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Kidney involvement is a common complication during SARS-CoV-2 infection. Its
association with poor outcomes, especially in critically ill patients, raises issues whether
kidney involvement reflects multi-organ damage or if it is a specific feature of the
infection. Based on observational studies, autopsy series, and on current understanding
of the route of entry of the virus, this review will highlight the different types of
kidney involvement during COVID-19 and put them in the perspective of the different
pathophysiological hypotheses. Virus entry route through ACE2 ligation and TMPRSS2
coligation allows identifying potential viral targets in the kidney, including tubules,
endothelial cells, and glomerulus. While reports have described damages of all these
structures and virus kidney tropism has been identified in renal extracts in autopsy series,
no direct viral infection has been found in the latter structures thus far on kidney biopsies.
Notwithstanding the technical challenge of disclosing viral invasion within tissues and
cells, viral direct cytopathogenic effect generally does not appear as the cause of the
observed renal damage. Inflammation and altered hemodynamics, described as “viral
sepsis,” might rather be responsible for organ dysfunction, including kidneys. We shall
place these various mechanisms into an integrated vision where the synergy between
direct viral pathogenicity and systemic inflammation enhances renal damage. As SARS-
CoV-2 inexorably continues its rampant spread, understanding the sequence of events
in the kidneys might thus help inform improved therapeutic strategies, including antiviral
drugs and immunomodulators.

Keywords: COVID, viral sepsis, inflammation, AKI (acute kidney injury), kidney, SARS – CoV – 2, COVID–19

INTRODUCTION

Since the COVID-19 outbreak in January 2020, SARS-CoV-2 infection has affected so far more than
80 million people around the world with nearly 2 million reported deaths according to the WHO
(World Health Organization [WHO], 2021). Although the most populous countries have gone
through their first wave, the pandemic is still ongoing worldwide with some countries, including
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France, worryingly experiencing a recent outbreak in new
cases and new admissions in hospital, notably in intensive
care units (ICUs). Finding therapeutic strategies is thus of
major importance to mitigate the impact of the pandemics, as
measures of social distancing seem insufficient to contain the
spread of the virus.

The main organ involvement during COVID-19 infection is
the lung, but extrapulmonary manifestations are emerging not
only as more frequent than initially hypothesized but also as
of major impact during the clinical course of the infection. In
particular, kidney impairment has been extensively reported and
is associated with poor outcomes (Robbins-Juarez et al., 2020).
However, pathophysiology of kidney involvement during SARS-
CoV-2 infection remains to be elucidated. Indeed, mechanistic
and experimental studies are still lacking and most of the
hypotheses rely on observational retrospective clinical data, with
frequently missing information, and some pathological findings
that might give insights on potential mechanisms.

Kidneys are richly vascularized organs, as renal blood flow
(RBF) accounts for 25% of cardiac output. While this high
RBF allows efficient homeostasis of electrolytes and acid–base
balance, the inevitable backlash is a high susceptibility to
hemodynamic changes and systemic diseases, infectious or
immune related (Maher, 1981). Even though the regulating
system of tubuloglomerular feedback allows preserving
glomerular filtration rate (GFR) in physiology, this refined
adapting system cannot suffice in major pathophysiological
states, such as that encountered during severe COVID-19.

Efficient as kidneys may be, they are consequently prone
to be the target of various diseases and, as such, reflect these
diseases and their severity. This paradigm should thus apply to
SARS-CoV-2–related acute kidney injury (AKI), which reflects
the systemic phase of the infection. However, whether the severity
of the disease is due to viral dissemination and/or systemic
inflammation is still a matter of debate.

Consequently, understanding kidney involvement might be
the bridge to a better understanding of the disease itself. This
might thus lead to optimal therapeutic targets, including antiviral
and/or anti-inflammatory drugs.

In this view, we will focus on emerging data regarding kidney
involvement during COVID-19 and infer pathophysiological
hypotheses that might finally shed light on potential
therapeutic interventions.

