.

The dip test [7], a method aimed at detecting the presence of clusters, tests whether
there are multiple modes in the data. It can be applied directly to the distribution of
distances between expression profiles or a low-dimensional representation of the data,
such as principal component scores. The dip test will miss relevant variability, if it does
not manifest itself as separate modes, which can easily occur, for example in the case of
differentiation paths. It also just provides a binary result (modes present or not),
whereas phiclust is a continuous measure and does not require the presence of modes.

ZINB-WaVE [24] performs dimensionality reduction based on a zero-inflated nega-
tive binomial distribution and is similar to principal component analysis, if no add-
itional covariates are added to the model. ZINB-WaVE acknowledges the fact that
principal components are prone to correlate with nuisance parameters, even after
normalization. The problem is circumvented by adding such parameters as covariates
to the model, which is similar to the confounder regression used for phiclust. However,
the user has to decide the number of dimensions to use and currently there is no prin-
cipled way to determine the optimal number. phiclust does not have any such adjust-
able parameters.

Conclusion

We hope that this manuscript will bring renewed awareness to random noise as a fac-
tor that imposes hard limits on clustering and identification of differentially expressed
genes. We hope that quantitative measures of clusterability, such as phiclust, can play
an important role in making single-cell RNA-seq analysis more reproducible and
robust.

Methods

Preprocessing

Before applying the method to simulated or measured single-cell RNA-seq data sets,
several preprocessing steps are necessary. The raw counts are first normalized and log-
transformed. Next, the expression matrix is standardized, first gene-wise, then cell-
wise. These steps assure the proper agreement of the bulk of the singular value distri-
bution with the MP distribution (Additional file 1: Fig. S2). See also Additional file 2,
Section 3.1.
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Phiclust

To derive phiclust, we assume that the expression matrix X measured by scRNA-seq,
can be written as the sum of a random matrix X, which contains random biological
variability and technical noise, and a signal matrix P, which contains the unobserved
expression profiles of each cell:

X=X+P

Note that in this decomposition, cells that belong to the same cell type (or pheno-
type) have identical expression profiles in the signal matrix P. Below, we will show that
multiplicative noise can be treated analogously.

We apply SVD to obtain the singular values, as well as the right and left singular vec-
tors of X. The left singular vectors span gene-space and the right singular vectors span
cell-space. Hence, we call them gene-singular vectors and cell-singular vectors, respect-
ively. If we use the term “singular vector” it is implied to mean cell-singular vector.

Considering the signal matrix P a perturbation to the random matrix X, we can apply
results from both random matrix theory and low-rank perturbation theory. Random
matrix theory [33, 34] predicts that the singular value distribution of X is a
Marchenko-Pastur (MP) distribution [17, 18, 35], which coincides with the bulk of the
singular value distribution [11-13] of X . The singular values of X above the values pre-
dicted by the MP distribution characterize the signal matrix P. Since the agreement
with the MP distribution holds strictly only for infinite matrices, we use two additional
concepts to identify relevant singular values exceeding the range defined by the MP dis-
tribution. The Tracy-Widom [15, 35] (TW) distribution describes the probability of a
singular value to exceed the MP distribution, if the matrix is finite. Additionally, since
singular vectors of a random matrix are normally distributed, relevant singular vectors
have to be significantly different from normal [13]. To test for normality, we used the
Shapiro-Wilk test.

We apply low-rank perturbation theory [16] to calculate the singular values (6;) of P

from the outlying singular values (y;) of the measured expression matrix X :

2c
yi-(c+ 1)—\/(yi2—(c +1)) -4c

0:(v:) =

where c is the cell-to-gene ratio, i.e., the total number of cells divided by the total
number of genes.
The values of 0; are then used to obtain the angles a; between the singular vectors of

X and P. These angles are conveniently expressed in terms of their squared cosine as

c(l + Glz)

¢i = COS(C{,‘)Z = I—W

The leading singular vector of the measured expression matrix, which has the largest
singular value, has the smallest angle to its unperturbed counterpart. The squared co-
sine of this smallest angle is then used as a measure of clusterability:

Poust = cos(mi;fz,»ozi)2 = max; cos(oz,~)2 = max;p;, p,€[0, 1/2].

For a detailed derivation of phiclust, see Additional File 2, Sections 2.1-2.4.
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Uncertainty of phiclust

The uncertainties for the values phiclust are estimated using a sampling approach. The
basic idea is to approximate the signal matrix P and add new realizations of the noise
matrix by sampling from a random distribution. The uncertainty is then obtained from
the values phiclust calculated for this ensemble of sampled matrices. First, we decom-
pose a simulated or measured expression matrix X into a noise matrix X" and a matrix
X® that contains deterministic structure. X* is constructed from the relevant singular
vectors, which were identified as described in the previous section. Note that X* con-
tains noise and is thus different from the signal matrix P. To create an approximation
P of the signal matrix P, we replace the singular values y; used in the construction of
X* with the singular values 8; of P, calculated using low-rank perturbation theory as
shown in the previous section. The entries of the noise matrix X" have a mean of 0 and
a standard deviation of 1, as a result of preprocessing. Since the results of RMT are
valid irrespective of the particular noise distribution, we can create additional realiza-
tions of the noise matrix by sampling from a normal distribution with mean 0 and
standard deviation 1. By adding sampled noise matrices to the approximated signal
matrix P°, we can create an ensemble of matrices with the same singular value
spectrum as the original measured expression matrix but different realizations of the
noise. The uncertainty for positive and negative deviations from the mean is then calcu-
lated as the standard deviation for at least 50 sampled matrices. See Additional file 2,
Section 2.4.3 for a detailed description.

Test for deviation from the MP distribution

To validate the use of the MP distribution, we test whether the bulk of the measured
singular value distribution deviates significantly. Singular values are considered to be
part of the bulk, if they are located below the MP upper bound and not associated with
the transcriptome mode. We sample 1000 values from the MP distribution using the
RMTstat R package (V 0.3) and subsequently test for similarity with the Kolmogorov-
Smirnov test [36]. The resulting p values are adjusted for multiple hypothesis testing
with the Benjamini-Hochberg procedure [37].

Confounder regression

scRNA-seq data contains various confounding factors that drive uninformative variabil-
ity. These either emerge from technical issues (such as the varying efficiency of tran-
script recovery, which cannot be fully eliminated by normalization) or biological factors
(such as cell cycle phase, metabolic state, or stress). To account for these factors, a re-
gression step, inspired by current gene expression normalization methods [22, 25], is
included. We perform a linear regression by using each relevant singular vector as a re-
sponse variable and the confounding factors as covariates. This is a valid approach be-
cause the singular vectors of the measured expression matrix contain normal
distributed noise. The amount of variance explained by the nuisance parameters is then
given by the value of the adjusted R* (coefficient of determination) of this linear regres-
sion. To relate the regression result to the singular values, we consider the squared sin-
gular values (= eigenvalues) which correspond to the variance explained by the
corresponding singular vectors/eigenvectors. Squared singular values are corrected by
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multiplication with (1 — adjusted R?) to retrieve the fraction of variance not explained
by nuisance parameters. The square root of the result is the corrected singular value
See also Additional file 2, Section 3.2. For Additional file 1: Fig. S5a, each nuisance par-
ameter was individually regressed on, to compare the influence of each factor.

Multiplicative noise
To model multiplicative noise, we use a rectangular random noise matrix X with the
same dimensions as the measured expression matrix X and a square signal matrix P

whose number of rows or columns is equal to the number of measured genes. The

measured expression matrix X is then modeled as:

X=(+P)}X,

where I denotes the identity matrix. Importantly, the bulk of the singular vector dis-

tribution of the measured expression matrix X still follows the MP distribution in this
model. The singular values of the signal matrix P are calculated from the outlying sin-

gular values of X by:
2c

S e 00D

with a,b=(1+ \/Z)2 The squared cosine of the angles between the corresponding

singular vectors of the measured expression matrix and the signal matrix are then cal-
culated as:

9i2—c

1
mult
o = B T 20

As before, the largest of these values is taken to be the clusterablity measure. More
information on multiplicative perturbation can be found in [38].