ACUTE KIDNEY INJURY AND COVID-19

Epidemiology
Acute kidney injury (AKI), defined by a rapid increase in
serum creatinine and/or a sudden decrease in urinary output
(KDIGO Guidelines, 2012), has been reported in several studies
on COVID-19. The prevalence vary widely depending not
only on the severity of the disease but also on geographical
factors, and consequently the population studied (Robbins-
Juarez et al., 2020): from 0.5% in the report from Guan et al.
(2020) gathering findings from 1,099 outpatients and hospitalized
patients throughout China, to 80% of patients while in ICU in the

study from Rubin et al. (2020). Consistently, severe AKI requiring
renal replacement therapy (RRT) also occurs more frequently in
critically ill patients, in 40 to 55% of cases (Chand et al., 2020;
Mohamed et al., 2020) compared with a general prevalence of
0.8 to 14.7% in the meta-analysis gathering 20 reported cohorts
from Robbins-Juarez et al. (2020).

Acute kidney injury also seems to be close-related to the
temporal evolution of pulmonary signs (Hirsch et al., 2020).
Specifically, AKI and mechanical ventilation seem intricately
linked in several reports. For example, Hirsch et al. (2020)
reported that AKI occurred in 89.7% of patients on mechanical
ventilation, compared with only 21.7% of the non-ventilated
patients, and that almost all (96.8%) the patients of their cohort
requiring RRT were on ventilator support. These results suffer,
however, from an immortality bias as patients on mechanical
ventilation must survive enough to be integrated in the analysis
(Jamme and Geri, 2020). Besides mechanical ventilation, other
commonly identified risk factors for AKI are age, male sex,
and pre-existing comorbidities [cardiovascular disease, diabetes
mellitus, hypertension, and chronic kidney disease (CKD)] (Fu
et al., 2020), as well as black race and obesity (Bowe et al., 2020).
In several studies, kidney involvement has been reported as an
independent risk factor of mortality, with a meta-analysis from
Fu et al. (2020) showing a pooled risk ratio of mortality from
142 studies of 4.6 (95% CI 3.3–6.5) compared with patients with
no AKI. Other events undeniably contribute both to general
deterioration and to AKI and are not taken into account in these
analyses. We thus cannot exclude residual confounding factors
such as hemodynamic instability during the course of the disease,
degree of hypoxemia, or septic events.

Features of Kidney Involvement During
SARS-CoV-2 Infection: Are They Specific
to COVID-19?
Kidney involvement in COVID-19 usually presents with non-
specific features of AKI: rise in serum creatinine and/or decrease
in urine output. The presence of AKI does not prejudge the
cause of kidney damage and might exist regardless of the
underlying etiology. Authors have reported general features of
kidney impairment during COVID-19, as well as more specific
descriptions and histopathological data in case series or case
reports. However, the precise rate of specific tubular, glomerular,
and vascular involvement is still unknown, and whether they
represent key features of SARS-CoV-2–related kidney injury
remains to be determined.

Prerenal Azotemia
The effective decrease of extracellular volume, induced by poor
intake of water and food, high fever, diarrhea, and ultimately
hypovolemic, cardiogenic, or septic shock observed in the
course of COVID-19, might induce a decrease in renal blood
flow resulting in GFR decrease. Moreover, rapid recovering
of AKI after volume supplementation has been described in
12.2% of critically ill patients (Xia et al., 2020), which might
conduct retrospectively to the diagnosis of prerenal acute kidney
failure. When measured, a fractional excretion of urinary sodium
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<1% was observed in 38% of cases upon admission in ICU
(Mohamed et al., 2020).

It is interesting to note that among patients with severe
COVID-19 admitted to ICUs, AKI is frequently associated
with invasive ventilation (Hirsch et al., 2020). As a matter
of fact, patients with invasive ventilation display altered
abdominal pressure, especially when they are exposed to high
expiratory pressure during mechanical ventilation. In this setting,
the mechanical ventilation–induced high abdominal pressure
compromises abdominal venous drainage, resulting in renal
venous congestion, which is a prominent cause of ischemic
kidney injury. Mechanical ventilation is also correlated with more
profound and longer hypoxemia, the latter potentially resulting
in sustained renal ischemia. Other factors have been suggested
to contribute to kidney injury during invasive ventilation,
including neurohormonal changes and inflammatory mediators
(Koyner and Murray, 2008).