Theoretically achievable clustering quality

To construct a Bayes classifier [21], which achieves the minimal error rate, we need to
know the ground truth clustering. Hence, we used data simulated with Splatter [19],
containing two clusters. For each ground truth cluster, we fit a multidimensional
Gaussian to the corresponding entries of the singular vectors (see Additional file 1: Fig.
S3a). We only consider singular vectors with singular values larger than predicted by
the MP distribution. For the fit, we use the mclust [39] R package (V 5.4.6). We then
construct a classifier by assigning a cell to the cluster for which it has the highest value
of the fitted Gaussian distribution. This classifier is thus approximately a Bayes classi-
fier (for a true Bayes classifier, we would need to know the exact distributions of the
singular vector entries). The ARI [20] calculated based on this classification is thus ap-
proximately the best theoretically achievable ARI (tARI).

We also tested the silhouette coefficient [8] as a potential alternative to the ARI for
quantifying our notion of clusterability. The silhouette coefficient was calculated on the
first singular vector using Euclidean distances. In Additional file 1: Fig. S4, the silhou-
ette coefficient averaged over all cells is reported. The theoretically achievable silhou-
ette coefficient tSIL is defined as the silhouette coefficient of the Bayes classification
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described in the previous paragraph. The calculation of tARI and tSIL is described in
more detail in Additional file 2, section 2.5.

Clustering methods

For the validation of the tARI and tSIL, several clustering methods were used on simu-
lated data with two clusters. Seurat clustering [1] was performed with the Seurat R
package with 10 principal components (PCs) and 20 nearest neighbors. Three different
resolution parameters were used: 0.1, 0.6, and 1.6. Scanpy clustering [2] was performed
with the scanpy python package with 10 PCs and 20 nearest neighbors. Three different
resolution parameters were used: 0.1, 0.6, and 1.6. Hierarchical clustering [4] was per-
formed on the first 10 PCs and Euclidean distances. The hierarchical tree was built with
the Ward linkage and the tree was cut at a height where 2 clusters could be identified.
K-means [3] was performed on the first 10 PCs using Euclidean distances and two cen-
ters. TSCAN [40] was calculated on the first 10 PCs. In Additional file 1: Fig. S7, k-
means clustering was performed on the first 3 principal components and using Euclid-
ean distances.

Clusterability measures

ROGUE [9] is an entropy-based clusterability measure. A null model is defined under
the assumption of Gamma-Poisson distributed gene expression and its differential en-
tropy is then compared to the actual differential entropy of the gene expression profile.
For the RNA-mix data set, ROGUE (V 1.0) was used with 1 sample (see Fig S6), “UMI”
platform, and a span of 0.6. For the simulated data sets, ROGUE was used with k = 10
(Additional file 1: Fig. S4 d). The silhouette coefficient was calculated with the cluster
R package (V 2.1.0) using Euclidean distances in the space of the relevant singular vec-
tors. The reported values for the silhouette coefficients are average values per cluster.
The confidence intervals given in Additional file 1: Fig. S6 and S7 are standard devia-
tions of its values per cluster.