Acute Tubular Injury: Is Tubular Injury A Specific
Feature of COVID-19 and Does it Reflect Viral
Invasion?
Kidney involvement during COVID-19 usually presents with
features of tubular injury: mild proteinuria, in 15.5 (Xia et al.,
2020) to 69% of patients (Cheng et al., 2020; Mohamed et al.,
2020; Pei et al., 2020), of low molecular weight when assessed
(Werion et al., 2020), tubular casts, and renal tubular epithelial
cell casts on urine sediment microscopic analysis (Hernandez-
Arroyo et al., 2020). Based on these findings and others, several
authors suggest that a direct and specific tubular viral invasion
occurs during SARS-CoV-2 infection. There are some limitations
in this interpretation that we will summarize in this section.

Is There a Specific Fanconi Syndrome During
SARS-CoV-2-Related AKI?
Fanconi syndrome is a specific proximal tubular dysfunction
characterized by abnormal handling of solutes that are secreted
and/or reabsorbed by proximal tubule. Fanconi syndrome
features are the following:

Tubular proteinuria
Low molecular weight proteinuria and/or urinary
albumin/protein ratio <50% are key features of acute tubular
injury, irrespective of the cause of tubular damage. Consistently,
tubular injury markers such as NGAL and KIM-1 have been
extensively studied to better detect acute tubular injury before
the increase in serum creatinine and the decrease in estimated
GFR (Parikh et al., 2010). Consequently, low molecular
weight proteinuria cannot be considered a specific feature of
Fanconi syndrome.

Aminoaciduria, uric acid and phosphate renal wasting,
normoglycemic glycosuria
Two reports have studied these parameters in COVID-19
patients. Werion et al. (2020) found unquantified aminoaciduria
in 6 out of 13 tested SARS-CoV-2–infected patients, 18/39
with hypouricemia and fractional excretion of uric acid
(FeUA) > 10%, and 6/32 with hypophosphatemia and fractional
excretion of phosphate >20%. Kormann et al. (2020) found

hypouricemia and FeUA > 10% in 14/35 patients, a calculated
maximal threshold for phosphate reabsorption (TmPi/GFR)
<0.77 mmol/L in 19/48 patients, and, conversely to Werion et al.,
normoglycemic glycosuria in 11/28 patients.

Specific cautions in proximal tubular functions
interpretation during AKI
First, in the same line with tubular proteinuria, proximal
tubular transports, especially sodium co-transporters (including
sodium-phosphate co-transporters), are disturbed during AKI in
experimental models as well as in humans (Basile et al., 2012;
Vallon, 2016). Second, FeUA might be increased in patients
with volume overload as frequently seen in critically ill patients
(Kazory et al., 2020); this situation has even been described
during the first SARS outbreak, where it was associated with
inflammatory cytokines (Wu et al., 2005). Third, phosphatemia
is often decreased in critically ill patients, mostly due to
an intracellular transfer mechanism, falsely decreasing the
TmPi/GFR calculation while phosphate tubular transport is not
affected (Suzuki et al., 2013). Finally, proximal tubules are the
mainstay of injury during AKI (Takaori et al., 2016); hence, it
should not be surprising to find these features during any type of
acute tubular injury. However, as these markers are not usually
assessed in acute tubular injury, it remains uncertain whether
they are more frequent during SARS-CoV-2–related AKI.

Specific cautions in urinary biochemistry interpretation
during AKI
Another limitation of these findings is the possible flaws in
urine biochemistry during acute illness. First, during AKI, urine
creatinine concentration rapidly decreases. Ratios based on its
level might thus be inaccurate. In the same line, fractional
excretion of all the solutes will appear elevated even with
no modification of tubular handling. Finally, proteinuria can
increase in conditions such as fever, oliguria, or hematuria in
patients with urine catheter (Nguyen et al., 2009; Gabarre et al.,
2020).

Could SARS-CoV-2–Related AKI Be a Toxic Acute
Tubular Injury?
Rhabdomyolysis
Some authors have reported results suggestive of a contribution
of myoglobin to kidney damage. Mohamed et al. (2020) found
high levels of plasmatic creatine phosphokinase (CPK), above
1000 U/L in more than 30% of their patients. In most cases,
values were not as high as in typical rhabdomyolysis-induced
AKI (above 15,000 IU/ml) (Bosch et al., 2009). Pigmented casts
were also found in 3 out of 26 autopsy analysis of kidney tubules
from deceased patients with high CPK levels (Su et al., 2020).
The association of myoglobinuria with dehydration, sepsis, and
acidosis might thus trigger AKI in a subpopulation of SARS-CoV-
2–infected patients.

Toxic acute tubular injury
A high incidence of AKI, especially in critically ill patients,
along with a lack of efficacy on primary endpoints during
preliminary data analysis has led the Discovery trial investigators
to an early termination of inclusions in the lopinavir/ritonavir
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arm (Inserm, 2020). While it was not confirmed by the
lopinavir/ritonavir versus standard of care randomized trial by
Cao et al. (2020), Binois et al. (2020) found an association
between AKI and this treatment regimen in patients admitted in
their ICU unit, notwithstanding potential confounding factors,
as this study involved critically ill patients with features of
viral sepsis. Interestingly, Arrestier et al. (2020) explored three
critically ill patients with AKI while on lopinavir/ritonavir
treatment and found neither urinary crystals nor evidence of
drugs by infrared spectroscopy analysis of urinary sediment.
Conversely, they mostly found cellular debris and granular casts.
Overall, these results suggest that during SARS-CoV-2 infection,
potentially nephrotoxic treatments might contribute to AKI on
underlying subclinically damaged kidneys.

SARS-CoV-2–Related Acute Tubular Injury: Other
Pathophysiological Hypotheses
Ischemic ATI
Prerenal azotemia often overlaps with ischemic tubular injury
or might rapidly evolve toward organic tubular damage
when hemodynamic changes are severe. Several other factors,
in particular systemic inflammation, microvascular damage,
and reduction in kidney medullary perfusion, contribute to
parenchymal injury during ischemic ATI (Basile et al., 2012).

Viral renal invasion
As far as we currently know, establishing that SARS-CoV-2–
related AKI is related to viral invasion needs simultaneous
ACE2 (type 2 angiotensin-converting enzyme) and TMPRSS2
(transmembrane protease, serine 2) expressions in the same site,
and detection of viral RNA in those tissues during infection.
Indeed, host cell entry of SARS-CoV-2 involves two major steps:
binding of the Spike (S) protein to ACE2 and cleavage in two
subunits (S1 and S2) by the host TMPRSS2, thus initiating
fusion and endocytosis of the virus (Batlle et al., 2020). In both
rodent and human kidneys, ACE2 protein and transcript are
highly expressed in the proximal tubule, in parietal and visceral
epithelial cells of the glomerulus, in vascular smooth muscle
cells, and in the endothelium of interlobular arteries (Lely et al.,
2004; Ye et al., 2006; Batlle et al., 2020). TMPRSS2 is expressed
at lower levels in the proximal tubule and the glomerulus
compared with distal nephron, questioning the kidney infectivity
of SARS-CoV-2, and raising the possibility of SARS-CoV-2
priming by other TMPRSS subtypes. Of note, Pan et al. (2020)
have found differential expressions of ACE2 and TMPRSS2 in
Asian and European populations, potentially explaining different
susceptibility to SARS-CoV-2–related AKI.