Variance driving genes

Genes that drive the variance in the significant singular vectors can be used to explore
the biological information in the sub-structures. Genes with large positive or negative
entries in a gene-singular vector are localized in cells with high positive or negative en-
tries in the corresponding cell-singular vector. It is also possible to assess the signal-to-
noise ratio for the genes by calculating the squared cosine of the angle between the
gene singular vectors of the measured expression matrix X and the gene singular vec-
tors of the signal matrix P, given by

o (c+67)

¢ = cos(a;)” = 1- 55—,
: @) 6; (67 +1)

where c is the cell-to-gene ratio. The largest of the ¢fis then called ¢°, ,, the gene

phiclust (g-phiclust). See Additional file 2, section 2.4 for a more detailed discussion.
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Data sets

The simulated data sets in Additional file 1: Fig. S1 comprised 201 cells and 350 genes.
The random noise matrix was sampled from a normal distribution with mean 0 and
variance 1 in panels a and b, or from a Poisson distribution with parameter 1 in panels
c and d. The rank 1 signal matrix was constructed from one cell-singular vector and
one gene-singular vector. The cell-singular vector consisted of 67 entries equal to 1/
/N and all other entries equal to —1/v/Ny , where N is the number of cells. The
gene-singular vector consisted of 200 entries equal to 1/ \/J\E and the rest equal to —
1/\/Ngene » where Ngen, is the number of genes. The signal matrix was then created by
matrix multiplication of the gene-singular vector and the transposed cell-singular vec-
tor times the singular value 6 (6 =2 in a,c and =5 in b,d). In Additional file 1: Fig.
S2f, g a rank 1 signal matrix was created similarly as described above. The cell-singular
vector with a number of entries matching the number of cells in the cluster was con-
structed as before. The gene-singular vector was drawn from a normal distribution and
subsequently normalized to unit length. The rank 1 signal matrix was then added to
the preprocessed expression matrix of the indicated cluster.

The remaining simulated data sets were produced with the splatter [19] R package (V
1.10.1). The parameters used for the simulation are shown in Table S1. For Fig. 1c,d,
Additional file 1: Fig. S3b-e, Additional file 1: Fig. S4, and Additional file 1: Fig. S8a, the
simulations for each parameter were performed 50 times, each with a different seed.
The results were averaged over the 50 runs. Confounder regression was performed for
the total number of transcripts per cell.

PBMC data [22] was downloaded from the 10x genomics website (https://cf.1
Oxgenomics.com/samples/cell/pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz). For
the calculation of the tARI, clustering with Scanpy, TSCAN, k-means, and hier-
archical clustering, preprocessing was performed with the scanpy python package
(V 1.4.6) following the provided pipeline (https://scanpy-tutorials.readthedocs.io/en/
latest/pbmc3k.html) for the filtering of cells and genes, normalization, and log-
transformation as well as cluster annotation. For the clustering with Seurat, the
provided Seurat pipeline was used (https://satijalab.org/seurat/archive/v3.2/pbmc3k_
tutorial.html) for preprocessing, such as cell and gene filtering, normalization, log-
transformation, and cluster annotation using the Seurat R package (V 3.1.5). CD8
T cells and B cells were extracted from the data, and each cluster was standardized
gene-wise and cell-wise before the calculation of the SVD. To remove any sub-
structure in these clusters and before the reconstruction of the matrices from the
SVD, singular values above the MP distribution were moved into the bulk, and the
transcriptome mode (i.e., the singular vector that would have the largest singular
value without normalization, see Additional file 2) was moved above the MP distri-
bution. Then, two synthetic clusters containing 150 cells each were created from
the cleaned-up original clusters. For cluster 1, a weighted average of a randomly
picked B cell with expression profile ¢z and a randomly picked CD8 T cell with
expression profile ccpg 7 was calculated according to: ¢;=a-cg+(1-a)-ccps T
For cluster 2, the weights were flipped: ¢, =(1-a)-cg+a-ccps - @« was chosen in
a range from 0 to 1. a close to 0.5 produced highly similar clusters, while a close
to 0 or 1 produced maximally different clusters (see Fig S3e). For each value of a,


https://cf.10xgenomics.com/samples/cell/pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz
https://cf.10xgenomics.com/samples/cell/pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz
https://scanpy-tutorials.readthedocs.io/en/latest/pbmc3k.html
https://scanpy-tutorials.readthedocs.io/en/latest/pbmc3k.html
https://satijalab.org/seurat/archive/v3.2/pbmc3k_tutorial.html
https://satijalab.org/seurat/archive/v3.2/pbmc3k_tutorial.html

Mircea et al. Genome Biology (2022) 23:18 Page 21 of 24

the procedure was repeated 50 times, each with a different seed for selecting 300
cells per cell type, and the results were averaged.