Viral RNA and proteins have been extensively reported in
upper respiratory tract and pulmonary cells, by various direct
techniques including spatial identification (Best Rocha et al.,
2020; Bussani et al., 2020; Ehre, 2020; Hou et al., 2020; Schaefer
et al., 2020). In contrast, findings are far more conflicting in
the kidneys. Viral RNA has been found in 40 to 78% of studied
kidney extracts in autopsy series (Bradley et al., 2020; Braun
et al., 2020; Edler et al., 2020; Puelles et al., 2020; Remmelink
et al., 2020; Wichmann et al., 2020), with similar viral loads
in the liver and the heart, which appear to be substantially

lower than in respiratory samples. It correlates with viremia
when assessed (Wichmann et al., 2020), but not always with
clinical and histopathological findings. Kidney histology of these
autopsy series found either normal tissue or aspecific shock
lesions, tubular injury, and autolysis (Bradley et al., 2020; Edler
et al., 2020; Remmelink et al., 2020; Santoriello et al., 2020;
Wichmann et al., 2020). Interestingly, a high proportion of
chronic vascular and glomerular lesions has also been reported.
Braun et al. (2020) reported the presence of pre-mortem AKI
in 23 out of 32 patients with SARS-CoV-2–positive kidney
samples. A report in May 2020 by Puelles et al. (2020) suggested
the presence of SARS-CoV-2 RNA and protein, respectively,
by in situ hybridization (ISH) and immunofluorescent staining
within podocytes, glomerular endothelial cells, and tubular cells,
whereas none of the more recent kidney biopsy series found
evidence of viral RNA with validated techniques including ISH
(Couturier et al., 2020; Kudose et al., 2020; Sharma et al., 2020).
Consistently, the main finding in these kidney biopsy series
is acute tubular injury. Besides these conflicting results, the
presence of virus in cells and tissues does not imply that there is a
cytopathogenic infection, as demonstrated by in vitro studies by
Eckerle et al. (2013) showing the absence of SARS-CoV infectivity
in kidney epithelial cells.

Specific cautions in interpreting indirect ultrastructural evidence of
virus. Upon electron microscopic analysis of kidney structures,
some authors have interpreted the presence of intracellular
inclusions as direct evidence of the presence of SARS-CoV-2.
Since then, several authors have disclosed these non-specific
microvesicular bodies in biopsies from non-infected patients
with various disorders (Calomeni et al., 2020; Cassol et al.,
2020; Goldsmith and Miller, 2020). Consequently, intracellular
inclusions should not be considered as viral inclusions if not
associated with specific virus identification techniques.

Viral septic AKI
On the whole, even though viral RNA is found in kidneys
of autopsies, current evidence does not support a major
role of direct viral pathogenicity on the kidneys. Yet, severe
viral infections, in particular with respiratory viruses, can
induce multi-organ damage, including acute respiratory distress
syndrome (ARDS) and AKI (Gu et al., 2020). Before the recent
outbreak of COVID-19, public health concerns about mortality
during influenza viruses, SARS-CoV, and MERS-CoV infections
have yielded increasing interest in on “viral sepsis,” defined
as a virus-related “life-threatening organ dysfunction resulting
from dysregulated host responses to infection” (Singer et al.,
2016). This implies that organ damage does not directly depend
on viral invasion and SARS-CoV-2–related local inflammation,
but is rather considered as a remote inflammation, due to
pulmonary involvement resulting in a massive systemic response
that is deleterious in itself. This crosstalk between distant
organs is likely mediated by several factors including cytokine
and DAMP (damage-associated molecular pattern) release by
injured tissues. Consistently with this hypothesis, patients
with severe COVID-19 often present with multi-organ and
hemodynamic failure, which appears late in the time course
of the infection. This presentation is often associated with a
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pro-inflammatory phenotype (Azoulay et al., 2020), including
fever, high levels of C-reactive protein, and high levels of pro-
inflammatory cytokines, particularly IL-6 (Chen et al., 2020),
which is an established mediator of AKI in experimental models
(Nechemia-Arbely et al., 2008). Besides, renal blood flow decrease
has also been demonstrated in COVID-19 patients and was
comparable with patients with bacterial sepsis in a case–control
study (Watchorn et al., 2020). Consequently, sepsis-associated
hemodynamic changes and inflammation might be of major
importance in the pathophysiology of SARS-CoV-2–related AKI.

Specific cautions in extrapolating from pulmonary
endothelial dysfunction and hypercoagulability to the kidney
injury
Pulmonary hypercoagulability is indeed a major feature
during COVID-19, raising the issue of endothelial dysfunction
(Ackermann et al., 2020) as part of the viral sepsis, or as a
distinct and specific mechanism of multi-organ damage (Kaur
et al., 2020; Pons et al., 2020). Indeed, hypercoagulability and
endothelial dysfunction are interrelated especially in the setting
of thrombo-inflammation (Abou-Ismail et al., 2020). However,
endotheliitis and thrombosis have been mostly described in
lungs, and systemic hypercoagulability is rather occasional based
on published data (Klok et al., 2020). Regarding kidneys, two
cases of multiple renal infarctions have been reported (Post
et al., 2020), occurring in both cases simultaneously with general
clinical worsening; renal outcome eventually happened to be
favorable along with respiratory and general improvement.

Renal microvascular or endothelial involvement seems rare
as to date few cases of thrombotic microangiopathy (TMA)
have been reported to be unequivocally related to COVID-19
(Akilesh et al., 2020; Jhaveri et al., 2020; Sharma et al., 2020).
In autopsy series, Santoriello et al. (2020) found focal fibrin
thrombi in only 6 out of 42 autopsies, and Varga et al. (2020)

found lymphocytic endotheliitis in the kidney of one out of
three deceased patients, with no precision as to which renal
vascular structure was involved. These results suggest that if
present, endothelial lesions are mild and do not account for the
majority of SARS-CoV-2–related AKI. In the same line, while
complement activation has been suggested as a major contributor
to endothelial dysfunction and hypercoagulability, there is
currently no evidence of such mechanism in the kidney, as no
specific complement mediated renal lesions have been reported
so far (such as membranoproliferative glomerulonephritis or C3
glomerulopathy). In the aforementioned published case of TMA,
however, a comprehensive complement testing showed a slightly
decreased level of circulating factor H, and increased circulating
CBb and SC5b-9 levels, suggesting an activation of the alternative
pathway of the complement in this specific case, in which genetic
testing was not performed (Jhaveri et al., 2020).

The Particular Case of
COVID-19–Associated Collapsing
Glomerulopathy
Although probably rare, glomerular involvement seems a
characteristic feature during SARS-CoV-2 infection (Table 1). It
presents with severe AKI and heavy proteinuria, with a nephrotic
syndrome (i.e., with hypoalbuminemia) in a majority of cases.
Hematuria is inconstant. Histopathological findings are those
of a collapsing glomerulopathy, which is a variant form of
focal segmental glomerulosclerosis associated with poor renal
prognosis. This lesion can be observed in other viral-associated
nephropathies (HIV, CMV, EBV, and Parvovirus B19) (Velez
et al., 2020). In particular, it has been described in HIV patients
from African origin expressing risk variants for APOL1 gene.
When tested, all the cases of collapsing glomerulopathy during

TABLE 1 | Summary of the type of reported kidney involvement during SARS-CoV-2 infection according to the underlying site of kidney damage.

Renal involvement Features Underlying condition References Commentaries

Prerenal azotemia AKI Signs of ECV decrease
FeNa <1% RBF decrease
Favorable outcome after volume
repletion

Hemodynamic changes
Hypovolemia Venous congestion
Mechanical ventilation

Chand et al., 2020 Xia et al., 2020
Watchorn et al., 2020 Mohamed
et al., 2020

Tubular AKI Low-range proteinuria Low
molecular weight proteinuria
±Hypouricemia
±Hypophosphatemia
±Aminoaciduria

Ischemic ATI Sepsis-associated
ATI Rhabdomyolysis

Werion et al., 2020 Kormann et al.,
2020 Mohamed et al., 2020
Kudose et al., 2020 Santoriello
et al., 2020 Sharma et al., 2020

No direct identification of
SARS-CoV-2 (ISH, IHC, and PCR)
(Unspecific microvesicular bodies
on electron microscopy)

Glomerular AKI Nephrotic-range proteinuria
Albuminuria ±Hematuria

Collapsing glomerulopathy
Membranous nephropathy Minimal
change disease Anti-GBM GN
Pauci-immune crescentic GN
Chronic glomerulosclerosis

Kudose et al., 2020 Santoriello
et al., 2020 Sharma et al., 2020 Wu
et al., 2020 Gaillard et al., 2020

APOL-1 variant–associated
collapsing glomerulopathy Role of
interferon?