RNA-mix data [23] was downloaded from the provided GitHub page. The data were
normalized with the R scran package (V 1.14.6) and then log-transformed. Confounder
regression was performed for the total number of transcripts, average mitochondrial
gene expression, and average ribosomal gene expression. Two different merged clusters
were created from the provided RNA mixtures as shown in Additional file 1: Fig. S6.

The bone marrow mononuclear cell data set (BMNC) [27] was downloaded from the
R package SeuratData (bmcite, V 0.2.1). Normalization and calculation of the G2M
score [41] were performed with the Seurat R package (V 3.1.5). Confounder regression
was performed for the log-transformed total number of transcripts, cell cycle score, and
average expression of: mitochondrial genes and ribosomal genes (list obtained from the
HGNC website).

For the fetal kidney data set [30], the same preprocessing and normalization was used
as reported previously (scran R package [42]). The data was then log-transformed and
the G2M score was calculated with the Seurat R package. Confounder regression was
performed for the log-transformed total number of transcripts, G2M scores, and the
average expression of: mitochondrial genes, ribosomal genes, and stress-related genes
[43].

Embedding

Uniform Manifold Approximation and Projections [44] (UMAPs) for individual clusters
were calculated with the R package umap (V 0.2.7.0) on the first 10 PCs, 20 nearest
neighbors, min_dist = 0.3, and Euclidean distances. The umap for BMNC data was cal-
culated with the Seurat R package using 2000 highly variable genes (hvg), d = 50, k =
50, min.dist = 0.6, and metric = cosine. For the fetal kidney data set, a force-directed
graph layout was calculated using the scanpy python package. The graph was con-
structed using 100 nearest neighbors, 50 PCs, and the ForceAtlas2 layout for
visualization.

Differential expression test

Differentially expressed genes within the sub-clusters found in Additional file 1: Fig. S9
and Additional file 1: Fig. S10 were calculated with the function findMarkers of the
scran R package on log-transformed normalized counts. Genes with a false discovery
rate below 0.05 were selected and then sorted by log2 fold change. In Figures S9e and
S10e, genes with the top 20 highest/lowest values in the gene singular vectors are listed
and colored blue if they correspond to the top 20 DE genes.

Staining

A human fetal kidney (female) at week 15 of gestation was used for immunofluores-
cence using the same procedure as reported previously [30]. The following primary
antibodies were used: rabbit anti-UPK1A (1:35, HPA049879, Atlas Antibodies), mouse
anti-KRT7 (1:200, #MA5-11986, Thermo Fisher Scientific), rabbit anti-CDH1 (1:50,
SC-7870, Santa Cruz), rabbit anti-CLDN1 (1:100, #717800, Thermo Fisher Scientific),
goat anti-CAV2 (1:100, AF5788-SP, R&D Systems), mouse anti-AKAP12 (1:50, sc-
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376740, Santa Cruz), rabbit anti-CLDN11 (1:50, HPA013166, SIGMA Aldrich), mouse
anti-POSTN (1:100, sc-398631, Santa Cruz), and goat anti-SULT1E1 (1:50, AF5545-SP,
R&D Systems). The secondary antibodies were all purchased from Invitrogen and di-
luted to 1:500: Alexa Fluor 594 donkey anti-mouse (A21203), Alexa Fluor 594 donkey
anti-rabbit (A21207), Alexa Fluor 647 donkey anti-mouse (A31571), Alexa Fluor 647
donkey anti-rabbit (A31573), and Alexa Fluor 647 donkey anti-goat (A21447). The sec-
tions were imaged on a Nikon Ti-Eclipse epifluorescence microscope equipped with an
Andor iXON Ultra 888 EMCCD camera (Nikon, Tokyo, Japan).
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