Vascular AKI Hematuria ±Low-range
proteinuria Severe COVID-19

Microvascular 6 cases of TMA
Focal fibrin thrombi in 6/42
Macrovascular 2 cases of renal
infarction Chronic vascular
lesions

Jhaveri et al., 2020 Akilesh et al.,
2020 Santoriello et al., 2020 Post
et al., 2020

Evidence of complement activation
in one case of TMA Evidence of
multiple thrombosis in one case of
renal infarction

In bold the most frequently reported lesions. AKI, acute kidney injury; ECV, extracellular volume; ATI, acute tubular injury; ISH, in situ hybridization; IHC,
immunohistochemistry; GBM, glomerular basal membrane; GN, glomerulonephritis; TMA, thrombotic microangiopathy.
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FIGURE 1 | Summary of the potential pathophysiological mechanisms of SARS-CoV-2–associated AKI. SARS-CoV-2 infection induces direct pulmonary injury that
might lead to systemic inflammation. Hemodynamic changes are also frequent in patients admitted in ICU, due to the infection and its complication, as well as to
medical interventions. These modifications result in GFR decrease and thus prerenal azotemia, potentially leading to acute ischemic tubular injury. Other factors
including inflammation itself and tubular toxicity due to nephrotoxic agents (antibiotics, antiviral drugs, etc.) contribute to acute tubular injury in these patients. Few
cases of TMA and renal vascular thrombosis have also been reported, raising the hypothesis of endothelial dysfunction and systemic hypercoagulability in the most
severe patients. Collapsing glomerulopathy is a specific feature of SARS-CoV-2–related AKI, also called COVAN (COVID-associated nephropathy) in reference to
HIVAN (HIV-associated nephropathy), as they probably share common mechanisms, including the strong association with APOL1 genetic variants. Finally, following
the report of the autopsy series from Puelles et al. (2020), a direct tubular or glomerular viral invasion has not yet been confirmed in other reports. Consequently, this
mechanism remains controversial. Arrows in bold represent the proposed major mechanisms. PEEP, positive end-expiratory pressure; GFR, glomerular filtration rate;
TMA, thrombotic microangiopathy; TLR, Toll-like receptors; DAMP, damage-associated molecular patterns; ROS, reactive oxygen species.
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COVID-19 occurred in patients with the same APOL1 risk
variants, suggesting a common underlying susceptibility and a
common second-hit mechanism (Wu et al., 2020). Noteworthy,
none of the published cases found SARS-CoV-2 viral RNA in the
injured glomeruli using validated direct identification techniques
(PCR, ISH, and IHC). Conversely, Wu et al., found increased
in situ chemokine gene expression consistent with electron
microscopy findings of endothelial reticular aggregates often
associated with conditions presenting with elevated α-interferon
(Gaillard et al., 2020).

CONCLUSION: PATHOPHYSIOLOGIC
HYPOTHESES AND THERAPEUTIC
PERSPECTIVES

On the whole, current evidence does mostly not support the
direct role of SARS-CoV-2 viral invasion in the pathophysiology
of SARS-CoV-2–related AKI, even in the severe cases with
systemic symptoms. Systemic complement activation is not
corroborated either thus far. Rather, emerging knowledge of renal
involvement during COVID-19 suggests that a state of viral sepsis

results in acute tubular injury with concurrent hemodynamic
changes and systemic inflammation, potentially aggravated by
nephrotoxic treatments and myoglobinuria (Figure 1). Based
on these published data on kidney involvement, in the setting
of severe or late-stage SARS-CoV-2 infection, antiviral drugs
and complement inhibitors might not be effective, at least if
administered alone. Strict fluid management, eviction when
possible of nephrotoxic agents, and hemodynamic control as well
as anti-inflammatory or immunomodulatory drugs, contrariwise,
might be promising in these situations.

Future experimental studies and interventional trials should
unravel the natural history of SARS-CoV-2 infection and the best
therapeutic options.
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